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Stroke survivors often suffer impairments on their wrist and hand. Robot-mediated rehabilitation techniques have been proposed
as a way to enhance conventional therapy, based on intensive repeated movements. Amongst the set of activities of daily living,
grasping is one of the most recurrent. Our aim is to incorporate the detection of grasps in the machine-mediated rehabilitation
framework so that they can be incorporated into interactive therapeutic games. In this study, we developed and tested a method
based on support vector machines for recognizing various grasp postures wearing a passive exoskeleton for hand and wrist
rehabilitation after stroke. The experiment was conducted with ten healthy subjects and eight stroke patients performing the
grasping gestures. The method was tested in terms of accuracy and robustness with respect to intersubjects’ variability and
differences between different grasps. Our results show reliable recognition while also indicating that the recognition accuracy can
be used to assess the patients’ ability to consistently repeat the gestures. Additionally, a grasp quality measure was proposed to
measure the capabilities of the stroke patients to perform grasp postures in a similar way than healthy people. These two measures
can be potentially used as complementary measures to other upper limb motion tests.

1. Introduction

Stroke survivors are often unable to perform the fine motor
control activities which are required during activities of
daily living, amongst which grasping is one of the most
recurrent. Robots represent an appealing tool for exercise-
based approach in neurorehabilitation due to their ability to
deliver repetitive training.

Previous studies indicate that the inclusion of robot
rehabilitation training improves short- and long-term motor
control of the impaired upper limb of patients after a stroke
[1, 2]. However, evidence of the transfer of robotic training
effects to activities in daily life is limited [3]. Therefore, the
inclusion of functional tasks, such as grasping objects, is vital
to increase the practice and improvement in such activities
for stroke rehabilitation [4, 5]. A next step in this direction

is to incorporate the detection of various grasps in the robot
rehabilitation frameworks and to evaluate their quality in
order to detect any improvement in the rehabilitation process.

The SCRIPT (Supervised Care &Rehabilitation Involving
Personal Telerobotics) project aims at delivering an affordable
system for home-based rehabilitation of the hand and wrist
for stroke survivors [6]. A passive exoskeleton (Figure 1)
has been developed within the project in order to facilitate
the patients’ fingers and wrist extension. Self-administered
training at home is performed through repetitive interaction
with games based on functional exercises (rehabilitation
games) to enhance engagement. The games are controlled
by wearing the orthosis and performing several arm and
hand movements. The challenge is to use the limited set of
sensors provided by the device to recognize the various grasp
postures and incorporate them into the games.
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Figure 1: SCRIPT passive orthosis showing the bending sensors and
leaf springs.

In previouswork [7], we implemented and tested different
methods for recognizing four different grasp postures per-
formed while wearing the SCRIPT orthosis. We found that
with the support vector machines (SVM) method, we could
achieve an overall accuracy of more than 90% with small
computational time. SVM has been successfully applied to
the classification of a variety of biomedical conditions [8–
10] and more specifically to study different aspects of stroke
patients, including the classification of carotid artery plaques
[11], the study of dietary patterns [12], or using readings of a
shoe-based sensor to identify sitting, standing, and walking
postures [13]. However, few studies have been reported on
the classification of grasp postures. Tavakolan et al. [14] used
SVM for pattern recognition of surface electromyography
signals of four forearm muscles in order to classify eight
hand gestures. On the other hand, Puthenveettil et al. [15]
used linear discriminant analysis to classify hand preshapes
in poststroke patients using data from theCyberGlove. In this
study, the SVM approach was selected to perform the gesture
recognition.

We conducted an investigation in a group of eight
poststroke patients to determine the accuracy of the gesture
recognition wearing the SCRIPT device using the SVM
approach and compared it with the samples obtained for
a group of ten healthy subjects, and their relationship to
the level of hand impairment. The goal was to assess the
grasp recognition with this particular user group, in order
to confirm its suitability prior to deployment in a larger
scale clinical evaluation of the prototype orthotic device
and the SCRIPT system. Successful grasp recognition will
provide a more versatile set of gestures to the therapeutic
human-machine interaction system that acts as a medium
to support home-based rehabilitation. After a given grasp
posture is recognized, the aim is to evaluate the quality of the
grasp in order to measure the patient progress throughout
the rehabilitation process. In this study, we propose a grasp
quality measure that can be calculated with the available
sensor readings of the orthosis.Thesemeasures are compared
with the results of other commonly used upper limb motion
tests such as the action research arm test (ARAT) [16].

Table 1: Details of healthy participants.

Id Country Age Gender Dominant
1 UK 27 Male Right
2 UK 32 Male Right
3 UK 33 Male Right
4 UK 30 Female Right
5 UK 32 Female Right
6 Italy 47 Female Left
7 Italy 50 Male Right
8 Italy 52 Female Right
9 Italy 50 Male Left
10 Italy 51 Female Left

2. Materials and Methods

2.1. Device. The SCRIPT passive exoskeleton [17] is a passive
devicewhich applies external extension torques on the fingers
through five leaf springs which are connected to the finger
caps through an elastic cord (Figure 1). The elastic cord
enables the fingers freedom of movement relative to the leaf
spring and also allows adjusting the level of extension support
provided by the device. The leaf springs are fitted with com-
mercial resistive flex sensors [18] which measure their flexion
with a resolution of 1 degree. However, the deflection of the
leaf spring is not the actual flexion angle of the finger but
the two quantities are related by a monotonically increasing
function [17]. Subjects are free to laterally abduct/adduct the
fingers and oppose the thumb, but these movements are not
supported nor sensed by the orthosis. The orthosis measures
only overall finger flexion in a range from 0 to 90 degrees and
wrist flexion and extension in a range from 90 to −45 degrees.

It is important to note that this passive orthosis, as
many of those in the field of rehabilitation robotics, may not
conform to the conventional definition of a robot, although
consisting of sensors, passive actuators, and a decision mak-
ing component. However, our research is applicable in the
field of robot-assisted training and rehabilitation robotics,
where sensors are utilized towards benchmarking motor per-
formance aiding a meaningful two-way interaction between
the human and the machine.

2.2. Study Participants. Two groups of participants were
recruited for this study: a group of healthy subjects and
a group of stroke patients. In the first group, ten healthy
subjects with no previous injuries of fingers, hand, or wrist
volunteered to participate in this study (Table 1). This study
was carried out at the University of Hertfordshire, UK,
approved by the university ethics committee (Ethics protocol
number COM/ST/UH/00008) and at the IRCCS San Raffaele
Pisana (Rome, Italy). Participants were recruited among
faculty staff by advertising on an internal mailing list.

Thegroupof stroke patientswere selectedwith the criteria
used in the SCRIPT project in order to enable them the
use of the orthosis [19]. They were patients with a unilateral
ischemic or hemorrhagic stroke between 6 months and 5
years ago. They had limitations in arm and hand function,
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while being able to actively flex the elbow by at least 15∘ and to
actively flex their fingers by a quarter of their passive range.
They also had the ability to understand and follow instruc-
tions. For stroke patients, individually fitted orthoses were
used.With these criteria, a total of eight patientswere selected
(Table 2). One patient was recruited at the Rehabilitation
CentreHet Roessingh (Enschede, theNetherlands) and seven
at the IRCCS San Raffaele Pisana (Rome, Italy). In both cases,
the experiment was part of an on-going clinical study, for
which ethical approval had been obtained at the respective
local ethics committees.

The action research arm test (ARAT) [16] and Fugl-Meyer
assessment (FM) [20, 21] have been used as quantitative
measures to evaluate the arm motor recovery after stroke.
The ARAT consists of four sections: (A) grasp, (B) grip, (C)
pinch, and (D) gross arm movement. The FM assessment for
the upper extremity consists on a scale of 66 points divided
in three subsections: proximal (shoulder and elbow), distal
(wrist and hand), and coordination (test of tremor, dysmetria,
and time). Details of the results of these tests for the stroke
patients can also be seen in Table 2.

2.3. Grasp Gestures. In recent literature, several activities
of daily living have been identified as the most important
to train after stroke [4, 22, 23]. They include eating with
cutlery, drinking, holding objects while walking, taking
money from purse, open/close clothing, combing hair, and
knob manipulation. We have selected, in agreement with
healthcare professionals, three grasp gestures needed in order
to perform these tasks (shown in Figure 2). Two are classified
as precision grips: the tripod (the thumb opposes the index
and middle finger) and the lateral grasp (the thumb holds
an object against the side of the index finger). The third one,
the cylindrical grasp, is classified as a power grasp (all fingers
make contact with the object). Keller et al. [24] identified
the tripod and the lateral grasps as the most frequently
used prehensile patterns for static and dynamic grasping,
respectively. The relaxed posture of the hand was used as the
forth gesture in order to enable the recognition when the
subjects were not performing any grasp.

Two of the selected gestures are evaluated in the ARAT:
the tripod grasp is tested in section A (grasp subtest) and
the cylindrical grasp in section B (grip subtest) of ARAT. It
is expected that the recognition of the gestures is related to
the ability to move the hand measured by ARAT.

2.4. Grasp RecognitionMethod. Theproblem of hand posture
detection has been previously approached using vision-based
[25, 26] or glove-based [25, 27–29] methods depending
on the constraints of the specific applications. In our case,
given the bulk of the device, vision-based approaches for
the recognition of the hand postures are not suitable as the
hand is practically occluded and therefore the recognition
should be based on the sensory readings for each finger
provided by the exoskeleton sensors. In a previous work, we
compared several glove-based approaches to recognize grasp
postures performing experiments on five healthy participants
wearing the SCRIPT passive exoskeleton [7]. We compared

three methods: one based on the statistics of the flexion data,
another based on neural networks, and finally one based on
support vector machines (SVM). We found that with the
last method, we could achieve an overall accuracy of more
than 90%with small computational time (<60ms).Therefore,
in this study, we used the SVM approach to determine the
accuracy of recognition for healthy participants and stroke
patients wearing the SCRIPT device.

SVM is a popular machine learning technique for classi-
fication. A support vector machine is a supervised learning
classifier that constructs a set of hyperplanes in a high-
dimensional space (support vectors) that are used to classify
the data. A good separation is achieved by the hyperplane
that has the largest distance to the nearest training data point
of any class. The hyperplanes are found solving the following
optimization problem [30]:
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and in order to create nonlinear classifiersa kernel function
is used. In our work, we used a radial basis function (RBF) as
the kernel function, given that it can handle the case when the
relation between class labels and attributes is nonlinear [31].
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where 𝛾 is the kernel parameter. Therefore, two parameters
are needed: 𝐶and 𝛾. In order to find the best values for
these parameters, we used a V-fold cross-validation technique,
dividing the training set for one subject into V subsets of equal
size and testing the classifier on the remaining V − 1 subsets.
In this work, Vwas taken as 5, the value of the cost parameter
𝐶 was varied as 𝐶 = 2

𝑥, 𝑥 = {−5, . . . , 5} and the value of the
kernel parameter 𝛾 was varied as 𝛾 = 2

𝑦, 𝑦 = {−4, . . . , 0}.The
values that gave the highest validation accuracy were: 𝐶 = 4

and 𝛾 = 1.
The method was implemented in Python using the LIB-

SVM package (http://www.csie.ntu.edu.tw/∼cjlin/libsvm).
The flexion angles were normalized in the range from 0 to 1
(corresponding to 0 to 90 degrees) and the selected error to
stop the training phase was set to 0.001.

2.5. Grasp Evaluation Method. In the field of robotics, many
grasp quality measures have been developed that allow the
comparison of different aspects of the robotic grasp [32]. In
[33], the most common robot grasp quality measures have
been adapted to the evaluation of the grasp of the human
hand. From this set of quality measures, the one proposed by
[34], whichmeasures how close a given grasp is to a reference
posture, is the only one that can be used with the sensor
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(a) Tripod grasp (b) Lateral grasp

(c) Cylindrical grasp (d) Relaxed position

Figure 2: Selected gestures to be recognized performed wearing the SCRIPT device.

information provided by the SCRIPT orthosis.This index has
been adapted for this study as follows:
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where 𝑛 is the number of hand joints, 𝜔
𝑖
is a weight factor,

𝑦

𝑖
is the current finger flexion angle, and 𝑅

𝑖
is the joint angle

range used to normalize the index calculated as themaximum
between the reference posture 𝑎

𝑖
and either the upper or lower

angle limit. The index has to be maximized, so that the grasp
is optimal when all joints are at the reference posture, having
a quality measure of one, and it goes to zero when all its joints
are at their maximum angle limits.

The reference posture 𝑎

𝑖
is taken in this case as the

one performed by the healthy subjects. This measure then
enables the evaluation of how far is a poststroke patient from
performing a grasp in away similar to a healthy subject. How-
ever, the postures obtained from healthy subjects performing
each gesture are likely to have variations between subjects,
especially when some of the fingers were not playing an active
role in the grasp (e.g., the ring and little fingers in the tripod
grasp). In order to consider this variance, we have included
a weight factor 𝜔

𝑖
that will give high scores to fingers whose

postures have small standard deviation and vice versa. The

corresponding weights for each finger and a given gesture can
be calculated as
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2.6. Experimental Protocol. The participants took part in
one session lasting half an hour conducted by a researcher
or a therapist. They were asked to wear a SCRIPT passive
orthosis on the impaired hand or one of their hands (in the
case of healthy participants) while sitting in front of a PC.
Subsequently, they were instructed to mimic the picture of
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a gesture shown on the screen (Figure 2). The participant
then confirmed that he/she achieved the desired gesture and
then, pressing a button on the screen, the flexion angles of
the gesturewere saved. After confirmation, theywere asked to
relax the hand and press a button. At that moment, the angles
of the relaxed posture were also saved.

Each subject performed 6 repetitions of each gesture in
a pseudorandom sequence, resulting in the capture of 24
gestures. Data were then postprocessed by Python ad hoc
applications. The results of the classification system were
calculated using the following values for each gesture 𝑖:

(i) True positives (TP): gestures correctly classified as
gesture 𝑖

(ii) False negatives (FN): gestures 𝑖 incorrectly classified
as other gestures

(iii) False positives (FP): other gestures incorrectly classi-
fied as gesture 𝑖

(iv) True negatives (TN): other gestures correctly classi-
fied as nongesture 𝑖.

These are commonly used to evaluate the sensitivity and
specificity of a clinical test in its ability to confirmor refute the
presence of a disease.The sensitivity (true positive rate) refers
to the ability of the test to correctly identify those patients
with the disease and the specificity (true negative rate) refers
to the ability to correctly identify those patients without the
disease [35]. In this study, the outcome of the test is not binary
therefore we calculated the performance measures focusing
on each gesture. We used the accuracy (ability to correctly
identify positive and negatives), true positive rate (ability to
correctly identify the positives), and false positive rate (lack
of ability to correctly classify the negatives). The last one
is measuring the opposite of the specificity as it enables us
to focus on evaluating the recognition performance for a
given gesture instead of looking at the classification of other
gestures. They are calculated as follows:

Accuracy = TP + TN
Total testing data

,

True positive rate (TPR) = TP
TP + FN

,

False positive rate (FPR) = FP
TN + FP

.

(6)

2.7. Data Analysis. The data acquired for each subject was
divided into two sets for training and testing purposes. As
the patients will need to perform the training procedure each
time before starting the games (or the games will not be
able to reliably recognize their gestures), the less number
of samples required to train the model the better. In [7]
it has been shown that a high accuracy can be achieved
with 4 training samples, thus allowing very short calibration
time and making this approach suitable for home-based
rehabilitation.Then a training set using 4 samples per gesture
was used to train the model. Results were considered taking
into account all the possible permutations of 4 training
samples.

The overall results of the recognition performance are
summarized as median and interquartile range (using box
plots) differentiated between the participant’s type (healthy
or stroke patient). The information provided by the different
performance measures is compared using a Pearson corre-
lation in order to determine if we can rely on one measure-
ment for the recognition assessment. We also compared the
variability of the flexion angles over all subjects performing
the different grasp gestures and the results of the accuracy of
gesture recognition per participant.

Additionally, the results of the proposed grasp quality
measure are also presented summarized using box plots
showing the variation between the participant’s type, the
different gestures and the intervariability between the par-
ticipants. In order to assess how these three parameters
influenced the results of the grasp quality measure, a multiple
regression analysis was performed. This type of analysis
can be used to consider multiple independent variables
calculating the least square estimates for a data set [36]. Using
this analysis, we can devise our model using the following
equation:

𝐺𝑄

𝑖
= 𝑏

0
+ 𝑏

1
Participant type

𝑖

+ 𝑏

2
Grasp type

𝑖

+ 𝑏

3
Subject

𝑖

+ 𝜀

𝑖
,

(7)

where 𝑏
𝑜
represents the constant and 𝜀 is the modelling error.

In this case, predictors are classification variables with more
than two categories, therefore dummy coding is required to
include them in the regression equation. The technique to
do this coding is to create an independent variable for each
independent category except one as a dichotomy.The omitted
variable provides a baseline for comparison while avoiding
multicollinearity [36]. In this analysis, we used “healthy
participants,” “relaxed posture,” and “subject 1 (healthy)” as
our base line for each one of our predictors. The “Enter”
method was used in order to force the model to consider all
variables as significant variables in the model.

It is intuitive to assume that the level of impairment of the
patients should be correlated with their ability to consistently
perform the gestures in a similar way (recognition accuracy)
and similar to the ones performed by healthy subjects (GQ
measure). As the ARAT and FM tests are common ways
to evaluate the level of capabilities of the upper limb, we
correlated the accuracies of recognition and the grasp quality
with the results of these test using the Pearson coefficient.The
IBM SPSS statistical package for Windows version 21.0. was
used to perform the analysis of the data.

3. Results

This section presents the results of the experiments in two
parts: the results of the recognition of the different gestures
performed by healthy subjects and stroke patients and the
results of the evaluation of those grasps.

3.1. Grasp Recognition Results. The results of the true positive
rate of the training and testing phases of the experiments
are presented in Table 3. The number of gestures correctly
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Figure 3: Performance measures evaluating the recognition of grasp postures: (a) accuracy, (b) true positive rate and, (c) false positive rate.
Results are presented discriminated between healthy and stroke participants.

Table 3: Training time and true positive rate (%) between the
training and testing phases.

Mean
training time

(ms)

Mean
training TPR

(%)

Mean testing
TPR (%)

Healthy
subjects

1 1.800 ± 0.6 58 ± 14 87 ± 2
2 1.733 ± 0.6 100 ± 0 100 ± 0
3 2.200 ± 0.7 84 ± 14 91 ± 0
4 1.933 ± 0.5 79 ± 25 98 ± 3
5 1.733 ± 0.6 84 ± 14 91 ± 0
6 1.867 ± 0.5 58 ± 10 83 ± 4
7 2.200 ± 1.4 63 ± 9 85 ± 4
8 2.267 ± 1.6 98 ± 8 97 ± 4
9 2.200 ± 0.6 31 ± 9 91 ± 1
10 1.867 ± 0.5 84 ± 16 90 ± 2

1.980 ± 0.5 74 ± 24 91 ± 6

Stroke
patients

1 2.600 ± 0.7 100 ± 0 99 ± 2
2 2.200 ± 0.4 61 ± 15 91 ± 4
3 2.200 ± 0.4 38 ± 6 59 ± 4
4 1.933 ± 0.7 38 ± 11 56 ± 4
5 2.467 ± 0.6 38 ± 6 58 ± 4
6 2.067 ± 0.6 33 ± 6 68 ± 5
7 2.067 ± 0.3 47 ± 19 93 ± 2
8 2.133 ± 0.4 43 ± 26 78 ± 3

2.208 ± 0.6 50 ± 25 75 ± 17

recognized greatly increased from the training to the testing
phase. It can clearly be seen that the testing overall recogni-
tion performance of gestures performed by the stroke patients
is lower than the ones performed by the healthy subjects, as
it was expected, but still they produced a high percentage
of true positive recognized gestures (TPR mean of 75%).
The computational time taken for training the model was on
average 1.98ms for healthy subjects and 2.21ms for stroke
patients.

In order to evaluate inmore detail the recognition results,
the selected performance measures are shown in Figure 3.
Ideally, the accuracy and true positive rate should be close
to 100% and the false positive rate close to zero. In this case,
the median accuracy of recognition of gestures performed by
healthy subjects was over 95% and 87% for stroke patients.
The true positive rate showed lower values with respect to the
accuracy: median values for healthy subjects of over 91% and
for stroke patients of over 75%. The healthy subjects showed
median values of false positive rates of 2% and 8% for stroke
patients.

The different performance measures can also provide
information about the specific recognition of each gesture.
Specifically, the true positive rate refers to the ability of
the method to correctly identify a specific gesture, whilst
the false positive rate refers to the percentage of gestures
wrongly classified. Figure 4 shows the accuracy, true positive
rate, and false positive rate for each gesture. The difficulty
of recognition of the different grasp gestures is different for
the healthy subjects or stroke patients. The relax posture
is a clearly distinctive gesture, therefore showing the best
accuracies, best TPR and FPR values close to zero. For
healthy subjects, the tripod and cylindrical gestures were the
most difficult to be recognized and the most misrecognized.
For stroke patients, the three gestures presented similar
difficulties to be recognized and the tripod and lateral grasp
were the most misrecognized.

Table 4 presents the Pearson correlation values of the
different performancemeasures for the given conditions.The
accuracy is inversely correlated with the false negative rate
over all conditions (correlation coefficient C < −0.97 with
statistical significance) and also highly correlated with the
TPR (C > 0.99). The different measures of performance pro-
vide specific information on the performance of recognition,
but the accuracy could be selected as the overall measure
of recognition performance. Therefore, for the following
analysis, the accuracy will be used.

It is expected that the grasping capabilities of the par-
ticipants affect the recognition of hand postures, especially
in the case of stroke patients. Therefore, we also studied
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Figure 4: Performance measures for each gesture evaluating the recognition of hand postures: (a) accuracy, (b) true positive rate, and (c)
false positive rate.
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Figure 5: Variability of the different finger flexion values produced by all subjects while performing the various gestures.

Table 4: Correlation between performance measures.

Performance measures Participant Pearson correlation

Accuracy versus TPR Healthy subject 0.999∗

Stroke patient 1.000∗

Accuracy versus FPR Healthy subject −0.973∗

Stroke patient −0.997∗
∗Correlation is significant at the 0.01 level (2-tailed).

the variability of the finger flexion to produce the different
gestures and their impact on the recognition.

Figure 5 shows a summary of the variability of the
flexion angles over all subjects performing the different
grasp gestures. As expected, the relaxed posture is the most
consistent over all gestures. For healthy subjects, the ring
finger and little finger are the ones with greater variation as
they can freely move and are not actively participating in
the tripod grasp. The ranges of variation for stroke patients
are not similar to the healthy subjects. As the patients have
different levels of impairment, the flexion of each finger has
higher ranges across stroke patients with several outliers,
except in the case of the ring finger and little finger where
the variation was quite small (max 45 degrees).This might be
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Figure 7: Association between accuracy of recognition and the
results of the ARAT.

due to the limited mobility of these fingers and therefore the
patients had to rely on the thumb, index finger, and middle
finger to grasp the objects.

The results of the accuracies of recognition of the different
gestures per participant are presented in Figure 6. The
variation of accuracies of healthy subjects (between 89 and
100%) was smaller than the ones of stroke patients (between
72 and 100%).

The correlation results of the recognition accuracies with
the results of the arm motor recovery tests are presented
in Table 5. The higher positive correlations are between the

Table 5: Correlation between accuracy and common arm motor
recovery tests.

Test compared with
mean accuracy Pearson correlation Sig.

ARAT total 0.651 0.040
ARAT A 0.630 0.047
ARAT B 0.532 0.087
ARAT C 0.680 0.032
ARAT D 0.502 0.103
FM total 0.461 0.125
FM proximal 0.481 0.114
FM distal 0.386 0.172
FM coordination 0.141 0.370

accuracies and the ARAT test, especially to sections A (grasp
subtest) and C (pinch subtest). This is not surprising given
that the ARAT specifically assesses dexterity; while FM is
a much broader measure of motor impairment. Figure 7
presents accuracy and ARAT score values for each subject to
visually show the high association.

3.2. Grasp Evaluation Results. The results of the evaluation of
each of the grasps using the proposed qualitymeasure GQ are
presented in Figure 8.Thedifference between the participant’s
type and the grasp performed are shown in Figure 8(a).
The healthy subjects presented smaller variations than the
stroke patients and their median grasp quality was higher.
The higher variation was presented while the participants
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Figure 8: Results of the grasp quality (GQ) for healthy subjects and stroke patients per gesture: (a) summary of the results and (b) results
showing variability per participant.
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Table 6: Correlation between the grasp quality measure (GQ) and common arm motor recovery tests.

Test compared with GQ Relax posture Tripod grasp Cylindrical grasp Lateral grasp
Pearson correlation Sig. Pearson correlation Sig. Pearson correlation Sig. Pearson correlation Sig.

ARAT total −0.365 0.187 −0.387 0.172 −0.247 0.278 0.078 0.427
ARAT A −0.375 0.180 −0.443 0.136 −0.247 0.278 0.008 0.492
ARAT B −0.139 0.371 −0.214 0.305 −0.007 0.494 0.209 0.310
ARAT C −0.527 0.090 −0.502 0.102 −0.434 0.141 −0.055 0.448
ARAT D −0.077 0.429 −0.051 0.452 0.020 0.482 0.347 0.200
FM total −0.117 0.391 −0.133 0.376 −0.005 0.496 −0.037 0.465
FM proximal 0.130 0.380 −0.083 0.422 −0.002 0.498 −0.071 0.434
FM distal −0.042 0.461 −0.086 0.419 0.044 0.459 0.023 0.479
FM coordination −0.638∗ 0.044 −0.660∗ 0.038 −0.574 0.069 −0.441 0.137
∗Correlation is significant at the 0.05 level (1-tailed).
ARAT = arm scores of the action research arm test; FM = arm scores of the Fugl-Meyer motor assessment.

Table 7: Multiple regression results.

Model 𝑅 𝑅 square Adjusted 𝑅 square Std. Error of the Estimate Change statistics
𝑅 Square change 𝐹 change df1 df2 Sig. 𝐹 change

1 0.780 0.609 0.597 0.04365 0.609 53.469 20 687 0.000

performed the lateral grasp: the grasp quality varied 24%
(0.75–0.99) for healthy patients and 28% (0.67–0.95) for
stroke patients.

The variability between different participants is shown
in Figure 8(b). The grasp performed by healthy participants
got a measure of quality above 0.85 for the relaxed, tripod,
and cylindrical grasps. However, performing the lateral grasp
presented a higher variability, especially for subjects 6 and
10 who obtained grasp qualities as low as 0.57 and 0.73,
respectively. Stroke patients presented a higher variability
between subjects, but in general there was a consistent grasp
quality per subject and gesture (maximum 17%)—except
patient 1 performing the cylindrical grasp who showed a
variation of 25% (0.66–0.91).

The correlation results of the grasp quality with the results
of the arm motor recovery tests are presented in Table 6. In
general, there are no significant correlations between the tests
and the results obtained from the quality measure, except for
a negative correlation with the Fugl-Meyer coordination test
performing the relax posture and the tripod grasp.

In order to assess how the quality measure GQ was influ-
enced by the type of participant (healthy subject versus stroke
patient), the gesture and the specific subject performing the
grasps, a multiple regression analysis was performed. The
results of the analysis are presented in Table 7. The 𝑅 value
of 0.78 shows that the predictors are a good estimation of the
quality measure.The 𝑅2 indicates that the predictors account
for 60.9% of the variation of the grasp quality measure and
as the adjusted 𝑅2 is similar to it, it means that the model is
able to generalize. Also, the standard error 0.04365 indicates
thatmost samplemeans from the estimated values are similar
to the quality measure means. The 𝐹 change is an important
value, as it indicates that this model causes 𝑅2 to change from
zero to 0.609, which is significant with a probability less than
0.001.

4. Discussion

In this study, we examined the performance of a technique
based on support vector machines for the recognition of
hand gestures using the finger flexion/extension angles,
comparing a group of healthy subjects with a group of
poststroke patients. The results for stroke patients in general
show lower accuracies, lower true positive rates, and greater
false positive rates than the ones performed by the healthy
subjects.This is due to the fact that patient’s impairment after
stroke affects their ability to reproduce gestures with small
variations and in a repeatable way. However, we hypothesized
that the accuracy for gesture recognition for stroke patients
can provide an insight into patients’ ability to consistently
reproduce gestures. This was corroborated with the high
correlation between the recognition accuracies and the scores
of the ARAT (𝐶 = 0.651 for ARAT total) showing that
the accuracy of recognition can be used as a measure of
the grasping capabilities for the impaired hand. Therefore,
this method shows potency to be used to detect changes
related to lack of ability to reproduce gestures in a consistent
way.

The results of the grasp quality measure showed that
the healthy subjects presented smaller variations than the
stroke patients and their grasp quality is higher showing
that the measure can be used to assess the capabilities of
stroke patients to perform grasp postures in a similar way
than healthy people. However, the variation between healthy
subjects is higher than we expected. This can be due to
the mechanical design of the orthosis, as the readings of
the sensors could vary from orthosis to orthosis depending
on the level of tension of the elastic cords. With a more
accurate device, as the currently developed next version of
the SCRIPT orthosis, it is expected that the variability of
the healthy postures will be reduced which will give more
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consistent high quality values for the healthy participants and
therefore would be more reliable for the evaluation of stroke
patient grasps. Also, a broader study with a larger number
of healthy subjects and stroke patients could give a more
accurate measure of the quality of the grasp.

Also, the lack of correlation between the grasp quality
GQ and the results of the arm motor recovery tests could
indicate that this measure is perhaps providing different
information about the patients, indicating specifically their
level of ability to perform each of the different gestures which
is not specifically measured by the common tests. The results
of the multiple regression analysis showed that the type of
participant (healthy subject or stroke patient), the grasp and
the specific subject can account for 61% of the grasp quality
variability, which indicate presence of other indicators that
have not been considered in our model. We hypothesize
that these variations could be due to differences influenced
by gender, the hand performing the gestures (dominant or
nondominant), or the level of disability of the stroke patients.
Future work is needed to study the influences of these factors
when more participants and more accurate readings are
available.

The technique presented in this paper will be used for
the recognition of hand postures needed for the activities
of daily life while patients playing rehabilitation games with
the SCRIPT orthosis over a period of six weeks. With these
results, more exhaustive analysis can be performed which
could provide insights into improvements on the ability to
perform the grasp postures over time influencing the overall
motor performance.

5. Conclusion

The results obtained with this study show that a technique
based on support vector machines can be used to recognize
different grasp gestures for stroke patients with a valid
accuracy while playing rehabilitation games wearing a spe-
cially designed exoskeleton for their rehabilitation. This will
allow the training of various grasp postures to improve the
performance of these postures needed for several activities
of daily living. Moreover, we showed that the accuracy of
recognition can be used to assess the ability of the stroke
patients to consistently repeat the gestures and the proposed
grasp quality GQ can be used to measure the capabilities of
the stroke patients to perform grasp postures in a similar way
than healthy people. These two measures could be used as
complementary measures to the other upper limb motion
tests such as ARAT and they can be potentially applied
to evaluate the grasp performance of patients using other
orthosis able to measure finger flexion.
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