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Abstract: Background: Since the emergence of the COVID-19 pandemic, many models have been
applied to understand its epidemiological characteristics. However, the ways in which outbreak
data were used in some models are problematic, for example, importation was mixed up with local
transmission. Methods: In this study, five models were proposed for the early Shaanxi outbreak
in China. We demonstrated how to select a reasonable model and correctly use the outbreak data.
Bayesian inference was used to obtain parameter estimates. Results: Model comparison showed that
the renewal equation model generates the best model fitting and the Susceptible-Exposed-Diseased-
Asymptomatic-Recovered (SEDAR) model is the worst; the performance of the SEEDAR model, which
divides the exposure into two stages and includes the pre-symptomatic transmission, and SEEDDAAR
model, which further divides infectious classes into two equally, lies in between. The Richards growth
model is invalidated by its continuously increasing prediction. By separating continuous importation
from local transmission, the basic reproduction number of COVID-19 in Shaanxi province ranges
from 0.45 to 0.61, well below the unit, implying that timely interventions greatly limited contact
between people and effectively contained the spread of COVID-19 in Shaanxi. Conclusions: The
renewal equation model provides the best modelling; mixing continuous importation with local
transmission significantly increases the estimate of transmissibility.

Keywords: basic reproduction number; Bayesian inference; COVID-19; mathematical modelling;
model selection; local transmission; importation

1. Introduction

The emerging coronavirus disease, COVID-19, has been circulated worldwide since
January 2020 [1–3]. To control its spread, it is crucial to accurately estimate its important
epidemiological characteristics such as transmissibility and to predict its further potential
spread under different control measures. For this, mathematics and statistics have been
used to model the transmission dynamic processes [4–7]. To obtain reliable estimates of
the epidemiological characteristics from modelling analyses, correctly distinguishing and
using different outbreak data in an appropriate transmission model is essential [8–13].

The transmissibility of an infectious agent describes how easy and fast an infectious
disease can spread within a population. It is usually measured by the basic reproduction
number (denoted as R0), which is defined as the average number of secondary infections
generated by an infectious person introduced into a completely susceptible population [5].
Although many methods of estimating R0 have been developed [14,15], the difficulty in
measuring R0 of COVID-19 lies in the fact that it is a novel coronavirus. The knowledge
of the well-known coronaviruses such as severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS) has been borrowed to understand the early
transmission dynamics of COVID-19 [11]. Nevertheless, the epidemiological characteristics
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of COVID-19 appear quite different from those of both SARS and MERS [16]. Further,
as R0 is determined by the infectiousness of SARS-CoV-2 and the contact rate between
individuals, its value should be different among regions that implemented different control
measures. Therefore, the basic knowledge of COVID-19 epidemiological features should be
obtained from the epidemic data during outbreaks.

During the initial outbreaks of COVID-19 in China from January to March 2020, the
national and provincial governments and public health authorities collected lots of data
about the outbreaks and individual cases. These data undoubtedly provide a good chance
for us to understand the transmissibility of COVID-19 and the impact of control measures
implemented on stopping the spread. The reliable and accurate estimates depend on our
understanding of how SARS-CoV-2 is transmitted in the population and the appropriate
inference methods to calibrate the transmission models. We noticed that although some
modelling studies have been published [17–24], they might have problems in obtaining
reliable estimates of epidemiological parameters because of inappropriate use of the out-
break data. For example, when estimating R0, those studies used the daily number of
cases, which implicitly summarised local and imported cases. During the early stages of
the COVID-19 pandemic, one common feature among the outbreaks, except that in the
epicentre, Wuhan city, was the continuous importation due to quick and easy modern trans-
portation. During the outbreaks, the role played by imported cases is different from that of
local cases when counting the transmissibility of SARS-CoV-2: local cases as a result of local
transmission can increase R0, while imported cases as a potential source of transmission
should reduce the estimate of R0. A previous modelling study of the spatial transmission
of pandemic flu [25] shows that early importation plays a relatively more important role
in estimating transmissibility. Models that mixed up continuous importation with local
transmission enlarged the estimate of R0 [18–24,26], and mislead our assessment. To get a
reliable estimate of R0, it is crucial to separate imported cases from local cases [13,21,26–29].

Many different models have been proposed to describe the transmission dynamics
of COVID-19, such as compartmental transmission dynamics models [8–13,28,30,31], the
renewal equation model [32], machine learning [31], the Richards growth model [33,34],
and time series models, such as the ARIMA model [35]. In theory, we need to ask: which
one is better to approximate the spread of infection among the population given the data
collected? In practice, we must search for the one that can provide a simple and accurate
tool for us to estimate the essential epidemiological parameters and predict the trend of
spread within the population.

In this study, we took the COVID-19 outbreak from January to February 2020 in
Shaanxi province, China as an example to show how to avoid the common pitfall in esti-
mating R0 during the early stage of the COVID-19 pandemic in mainland China and other
similar situations and show how to select the best transmission model by comparing their
fitting to outbreak data. Two models [17,24] have been used for analysing the Shaanxi out-
break. Bai et al. [17] proposed a Susceptible-Exposed-Diseased-Asymptomatic-Recovered
(SEDAR) compartmental transmission model, and Yang et al. [24] used the Richards growth
model. The same implicit and problematic assumption in their modelling is that the Shaanxi
outbreak was caused by one importation event at the very beginning of the outbreak. Based
on this assumption, they obtained nearly the same estimate of the basic reproduction
number (2.95 and 3.11, respectively). In view of these two models, we will propose five
models to analyze the Shaanxi outbreak: the Richards growth model, the renewal equation
model, the SEDAR model, the SEEDAR model in which the exposure interval in SEDAR
is divided into two with the latter one being infectious, and the SEEDDAAR model in
which not only two exposed classes are present as in the SEEDAR model but there are
two classes in both diseased and asymptomatic infections, so infectious periods following
gamma-distributions. As we show below, the estimate of the basic reproduction number
of COVID-19 during the Shaanxi outbreak under the actual continuous importation is
below the critical level, 1.0, which is the consequence of the timely and draconian control
measures implemented in Shaanxi province.
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Although the Shaanxi outbreak was relatively small over a short period of about one
month and might be out of date, it was a typical situation of local outbreaks in mainland
China except for the epicentre, Wuhan city, and it represented many similar situations
in other countries during the early phases of COVID-19 pandemic. It is therefore hoped
that this study provides some useful modelling methods in dealing with similar outbreak
situations in future.

2. Materials and Methods
2.1. Data

The outbreak data for COVID-19 were collected from the Shaanxi provincial govern-
ment website from 23 January to 20 February 2020. Variables used in the line list data
for COVID-19 included age, gender, place of origin, exposure date, symptom onset date,
hospital admission date, close contacts, cluster number, medical history, symptoms, and
travel history. The serial interval and incubation period are estimated by applying the R
language function fitdistr to the line list data of the Shaanxi outbreak. Among 245 cases
reported during the period, 113 were imported from outside of Shaanxi (Figure 1A). The
dates of symptom onset were recorded for 210 cases, from which the delay from symptom
onset to reporting was estimated to have a mean of 7.54 days and a standard deviation of
4.12 days. The other 35 cases whose dates of symptom onset were missed were imputed
from their reporting dates and the distribution of delays from symptom onset to reporting.
The timeline of dates of symptom onset of 245 cases is shown in Figure 1B.
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To provide the direct dates for local transmission modelling, we constructed modified
dates of symptom onset for imported cases. If the date of symptom onset of one imported
case was earlier than the date of entry into Shaanxi province, then its modified date of
symptom onset is its entry date; otherwise, the modified date of symptom onset is its date
of symptom onset. There are 19 cases whose dates of the symptom onset were earlier than
their entry dates. This modification of symptom onset dates of imported cases will help in
modelling the transmission within Shaanxi province. With these arrangements, the timeline
of modified dates of symptom onset is shown in Figure 1C.

Once person-to-person transmission of COVID-19 was confirmed and announced on
20 January 2020 in mainland China, the Shaanxi provincial government took rapid actions
to launch control measures for COVID-19 containment from 21 January 2020 [36]. The
measures implemented in Shaanxi included strict traffic health quarantine, strictly limiting
public gathering activities, timely and effective medical treatments, overall coordination
of personnel and material allocation, timely release of information according to the law,
strengthening publicity and education, professional training, and resolutely safeguarding
social stability. These measures effectively controlled the local transmission and quickly
reduced the number of importations, as reflected in the epidemic curve shown in Figure 1.

2.2. Models

We proposed five models for analysing the SARS-CoV-2 outbreak in Shaanxi: the
Richards growth model, the renewal equation model, and three compartmental models:
the Susceptible-Exposed-Diseased-Asymptomatic-Recovered (SEDAR), Susceptible-Exposed-
Exposed-Diseased-Asymptomatic-Recovered (SEEDAR), and Susceptible-Exposed-Exposed-
Diseased-Diseased-Asymptomatic-Asymptomatic-Recovered (SEEDDAAR) models. Bayesian
inference via Markov chain Monte-Carlo (MCMC) sampling was used to estimate R0 by
calibrating the five models to Shaanxi outbreak data. The details of models and inference
methods are given below.

2.2.1. Richards Growth Model

The Richards growth model is an extended form of logistic growth model, an ecological
population growth model used to describe the growth of a population under competition
for resources due to carrying capacity [37,38]. It has been widely used in population
biology, including infectious disease dynamics [32,33]. For an outbreak caused by C0 seeds
of infection at time t0, the Richards growth model states that the cumulative number of
cases at time t is given by the following equation [24,33,39]:

C(t) = K
(

1 +
((

K
C0

)ν

− 1
)

exp(−rν(t− t0))

)− 1
ν

.

Here, r is the growth rate, ν is the scaling exponent, and K is the final epidemic size
given C0 = C(t0) seeds. If importation is continuing (e.g., there are Ci cases that are imported
at ti, i = 0, . . . , n − 1) and the outbreaks that importation at different times can cause are of
the same final size K and growth rate r, then the total cumulative number of cases should
be summarized as:

C(t) = K
n−1

∑
i=0

H(t− ti)

(
1 +

((
K
Ci

)ν

− 1
)

exp(−rν(t− ti))

)− 1
ν

. (1)

Here, H(t − ti) is the Heaviside function: which is 1 if t > ti and 0 otherwise. The daily
number of new local cases can be calculated as µ(t) = C(t)− C(t− 1). The basic reproductive
number R0 can be calculated from the growth rate and serial interval which is assumed to
follow gamma-distribution g(τ;α,β) by [40,41]

R0 =
1∫ ∞

0 g(τ; α, β)e−rτdx
=

(
1 +

r
β

)α

. (2)
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2.2.2. Renewal Equation Model

It is assumed that, once infected, individuals have an infectivity profile given by a
probability distribution ws, dependent on time since infection of the case, s, but independent
of calendar time, t. The distribution ws typically depends on individual biological factors
such as pathogen shedding or symptom severity. For simplicity, the distribution ws is
approximated by the distribution of serial interval (SI), the lag in onset dates of symptoms
between an infector and its infectee. In the original renewal equation model, Fraser [42]
considers a situation where the only importation is index case(s) at the very beginning of
the outbreak and other cases are generated by local transmission (this assumption was
also made in its direct application software for estimating the time-varying reproduction
number [43]). During the spread of COVID-19 in 2020, the outbreak within a region (except
the epicentre, Wuhan) took place with continuous importation. To take this into account,
Fraser’s model is slightly modified as in the following (c.f., [44]). Let ct be the number of
local cases whose symptoms onset at day t, its expected value is approximated by:

E(ct) = R0 ∑min(t−1,SI_max)
j=1 ws(ct−s + It−s). (3)

Here, It−s is the number of imported cases that have the onset date of symptoms on
day t−s and ws represents the probability mass function of the SI of length s days, which can
be obtained by ws = G(s)− G(s− 1), with G(.) representing the cumulative distribution
function of the gamma distribution. The gamma distribution is characterized by its mean
SI_mean and standard deviation SI_sd, both of which are to be estimated jointly with
R0 from the outbreak data [45]. Because only 19 cases among 113 imported cases had
symptom onset before entering Shaanxi province, the assumption that all cases started their
infectivity duration within Shaanxi province, which is implicitly required in Equation (3),
should be approximately satisfied.

In Equation (3) an implicit assumption made is that the transmissibility (i.e., R0)
remained constant during the outbreak duration. This should be reasonable in view of the
timely control measures implemented in Shaanxi province: control measures started on
21 January 2021 [36] and raised to their first-class emergency responses on 25 January 2020,
just 2 days after the reporting of the first three imported cases in Shaanxi province [16,23].
To estimate the daily-varying transmissibility Rt, Equation (3) is rearranged as:

Rt = ct/ ∑min(t−1,SI_max)
j=1 ws(ct−s + It−s).

That is, Rt can be estimated by the ratio of the number of new infections produced
at time step t, ct, to the total infectiousness of infected individuals at time t, given by

∑
min(t−1,SI_max)
j=1 ws(ct−s + It−s), the sum of infection incidence, including both imported

and locally generated, up to time step t−1 or the maximum of SI (whichever is the smallest),
weighted by the infectivity function ws. Rt is the average number of secondary cases that
each infected individual would infect if the conditions remained as they were at time t [43],
and it is used to monitor the change in transmissibility along the course of an outbreak.

2.2.3. SEDAR Transmission Model

Figure 2A shows the schematic for the SEDAR compartmental model: susceptible
individuals (S) contract SARS-CoV-2 virus from infectious people and then it enters the
latent class (E); a fraction (θ) of those exposed after an average latent period (L1) progress to
become diseased (I) and the other fraction (1 − θ) remains asymptomatic (A) but becomes
infectious after an average latent period (L2). The diseased infections will be detected and
admitted to hospital and isolated from the community after an average period of D1 and
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the asymptomatic cases recover after an average infectious period of D2. The model can be
described by the following set of differential equations:

d
dt

S(t) = −βS(t)(I(t) + ξA(t))/N

d
dt

E(t) = βS(t)(I(t) + ξA(t))/N − θE(t)/L1 − (1− θ)E(t)/L2

d
dt

I(t) = θE(t)/L1 − I(t)/D1 + Imported(t) (4)

d
dt

A(t) = (1− θ)E(t)/L2 − A(t)/D2

d
dt

R(t) = I(t)/D1 + A(t)/D2
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This is to treat imported cases as the source rather than the results of local transmission 
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local transmissibility. 
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Figure 2. Flow chart of (A) SEDAR transmission model, (B) SEEDAR transmission model, and
(C) SEEDDAAR transmission model.

Here, N is the size of the population under investigation (N = 37,330,000 for Shaanxi
province) and is assumed to be constant during the outbreak. The definitions of model
parameters are given in Table 1. Importantly, the model includes an item for imported cases
(i.e., Imported(t) in equation for I(t)) from outside of the population as reported [16]. This
is to treat imported cases as the source rather than the results of local transmission from
the region under investigation, therefore removing the importation as a result of the local
transmissibility.
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Table 1. Parameter estimates of five transmission models.

Parameter
Richards Growth Renewal Equation SEDAR SEEDAR SEEDDAAR

Prior Posterior Prior Posterior Prior Posterior Prior Posterior Posterior

Growth rate (r) [0,1.0] 0.02
[0.012,0.032] – – – – – – –

Final epidemic size (K) [1,6600] 3315
[56,6521] – – – – – – –

Scaling exponent (ν) [0.1,50] 24.51
[0.72,48.81] – – – – – – –

Mean of SI (SI_mean) – – U [3.5,10.0] 4.66
[3.53,7.18] – – – – –

Standard deviation of SI
(SI_sd) – – U [3.0,15.0] 11.73

[5.85,14.88] – – – – –

Transmission
coefficient (β) – – – – U

[.001,0.5]
0.155
[0.117,0.186]

U
[.001,0.5]

0.066
[0.029,0.154]

0.072
[0.032,0.180]

Latent period (L1) * – – – – U
[1.6,14.0]

1.81
[1.61,2.82]

U
[1.0,10.0]

5.04
[1.25,9.65]

5.25
[1.28,9.76]

Pre-symptomatic
infectious period (L3) – – – – – – U

[1.0,10.0]
1.45
[1.04,4.43]

1.45
[1.04,4.43]

Infectious period (D1) of
diseased infections * – – – – U

[3.5,25.0]
3.75
[3.51,5.16]

U
[1.5,15.0]

4.78
[1.61,14.06]

5.40
[1.68,13.97]

Dispersion
parameter (η) – – U [1.01,50.0] 1.58

[1.06,2.86]
U
[1.01,50.0]

2.47
[1.56,4.431]

U
[1.01,50.0]

1.73
[1.08,3.26]

1.71
[1.09,3.18]

R0
� – 1.13

[1.08,1.21] U [0.05,3.0] 0.61
[0.54,0.68] – 0.59

[0.50,0.70] – 0.45
[0.30,0.76]

0.53
[0.35,0.85]

DIC ♣ – 140.2 – 127.9 – 175.1 – 160.5 160.8

*: For three compartmental transmission models, the relative infectivity (ξ) of asymptomatic infections to symp-
tomatic infection is set at 0.5, and the incubation and infectious period for asymptomatic infections are set to be
equal to the counterparts of symptomatic infections (i.e., L2 = L1 and D2 = D1). As the proportion of asymptomatic
infections is very small (i.e., 1 − θ = 1.1%), the other choices of these three parameters (say ξ = 1, L2 = 2L1 and D2
= 2D1) do not noticeably change the estimates of the model parameters listed here. The priors for the SEEDAR
and SEEDDAAR models are the same. �: R0 for the Richards growth model is calculated via equation (2) with
the gamma-distributed serial interval of mean = 6.29 days and SD = 4.11 days (shape parameter = 2.343, rate
parameter = 0.372). ♣: Deviance information criterion (DIC) is a measure of model fitting.

The steady-state solution of the equation system (4) can be easily obtained. The
expression for S* (the size of the population susceptible to infection at equilibrium) is:

S∗ = N
θ/L1 + (1− θ)/L2

β[θD1/L1 + ξ(1− θ)D2/L2]
.

From this, we can obtain the expression of basic reproduction number:

R0N/S∗ = β[θD1/L1 + ξ(1− θ)D2/L2]/[θ/L1 + (1− θ)/L2] (5)

Ref [14,30]. In the special situation where L1 = L2, expression (5) reduces to:

R0 = β[θD1 + ξ(1− θ)D2].

2.2.4. SEEDAR Transmission Model

Ferretti et al. [46] show that 30% to 50% of all transmissions are pre-symptomatic
transmissions. To take the pre-symptomatic transmission into account, we modify the
above SEDAR model by including a secondary exposure compartment (see Figure 2B). For
simplicity, this new compartment is assumed to be asymptomatic but of the same infectivity
as the symptomatic infections. The corresponding equations are modified as:

d
dt

S(t) = −βS(t)(E2(t) + I(t) + ξA(t))/N,

d
dt

E1(t) = βS(t)(E2(t) + I(t) + ξA(t))/N − θE1(t)/L1 − (1− θ)E1(t)/L2,
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d
dt

E2(t) = θE1(t)/L1 − E2(t)/L3,

d
dt

I(t) = E2(t)/L3 − I(t)/D1 + Imported(t), (6)

d
dt

A(t) = (1− θ)E1(t)/L2 − A(t)/D2,

d
dt

R(t) = I(t)/D1 + A(t)/D2.

Compared with the SEDAR model, a new parameter L3, the duration of the late
incubation period in which the infected person can pass the virus on, is introduced and is
to be estimated (See Table 1).

Similarly, the basic reproduction number R0 for the SEEDAR model can be obtained by
deriving the expression of the equilibrium number of susceptible people, and it is given by:

R0 = β[θ(L3 + D1)/L1 + ξ(1− θ)D2/L2]/[θ/L1 + (1− θ)/L2]. (7)

2.2.5. SEEDDAAR Transmission Model

In view of the empirical observations that the infectious period follows the gamma
distribution rather than the usual exponential distribution [47–52], we introduce the inter-
mediate compartments by evenly dividing diseased compartment I(t) into I1(t) and I2(t),
and dividing asymptomatic compartment A(t) into A1(t) and A2(t). Adding the two new
compartments to Equation (6), the model equations for the SEEDDAAR model are given as:

d
dt

S(t) = −βS(t)(E2(t) + I1(t) + I2(t) + ξ(A1(t) + A2(t)))/N,

d
dt E1(t)

= βS(t)(E2(t) + I1(t) + I2(t) + ξ(A1(t) + A2(t)))/
N − θE1(t)/L1 − (1− θ)E1(t)/L2

,

d
dt

E2(t) = θE1(t)/L1 − E2(t)/L3,

d
dt

I1(t) = E2(t)/L3 − 2I1(t)/D1 + Imported(t), (8)

d
dt

I2(t) = 2I1(t)/D1 − 2I2(t)/D1,

d
dt

A1(t) = (1− θ)E1(t)/L2 − 2A1(t)/D2,

d
dt

A2(t) = 2A1(t)/D2 − 2A2(t)/D2,

d
dt

R(t) = 2I2(t)/D1 + 2A2(t)/D2.

The inclusion of additional compartments in diseased and asymptomatic infections
does not change the expression of the basic reproduction number, and the SEEDDAAR
model has its basic reproduction number as in Equation (7).

2.3. Inference Method by Calibration to Shaanxi Outbreak

Inference is carried out within the Bayesian framework [53,54], obtained through the
combination of the prior distributions and the likelihood function. We denote the set of
model parameters to be inferred as Θ = {r, ν, K} for the Richards growth model, Θ = {R0,
SI_mean, SI_sd} for the renewal equation model, Θ = {β, L1, D1} for the SEDAR model and
Θ = {β, L1, L3, D1} for the SEEDAR and SEEDDAAR models under the special situation
where both asymptomatic and symptomatic infections are of the same latent period and
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infectious period (i.e., L2 = L1 and D2 = D1). For simplicity, the proportion of symptomatic
infections (θ) is set at 98.9% as reported [16]. Given the values of parameters Θ for the
Richards growth model and the renewal equation model, simulating the time series of
local infections, denoted as µ(t), t = tstart, . . . , tend, is straightforward. Here, tstart and tend
represent the start day and end day of the outbreak data collected, respectively. For each set
of parameter values of SEDAR, SEEDAR, and SEEDDAAR models, the Runge–Kutta fourth
order method is used to solve the model equations and to obtain predicted time series
of infections. In the inference of model parameters, directly observed cases of modified
symptom onset dates (see the definition in the data above) are used as illustrated in the
following. The likelihood function for the observed time series of local cases x(t), t = tstart,
. . . , tend, is given as:

L(Θ|Data) = ∏tend
t=tstart

Γ(x(t) + r(t))
Γ(r(t))Γ(x(t) + 1)

(
1
η

)r(t)(
1− 1

η

)x(t)
.

Here, r(t) = µ(t)
η−1 with η being the dispersion parameter of the negative binomial

distribution. The parameters are estimated using MCMC methods with Gibbs sampling
and non-informative flat priors. The boundaries of uniformly distributed priors are set
forth as in the literature [16] and the data collected from Shaanxi province (Figure 3). The
details of the MCMC sampling method are given below.
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(red curve) and normal distribution to all data (black curves shown in the graphs).

MCMC Sampling

To propose new values for parameters, we use normal random walk. Suppose the
current value of the jth parameter of Θ is Θj

(t−1), the new proposal is:

Θj* = Θj
(t−1) + σjz.
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Here, z is a standard normal variable and σj is the step size of the jth parameter. The
normal proposal density is given by:

q(Θ∗|Θ(t−1)) =
1

σ
√

2π
exp

−
(

Θ∗ −Θ(t−1)
)2

2σ2

.

That is, Θj* follows N(Θj
(t−1), σj

2) (normal distribution with mean = Θj
(t−1), and

standard deviation = σj). The proposal is accepted as the next step of the Markov chain
with probability α = min(A,1), where:

A =
π(Θ∗)

π
(

Θt−1
) L(Θ∗|y)

L(Θ(t−1)
∣∣∣y)

q(Θ(t−1)
∣∣∣Θ∗)

q(Θ∗
∣∣∣Θ(t−1))

.

Here, π(.) denotes the prior density, L(Θj*|y) the likelihood of parameter Θj* given
data y. For a truncated normal walk on the range (a,b), the proposal density is given by:

q
(

Θ∗ |Θ (t−1)
)
|(a,b) =

q
(

Θ∗ |Θ (t−1)
)

Φ
(

b−Θ(t−1)

σ

)
−Φ

(
a−Θ(t−1)

σ

) .

where Φ(.) is the cumulative distribution function of standard normal. The expression for
A is consequently modified as:

A =
π(Θ∗)

π
(

Θt−1
) L(Θ∗|y)

L(Θ(t−1)
∣∣∣y)

Φ
(

b−Θ(t−1)

σ

)
−Φ

(
a−Θ(t−1)

σ

)
Φ
(

b−Θ∗
σ

)
−Φ

(
a−Θ∗

σ

) .

Sample a uniformly distributed random number (r) between 0 and 1,

Θj
(t) = Θj* if r < α (accepted);

Θj
(t) = Θj

(t−1) otherwise (rejected).

To generate nearly independent samples of model parameters, the samples are to be
thinned every 400th observation. To respond to the acceptance rate, the following adaptive
procedure is applied: if the acceptance ratio over 400 × 200 iterations is less than 12%, then
decrease the jump step to 80% of its current size (i.e., σj = 0.8σj); if it exceeds 40%, then
σj = 1.2σj. Otherwise, the jump step σj remains unchanged. To allow the MCMC process to
fully converge, a burn-in period of 400,000 iterations is chosen, and the estimates of model
parameters are obtained from the further 400,000 iterations.

To compare the performance of the five models [55], the deviance information criterion
(DIC), which combines the goodness of fit and model complexity [56], is used. It measures
fit via the deviance Dev(Θ) = −2logL(Θ|Data) and complexity by an estimate of the
‘effective number of parameters’ pD = mean(Dev(Θ)) − Dev(mean(Θ)) (i.e., posterior mean
deviance minus deviance evaluated at the posterior mean of the parameters). The DIC is
calculated as:

DIC = Dev(mean(Θ)) + 2pD = mean(Dev(Θ)) + pD.

The model that has the smallest DIC is the best.

3. Results
3.1. Estimates of SI and Incubation Period from Line List Data

The results are shown in Figure 3. Fitting the nonnegative data to gamma distributions,
the estimates are: From 85 pairs of infector–infectees observed during the outbreak, the
SI is estimated to have a mean of 6.29 days and a SD of 4.11 days (so the fitted gamma
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distribution has a shape parameter of α = 2.34 and a rate parameter of β = 0.37). From
100 cases that had dates of exposure and symptom onset, the incubation period is estimated
to have a mean of 6.76 days and a SD of 4.41 days, and the delay from the onset of symptoms
to hospitalization from 222 cases has a mean of 3.71 days and a SD of 2.83 days. If fitting all
collected data (including both negative and positive) to normal distributions, the estimates
will be shorter (Figure 3). These estimates are consistent with the system review of both the
serial interval and the incubation period [57].

3.2. Estimate of R0 in Shaanxi Outbreak
3.2.1. Richards Growth Model

Model fitting to the daily number of local cases suggests the growth rate r = 0.020 with
a 95% confidence interval (95% CI): 0.012, 0.032, and the final epidemic size K = 3315 (95%
CI: 56, 6521) (Table 1). Based on the estimate of gamma-distributed serial interval (Figure 3),
the basic reproduction number is calculated using Formula (2) to be 1.13 (95% CI: 1.08, 1.21).
We note that although the prediction of the Richards growth model can be fitted to the daily
number of local cases within the outbreak period of 30 days, the continuing increase in
the daily number of local cases that the model predicts obviously deviated from the actual
observations after the outbreak (Figure 4A). That is, even though the model calibration
performs well, the external validation is bad. Our estimate of the growth rate is very near to
zero, the nonnegative limit. This is in sharp contrast with Yang et al. 2021 [24] who obtained
an estimate of growth rate r = 0.23 per day by assuming one importation event and mixing
up imported cases thereafter with local cases in their modelling study. This points out the
limitation of applying the Richards growth model to infection spread processes. In general,
infections can either increase, decrease, or remain the same within a population (i.e., r can
be positive, negative, or zero, with R0 being larger, less than, or equal to 1.0). Applying
the Richards growth model to an infection spread process, it is implicitly assumed that
its growth rate is positive and R0 >1, which is wrong for the situation of well-controlled
infections such as COVID-19 in Shaanxi province during January and February of 2020.
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3.2.2. Renewal Equation Model

Bayesian inference suggests the basic reproduction number (R0) has a median of
0.61 and 95% CI from 0.54 to 0.68 (Table 1). The SI is estimated to have a mean of 4.66 days
and an SD of 11.73 days, which is shorter than but comparable with the direct observation
of SI from the outbreak (Figure 3). The model projection into next month (Figure 4B)
indicates that the outbreak will die out within two weeks (i.e., the end of February 2020)
and is unlikely to generate any further local cases under the current restriction measures.

The time-varying reproduction number Rt shown in Figure 5 demonstrates how the
transmissibility changed along the course of the outbreak. Rt increased to about 2.0 within
the first week, and then reduced to low values, but occasionally exceeding the critical value
of 1.0. Its overall average is 0.61, which is equal to the median of posterior R0 in the above
model fitting. The change of Rt reflects the stochasticity of transmission events within the
Shaanxi outbreak.
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3.2.3. SEDAR Model

The calibration of the SEDAR model under the situation with equal incubation and
infectious periods for both symptomatic and asymptomatic infection shows that: R0 is
estimated at 0.59 with 95% CI from 0.51 to 0.71 (Table 1). The incubation period is 1.8 days
(95% CI: 1.6, 2.9), and the infectious period is 3.8 days (95% CI: 3.5, 5.3). The SEDAR
model fitting and its prediction over one month ahead are shown in Figure 4C. Sensitivity
analyses (data not shown) show that nearly the same estimates of model parameters are
obtained when considering different values of latent period (L2) and infectious period
(D2) for asymptomatic infections and the relative infectivity (ξ) of asymptomatic infec-
tions to symptomatic infections. This reflects the fact that, in the Shaanxi outbreak, the
asymptomatic infections occupied a very small proportion of all infections (1.1%) [16] and
therefore had small effects on model performance.

3.2.4. SEEDAR Model

The R0 is estimated at 0.45 with 95% CI from 0.30 to 0.76 (Table 1). The incubation
period of symptomatic infection is 5.0 days (95% CI: 1.3, 9.7), which is consistent with
the observed values (mean = 6.76 days and sd = 4.41 days), and the infectious period of
symptomatic infections is 4.8 days (95% CI: 1.6, 14.1), which is longer than the delay from
the onset date of symptoms to hospitalization: mean = 3.71 days and sd=2.83 days (Figure 3).
The duration of pre-symptomatic transmission (L3) is estimated at 1.5 days (95% CI: 1.0,
4.4 days); this suggests the fraction of transmission from strictly pre-symptomatic infections
was about 1.5/(1.5 + 4.8) =24%, which is in agreement with previous estimates [46]. The
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SEEDAR model fits well with the observed data and predicts that the outbreak will die out
within about three weeks (Figure 4D).

3.2.5. SEEDDAAR Model

The R0 is estimated at 0.53 with 95% CI from 0.35 to 0.85 (Table 1). The incubation
period of symptomatic infection is 5.3 days (95% CI: 1.3, 9.8), and the infectious period of
symptomatic infection is 5.4 days (95% CI: 1.7, 14.0). The duration of pre-symptomatic
transmission (L3) is estimated at 1.5 days (95% CI: 1.0 to 4.4 days). Those estimates of model
parameters are very similar to those of the SEEDAR model. Similar to the SEEDAR model,
the SEEDDAAR model equally well fits the observed data and predicts that the outbreak
will die out within about three weeks (Figure 4E).

4. Discussion

In this study, five transmission models were proposed to model the COVID-19 epi-
demic within Shaanxi province of China from early January to late February 2020. By
distinguishing imported and local cases in their contribution to local transmission dynam-
ics, we show that the basic reproduction number R0 of COVID-19 in the Shaanxi outbreak
was well below the critical value of 1.0. This indicates that SARS-CoV-2 cannot self-sustain
under the current control measures within Shaanxi province, China, and would stop once
the importation of COVID-19 cases was halted. Our model successfully predicted the actual
epidemic situation in Shaanxi province from late February 2020.

The estimates of R0 from the renewal equation and the SEDAR models are close to each
other, and its estimates from the SEEDAR and SEEDDAAR models are lower; nevertheless,
their 95% CIs are closely overlapped. Overall, the estimate of R0 is in the range from 0.45 to
0.61. The model fittings to the local cases, shown in Figure 4, indicate that the renewal equa-
tion model provides the best fit to the observations and the SEDAR model is the worst. This
is further confirmed by the values of DIC in Table 1 [55]: 127.9, 175.1, 160.5, and 160.8 for
the renewal equation, and the SEDAR, SEEDAR, and SEEDDAAR models, respectively.
Furthermore, the better performance of the SEEDAR and SEEDDAAR models than the
SEDAR model confirms the existence of pre-symptomatic transmission [46]. It is worth
mentioning that the SEEDDAAR model that has its infectious periods following gamma
distribution does not appear better than SEEDAR that has its infectious period following
simple exponential distribution. The Richards growth model, which is borrowed from
ecological population dynamics [37,38], can provide a better model fit to the daily number
of local cases than three compartmental transmission models (i.e., SEDAR, SEEDAR, and
SEEDDAAR). However, the increasing trend of infections after the first month, which the
Richards growth model predicts, deviates from the actual observation and hence invalidates
the Richards growth model as an appropriate model for the Shaanxi outbreak.

It is worth emphasizing that although the renewal equation model is the simplest in
its structure, it gives the best model fit [52]. Given the distribution of SI of COVID-19, it
is straightforward to obtain the estimate of the R0 [58]. In this study, we perform a joint
estimation of R0 and SI, and the results agree well with three compartmental models in
estimation of R0 and the empirical knowledge of SI [16,57]. Nevertheless, it should be kept
in mind that the successful performance of the joint estimation of R0 and SI in this study
may be conditional on the very low proportion (i.e., 1.1%) of asymptomatic infections [58].

One important issue worth pointing out is the continuous importation along the course
of an outbreak within one region, except for the epicenter, Wuhan city, China, during the
early stages of the COVID-19 pandemic in mainland China. This spectacular feature, unlike
previous infectious disease pandemics (such as the 2003 SARS pandemic and the 2009
influenza pandemic), may reflect the rapid and huge movements of modern human beings.
If assuming the earliest importation as the only index case(s), the transmission dynamics
cannot be appropriately investigated and might be misled [17,24]. Both Bai et al. [17] and
Yang et al. [24] also modelled the Shaanxi outbreak but mixed up imported cases with
local cases; they obtained estimates of R0 of about 3.0. Simple reasoning will show that
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this estimate is problematic. Let us consider a situation where all the 132 cases were
generated within Shaanxi province only by the 113 imported cases, a rough estimate is
R0 = 132/113 ≈ 1.2. Some local cases might have been infected by other early local cases
rather than directly from imported cases, which implies that the actual R0 should be less
than 1.2. With the similar treatments of continuous importation, the high and problematic
estimates of R0 for outbreaks in the major cities of China (except the epicentre, Wuhan
city) were also reported [20,21]. Based on estimates of their SEDAR model parameters,
Bai et al. [17] predicted that the Shaanxi outbreak would last until April 2020, which is more
than one month longer than the actual occurrence. Our analyses show that the occurrence
of the Shaanxi outbreak was mainly due to the large and continuous importation rather
than the high local transmissibility of COVID-19 within the province. Furthermore, our
prediction is consistent with what happened in Shaanxi province.

In modelling the COVID-19 transmission over the whole of mainland China, we
found that R0 was estimated at 2.23 before 8th February 2020 and then it dropped to
0.04 [30]. Hao et al. [8] also confirmed the effectiveness of the timely prevention and
control measures implemented in China in bringing the R0 well below the critical level
of 1.0. To check whether there was any potential breaking point in the transmissibility
of COVID-19 within the Shaanxi outbreak, we calculated the instantaneous reproduction
number Rt [43]. The result shown in Figure 5 indicates that no clear pattern emerged that
supported a potential breaking point in transmissibility although Rt exceeded 1.0 on five
days. In contrast, having mixed up imported cases with local cases, Yang et al. [24] used the
renewal equation method [43] to obtain a time-varying reproduction number (Rt), which
persistently decreased over time and stayed beyond the critical level of 1.0 over more than
half the course of the outbreak.

Our estimate of R0 for the Shaanxi outbreak sharply differs from other studies which
suggest R0 = 2–7 [16,49,59,60] for SARS-CoV-2. In theory, R0 is determined by the infec-
tiousness of SARS-CoV-2 as well as the contact rate between people [5]. In the situation
where no vaccine and effective drugs were available to protect people against the virus, the
result of R0 < 1 is due to the highly reduced contact rate between people [30]. This resulted
from the timely and strong control measures implemented within Shaanxi province soon
after it was announced in public on 20 January 2020 that COVID-19 could be transmitted
among people. On the other hand, this indicates the success of the interventions executed
in Shanxi province, China.

5. Conclusions

Modern inference methodology and mathematical theory can help reveal the unob-
served transmission dynamic process and hence provide valuable information for us to
understand and control the spread of COVID-19. However, it is important to separate
continuous importation from local transmission when modelling the local transmission
dynamics of COVID-19. The renewal equation model, albeit being simple in model struc-
ture, provides better model fitting and therefore is a practical candidate for analyzing
transmission dynamics and monitoring the change in transmissibility.
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