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Abstract

Species loss from upper trophic levels can result in some major changes in community

structure and ecosystem functions. Here, we experimentally excluded macroconsumers

(e.g., fish and shrimp) in a Brazilian karst tropical stream during the dry season to investigate

if their loss affected the accrual of calcium, dry mass (DM) and ash-free dry mass (AFDM) of

sediment, benthic invertebrates, and chlorophyll-a. We found that the exclusion of macro-

consumers decreased accrual of calcium. The absence of fish and shrimp may have pro-

moted increased grazing by mayflies and snails in the electrified treatment as expressed by

the depressed calcium accrual and shift in periphyton community composition. However,

the exclusion of macroconsumers had no effect on DM and AFDM, chlorophyll-a, or total

abundance of invertebrates. Our findings shed new light on the impact of macroconsumer

loss and consequences for calcium accrual in karstic streams.

Introduction

Human activities can disproportionally affect macroconsumers in the upper trophic levels of

food webs (i.e., top predators). Loss of macroconsumers can result in rapid changes in com-

munity structure and ecosystem function [1–3]. In streams, macroconsumers (such as many

species of fish and decapod crustaceans) can directly influence the accumulation, and trans-

port of organic and inorganic sediments by disturbing substrates (bioturbation) and feeding at

multiple spatiotemporal scales [4–10]. As a result, the presence of macroconsumers can reduce

the rate of sediment accumulation on bottom substrates and can simultaneously limit the

abundance and diversity of benthic algae and/or invertebrates that depend on specific sub-

strates [5,11,12,13]. Although other experimental studies have reported the effects of the loss of

macroconsumers and the importance of bioturbation on the accumulation of sediments in
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streams [4,14,15], the effects caused by macroconsumers on accrual of calcium carbonate-rich

sediments are unknown.

In karstic streams, benthic algae and insect larvae such as Hydropsychidae and Chironomi-

dae are known to affect the deposition of calcium carbonate and the formation of travertine or

tufa sedimentary structures [16–19]. However, the potential for bioturbation is also particu-

larly strong [16–17]. Invertebrate communities that include bioturbators can be altered both

directly and indirectly by macroconsumers [20,21,22,23]. These top-down effects on benthic

insects and algae can influence benthic primary production and food webs [21,24,25]. How-

ever, only a few studies have focused on tropical streams and the biotic relationships leading to

sediment deposition [26,27].

Streams in karstic watersheds of the Neotropics are particularly threatened by human activ-

ities [28] where thin limestone soils provide minimal filtration to remove pollutants [28,29].

Typical of many tropical regions, the freshwater ecosystems in the Bodoquena Plateau of Cen-

tral-West Brazil have high biodiversity but are at risk of ecological degradation [30]. Streams

of the Bodoquena Plateau are threatened by the rapid conversion of natural vegetation to agri-

culture and pastures [30] and pressure from tourism [31,32]. Streams in the Bodoquena Pla-

teau have numerous species of algivorous, omnivorous, and predatory fish and omnivorous

shrimp and crabs [33,34] as well as aquatic insects and gastropods [35], including endemic

and endangered species (e.g., Ancistrus formoso and Trichomycterus dali) [36].

These streams have complex hydrological connectivity with groundwater inflows due to the

surrounding limestone-dominated watershed. Consequentially, the streams have high levels

dissolved calcium and bicarbonate [37]. These inflows affect the growth and species composi-

tion of the periphyton and the abundance of diverse taxa of benthic invertebrates as observed

in other karstic streams [38,39]. Previous studies on stream ecosystems in this region reported

that the experimental exclusion of macroconsumers did not directly affect the benthic commu-

nity and organic and inorganic sediment [34]. However, the rapid loss of natural cover in

some parts of the Bodoquena Plateau watersheds and the potential loss of macroconsumers

intensifies the need to determine the vulnerability of these streams to ecological change. In

addition, the complex network of karst riverine systems is characterized by waterfalls formed

by calcium carbonate deposition (travertine) that limit access by some fishes. In this context,

the Bodoquena Plateau streams provide an ideal opportunity to examine if the loss of macro-

consumers influences how species interactions affect sedimentary processes and benthic inver-

tebrate communities that help to maintain clean waters.

The purpose of this study was to evaluate whether the presence of macroconsumers (e.g.,

fish and shrimp) affect the accumulation of calcium and organic sediments, as well as benthic

invertebrate abundance, and biofilm production in the benthos of a representative karstic

stream in the Bodoquena Plateau. We hypothesized that experimental exclusion of fish and

shrimp would decrease bioturbation of sediments and increase accumulation of calcium-rich

sediments. Additionally, we expected that the absence of predation would increase the abun-

dance of grazing aquatic insects and gastropods. This increased grazing would decrease biofilm

biomass (combinations of benthic micro-algae and microbes within a polysaccharide matrix).

Our hypotheses were based on related research that concluded the absence of macroconsu-

mers in stream ecosystems can increase the accumulation of inorganic sediment and organic

material [5,15]. Biofilms provide energy to invertebrate consumers while also influencing sedi-

ment deposition and stability during base flows [10,40]. Studies of tropical streams in non-

karstic ecosystems have demonstrated that the absence of macroconsumers can reduce the bio-

turbation activities by affecting the activity of other stream biota [5,15]. To test these hypothe-

ses, we experimentally excluded macroconsumers and examined the effects of exclusion on

sediment accrual, benthic invertebrates, and periphyton as dependent variables.

Macroconsumer interactions and benthic ecosystems
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Materials and methods

Ethics statement

Permits of animal handling for this study were approved by the Ministério do Meio Ambiente

(MMA), Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio), Sistema de

Autorização e Informação em Biodiversidade (SISBIO) under protocol number (7028–1) and

authentication code (91743927). Permission to work at the National Park (Parque Nacional da

Serra da Bodoquena) was granted by the ICMBio (Bonito, Mato Grosso do Sul, Brazil) that

approved the protocols for this project. This study did not involve endangered or protected

species.

Study site

The study was conducted in a headwaters stream, Córrego Taquaral, located in the Bodoquena

Plateau, Mato Grosso do Sul, Brazil (21˚15’21.8" N, 056˚21’20.4" W) during 12–26 June 2016.

The Bodoquena Plateau is characterized by karstic watersheds and is one of the most extensive

continuous karst aquatic systems in Brazil [41]. The Córrego Taquaral is a second- to third-

order stream tributary of the Formoso River, which ultimately drains into the Upper Paraguay

River basin and the Pantanal–the world’s largest and most biodiverse tropical wetland. Vegeta-

tion surrounding the study site consists of deciduous and semi-deciduous forests. The site is

located at the transition between Cerrado (savanna) and Atlantic rainforest forest ecoregions,

both considered hotspots of biodiversity [42]. Most of the Córrego Taquaral watershed is pro-

tected by the Parque Nacional da Serra da Bodoquena (PNSB) and the stream currently repre-

sents one of the reference areas of PNSB’s Long Term Ecological Research program (LTER)

[43].

The Córrego Taquaral flows from an elevation of 400 to 358 m above sea level, ranges from

8 to 30 m wide, and was 50–70 cm deep during the study. Flow is groundwater fed and rela-

tively uniform during the dry season when this experiment was conducted. Substrate consists

primarily of sand as well as large boulders and cobble-sized inorganic sediments with traver-

tine deposition. High calcium carbonate concentrations and elevated pH during photosynthe-

sis result in the formation of numerous calcareous tufa formations, travertine waterfalls, and

calcium carbonate deposits along pool and riffles downstream. The steep waterfalls are natural

barriers to movements of some species of predatory fishes [44].

Due to the broad channel width (>20 m), the Córrego Taquaral possesses an open canopy

and benthic algae (periphyton) provide the primary resource base for the food web. The

periphyton assemblage is dominated by Chlorophyceae (Stigeoclonium sp.), diatoms, and cya-

nobacteria [34]. The benthic macroinvertebrate community is dominated by aquatic insects,

primarily species of Ephemeroptera, Trichoptera, Diptera, Megaloptera, and Odonata [35].

Macroconsumers include insectivorous fish in four families [45–47]: Characidae (Xenurobry-
con macropus), Crenuchidae (Characidium zebra), and Heptapteridae (Rhamdia quelen). In

addition, there are algivous fish: Loricariidae (Ancistrus sp.) and (Hypostomus sp.) that feed on

periphyton [47] and two decapod species, an omnivorous shrimp (Macrobrachium brasiliense)
and a crab (Sylviocarcinus australis) that consume algae and insects [48].

Stream attributes

Multiple physical and chemical parameters were recorded during the experiment to character-

ize the study site. Water quality parameters, including temperature 20.4˚C (± 0.59;

mean ± one standard deviation); conductivity (407 ± 6.90 μ.S-1); salinity (0.2 ± 0.005 ppt); pH

(7.7± 0.27); and dissolved oxygen (4.0± 0.96 mg l-1) were measured once daily with a multi-
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parameter meter (HI 9828 Hanna Instruments, USA). Total nitrogen (TN; 1.21 mg l-1) and

total phosphorus (TP; 0.10 mg l-1) were also recorded during the experiment. TN was mea-

sured using persulfate methods and cadmium reduction, while TP was measured using persul-

fate and with stannous chloride. Mean values were determined using spectrophotometry [49].

Study design

The experiment was conducted in the headwaters of the Córrego Taquaral stream during the

early dry season. Our experimental design was a randomized complete block design with one

treatment, an electrical fence exclusion of macroconsumers, and control samples. Replicate

pairs of baskets were deployed in a large pool with depths of 60 cm. Ten paired substrate-filled

baskets (five electrified and five control) were deployed for each section of the pool (lower,

middle, and upper). Macroconsumer exclosures consisted of 20 × 20 × 10 cm plastic baskets

with 50 mm mesh opening to maintain some limited flow through the rock substrates and

with a 50 mm mesh in the bottom of the baskets (as previously recommended for use in the U.

S. National Science Foundation’s STREON program in the National Ecological Observatory

Network) [50,51]. The mesh size allowed smaller benthic invertebrates and microbes to colo-

nize the chambers but prevented the larger macroconsumers from entering the enclosures.

Iron rings that served as electrodes were attached to the top of the baskets using plastic zip ties

(Fig 1). The pulsed electrical charge was produced by a 1.2 J livestock fence charger (LHR

Manutenção e Montagem Ltd. Ribeirão Preto, São Paulo, Brazil), 110 μs of duration and 1.3

amperes, with power supplied by a 12 V battery [34,52]. All baskets were filled with 20–30 sim-

ilarly sized (approximately 40 cm2), round limestone rocks to promote colonization of inverte-

brates (Fig 1). These rocks were acquired from a commercial (Lilu’s Black Floricultura, Campo

Grande, Brazil) mining source of limestone to standardize the replicates and to ensure no

prior biological colonization. Basket positions within each replicate were randomized with a

minimum distance between baskets of 1 m. For additional details on the electric exclosure

design, see [34]. The response of the animals to electric shock was immediately observable. No

fish and shrimp entered the electrified treatments during approximately one hour of daily

observation of the replicates to establish functional efficacy. Control baskets were constructed

in the same manner as electrified baskets. However, these baskets were not connected to a

fence charger and visual observations documented that macroconsumers entered the control

baskets.

We standardized measurements of periphyton colonization and inorganic matter accumu-

lation inside each basket by installing a 23 × 6 cm thick acrylic panel with four circular holes of

4.2 mm diameter (Fig 1). Each hole was fitted with glass fiber filters (0.45 μm porosity, 47 mm

diameter) that acted as substratum for sediment precipitation as well as bioturbation (Fig 1);

these filters have been used in other exclusion experiments in Brazil as substrate for growth of

periphyton [53]. Filters were individually weighed prior to deployment. The acrylic panels

with filters in each basket were located between the stones while the filters were positioned

above the baskets (Fig 1).

Processing of benthic ecological parameters

The experiment was conducted during 15 days. The duration of the experiment was based on

our review of the literature and on our previous studies as well as being constrained by the var-

iable duration of the dry season in this region. We expected that: (i) colonization time of ben-

thic macroinvertebrates would be rapid in tropical streams [54,5,55], (ii) the baskets would be

colonized by most groups of benthic invertebrates that occur in the region (e.g., Gastropoda,

as well as larvae of Diptera, Ephemeroptera and Trichoptera) including different functional
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feeding groups such as diverse grazers and predators (Odonata larvae) [35]; and (iii) calcium

accrual would be detectable on bare-rock substrates after 10 to 15 days.

Ten baskets randomly were collected on days 5, 10, and 15 of the experiment. Four filters

from each board/basket were collected using a spatula to retain as much sediment as possible.

Filters with sediments were placed in aluminum foil, individually marked, and dried for 1 h at

105˚C in the laboratory to obtain dry mass (DM) then ashed for 2 h at 550˚C and reweighed to

estimate the ash-free dry mass (AFDM; i.e., organic matter). Total sediments deposited on fil-

ters were then calculated as DM and AFDM. We sampled the baskets for benthic invertebrates

by disrupting the sediments by hand in front of a 0.5 mm mesh kick net positioned immedi-

ately downstream to catch any organisms that had colonized the stones. Benthic invertebrates

were also sorted from the substrate in each basket and were preserved in 80% ethanol for sub-

sequent identification in the laboratory. All insects were identified, usually to family, using tax-

onomic keys and original descriptions [56,57].

All stones in each basket were scraped and washed into a bucket to create a 200 ml slurry

for analysis of primary producer mass in the form of chlorophyll-a. We used a syringe to

extract a 50 ml subsample from the slurry for periphyton analysis. Each periphyton sample

was obtained using pre-ashed glass fiber filters (0.45 μm porosity, 47 mm diameter). Chloro-

phyll-a was extracted from each filter in 10 ml 80% ethanol for 24 h in a freezer in the absence

of light [58] and concentrations were measured using a spectrophotometer (model: Hach Dr

6000, Loveland, Colorado USA).

We selected 18 replicates, nine from each treatment, with four filters each to analyze cal-

cium from the concentration of dry mass. Filters were macerated using acid digestion and per-

oxide of hydrogen (method 3050B) [59] and later analyzed using spectrophotometry of

emission (method 3030.F in a SPECTRAA 220 FS) [60] to determine calcium accrual on

filters.

Statistical analyses

We applied repeated measures linear mixed or generalized linear mixed models to test for the

effects of the exclosure treatment on all dependent variables of interest. For each statistical

model, the stream section (lower, middle, or upper) was treated as a random block factor. Con-

tinuous dependent variables, including DM, AFDM, calcium, and chlorophyll-a were modeled

using linear mixed models. Data were log-transformed (x+1, to preserve samples with zero val-

ues) to fit the assumption of normality when appropriate. For discrete dependent variables,

such as the abundance and richness of benthic invertebrates, generalized linear models assum-

ing Poisson-distributed data were derived also using the stream section as a random block fac-

tor. All models included day of trial and experimental status as independent variables. Models

for dependent variables representing accrual on tiles included the abundance of scrapers and

collector-gatherers as independent variables as well. Degrees of freedom for mixed models

were estimated using the Satterthwaite approximation [61].

We also tested for differences in benthic invertebrate communities among treatments using

permutational multivariate analysis of variance (PERMANOVA) on Bray-Curtis dissimilari-

ties derived from log-transformed abundance data. To determine if these parameters changed

over the course of the study, we assessed linear regression models of readings with time as an

independent variable.

Fig 1. Diagram of the exclusion apparatus. Diagram of the materials used in exclusion experimental; one of the 15

baskets that contained stones for colonization by benthic invertebrates and periphyton colonization and glass fiber

filters for sediment accumulation. Dimensions are indicated.

https://doi.org/10.1371/journal.pone.0209102.g001
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All analyses were performed in open-source software R [62]. Mixed models were developed

using the lmerTest package [63] and PERMANOVA models were estimated using the package

vegan [64].

Results

Most physical and chemical measures, including pH and dissolved oxygen remained uniform

throughout the study period (p>0.05), while temperature, conductivity, and salinity did

increase linearly (p<0.05). These increases were likely due to the advancement of the dry sea-

son during the study period. The total phosphorus was within the range designated for unpol-

luted streams in the region [65].

We found a significant difference in patterns of calcium accrual between treatments, with

an increase in the controls compared with the electrified treatments (Fig 2 and Table 1). The

calcium accrual (based on dry mass) varied between treatments: control (0.00057–0.00008 mg/

cm2) and electrified (0.00024–0.00006 mg/m2). However, the exclusion of macroconsumers

had no effect on DM (sediment) or AFDM (organic material) (Fig 2 and Table 1). The mean

sediment dry mass was similar between control (0.091 mg/cm2) and electrified treatments

(0.104 mg/cm2).

There were no differences in chlorophyll-a concentration between treatments (Fig 3), sug-

gesting that exclusion of macroconsumers did not influence the abundance of grazing inverte-

brates that would decrease periphyton growth on substrates inside of baskets.

We observed no significant differences between treatments in the total richness and abun-

dance of invertebrates colonizing the stony substrata (Fig 4 and Table 1). We collected 276

benthic invertebrates from the baskets representing 19 families of mostly aquatic insect larvae

(S1 Table). The total abundance of taxa in substrata among treatments was 133 (control) and

143 (electrified treatments). The three most dominant benthic invertebrates were insects: Chir-

onomidae (Chironominae), Trichoptera (Leptoceridae), and Ephemeroptera (Leptophlebii-

dae). There were no differences in abundance of insects between treatments. The scrapers and

collector-gatherer (i.e., taxa feeding on periphyton) decreased dry mass and appeared to affect

AFDM and chlorophyll-a, although these effects were not significant at = 0.05 (Table 1).

Scraper and collector-gatherer abundance did not affect calcium accrual.

Community composition, as assessed by a PERMANOVA model, was unrelated to treat-

ment (F = 1.3, p = 0.219) or an interaction term between treatment and time (F = 0.8,

p = 0.665) (Table 1).

Discussion

Our findings suggest that excluding macroconsumers did not directly affect the abundance of

benthic invertebrates, chlorophyll-a concentration or dry mass, and AFDM. Previous studies

in the Bodoquena Plateau during the dry season and in tropical streams of Hong Kong have

also reported that the absence of macroconsumers did not increase accumulation of sediments,

periphyton accrual, or benthic invertebrate abundance [14,34,66].

The most interesting finding of our study was the increased accumulation of calcium in the

presence of macroconsumers. The changes in calcium accumulation could be related to both

direct and indirect effects of macroconsumers on trophic interactions. The indirect trophic

interactions were likely associated with changing the behavior of some benthic invertebrates,

particularly the insect larvae associated with travertine formation [16–19]. The presence of

macroconsumers can influence the movement behavior of the benthic invertebrate prey that

decreases their foraging and bioturbation, which can increase calcium accrual in the control

treatment. However, this possible change in behavior of grazers did not alter algal and
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sediment biomass in our study. One potential explanation for a lack of this effect is the poten-

tial interaction among different growth rates among the algae species. A previous study [34]

demonstrated that the composition of the algae changed when the macroconsumers were

experimentally excluded. The growth rates and growth forms of the algae were likely influ-

enced by benthic invertebrates as well as by calcium accrual [39]. These compositional changes

Fig 2. Differences in sediment accrual. Sediment DM (mg/cm2) (top panel), sediment AFDM (mg/cm2) (medium)

and calcium (mg/cm2) (bottom panel) between control and exclusion from the three period of time. A linear mixed

model suggested that the differences between control and treatment units were statistically significant by day 15.

https://doi.org/10.1371/journal.pone.0209102.g002
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in the algal assemblage could include compensatory mechanisms that resulted in no effect on

the total amount of chlorophyll-a.

Benthic stream invertebrates have behavioral and morphological adaptations to avoid pred-

ators [67], especially in highly transparent karst water where benthic invertebrates are vulnera-

ble to visually oriented predators [68]. Scraping mayflies, for example, commonly reduce

foraging activities in the presence of predatory fish [69,70]. Although mayfly (e.g., Leptophle-

biidae) abundance did not vary among treatments, a dominant grazer Simothraulopsis [71]

Table 1. Statistical parameters associated with linear mixed and generalized linear mixed models. Coefficients are provided only for statistically significant model

terms and represent the factorial of introducing an electrified exclosure in the treatment parameter.

Day Scraper/collector-gatherer

abundance

Exclosure treatment

Parameter Units z-value p-value z-value p-value z- value p-value Coefficient

Calcium mg/cm2 1.96 0.005 0.40 0.692 2.20 0.028 -1.0×10−4

(log) Dry mass mg/cm2 5.08 <0.001 2.08 0.040 0.13 0.893

(log) AFDM mg/cm2 1.90 0.066 1.76 0.082 0.14 0.893

Chlorophyll-a μg /cm2 2.04 0.051 1.70 0.101 0.24 0.811

Benthic invertebrate abundance N 7.97 <0.001 0.60 0.547

Benthic invertebrate richness N 3.47 <0.001 0.00 0.999

https://doi.org/10.1371/journal.pone.0209102.t001

Fig 3. Differences in chlorophyll-a concentrations (μg/cm2) between control and treatment baskets from the three period of time. The data are calculated from

linear mixed models and were treated from random block factor. A linear mixed model suggested that chlorophyll-a values did not indicate significantly differ between

treatments, although increases over time were statistically significant.

https://doi.org/10.1371/journal.pone.0209102.g003
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occurred in all baskets and may have responded to the presence of macroconsumers by

decreasing their grazing. As our experiment did not control for predator chemical clues, which

were present in both control and exclusion treatments, it is unlikely that this indirect chemi-

cal-communication effects reported in other studies [72,73] can account for the differences we

found. We speculate that the response of grazers in clear-water streams, like those grazers in

streams in Bodoquena Plateau, involves visual cues and indirect effects on behavior such as

crevice seeking.

Karstic streams are rich in dissolved calcium carbonate, carbon dioxide, and bicarbonate.

When the dissolved carbon dioxide is used in photosynthesis, pH increases and deposition of

calcium carbonate increases among algae and macrophytes in these streams [16,17]. This for-

mation of calcium carbonate can increase transparency that influences foraging behavior of

predators and their prey [33]. Insect larvae and microorganisms are strongly associated with

precipitation and formation of travertine in these travertine-producing ecosystems [17,74].

Consequently, the presence of predators and omnivores can directly or indirectly affect their

prey’s foraging and bioturbation [75,73]. Such changes of behavior likely increased the amount

Fig 4. Total richness (top panel) and abundance of benthic invertebrates (bottom panel) between control and

treatment baskets from the three period of time. Data were compared using generalized linear models assuming

Poisson distributions. Invertebrate abundance and richness did not significantly differ between treatments.

https://doi.org/10.1371/journal.pone.0209102.g004
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of calcium in the control treatment. Alternatively, the presence of omnivores and algivores

could have changed the composition of algal community [34] and increased the pH that led to

more deposition of calcium on the filters in the baskets [39].

Aquatic insect larvae such as the Hydropsychidae and Chironomidae build retreats (cases)

using sediment particles or construct silken nets for filtering suspended organic particles

[18,74]. During calcium carbonate precipitation their cases can be colonized by cyanobacteria

that remove CO2 and increase pH that further enhances the accrual of calcium carbonate [17].

Although insect abundance in our study did not vary with respect to treatments, Trichoptera

in the family Leptoceridae build tubular retreats and Chironomid build nets that are known to

increase calcium carbonate deposition [18]. These were one of the most abundant insect taxa

that occurred in the baskets. Some of these taxa would likely respond to the presence of macro-

consumers by reducing their feeding and bioturbation activity that led to increasing the pro-

cesses of encrustation and elevated the calcium accrual.

In our study, we found a low abundance of benthic invertebrates in both treatment and

control baskets when compared to other experimental studies in tropical streams [52]. Cal-

cium carbonate deposition has also been suggested to reduce invertebrate biomass and diver-

sity [38,76]. Specimens of Chironominae, Leptophlebiidae, Mollusca, Trichoptera, and

Odonata remained the most abundant insect groups in both treatment and control baskets.

The larger (� 3.0 cm long) ampullarid and planorbid snails may have increased grazing while

also reducing the calcium accumulation in the electrified treatment. The abundance of snails

was also observed in travertine formation in other streams [76].

Calcium carbonate deposition is potentially related to many ecological attributes in karst

stream ecosystems. For instance, calcium carbonate-depositing portions of some karst streams

are known to provide microhabitats and high biodiversity for algae and insect larvae [77], and

other organisms [78]. This study is the first to experimentally document the importance of the

presence of macroconsumers (e.g., fish and shrimp) on calcium accrual. Our findings shed

new light on the impact of species loss on karstic streams and consequences for calcium

dynamics in streams.
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