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Introduction

Abstract

The effect of recombinant erythropoietin (thEPO) on renal and systemic
hemodynamics was evaluated in a randomized double-blinded, cross-over
study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO
for 2 weeks, or high-dose thEPO for 3 days. Subjects refrained from excessive
salt intake, according to instructions from a dietitian. Renal clearance studies
were done for measurements of renal plasma flow, glomerular filtration rate
(GFR) and the segmentel tubular handling of sodium and water (lithium
clearance). thEPO increased arterial blood pressure, total peripheral resistance,
and renal vascular resistance, and decreased renal plasma flow in the high-
dose thEPO intervention and tended to decrease GFR. In spite of the decrease
in renal perfusion, thEPO tended to decrease reabsorption of sodium and
water in the proximal tubule and induced a prompt decrease in circulating
levels of renin and aldosterone, independent of changes in red blood cell mass,
blood volumes, and blood pressure. We also found changes in biomarkers
showing evidence that rhEPO induced a prothrombotic state. Our results sug-
gest that thEPO causes a direct downregulation in proximal tubular reabsorp-
tion that seems to decouple the activity of the renin-angiotensin-aldosterone
system from changes in renal hemodynamics. This may serve as a negative
feed-back mechanism on endogenous synthesis of EPO when circulating levels
of EPO are high. These results demonstrates for the first time in humans a
direct effect of thEPO on renal hemodynamics and a decoupling of the renin-
angiotensin-aldosterone system.

erythroid progenitor cells in the bone marrow. The EPO

Recombinant human erythropoietin (thEPO) and its ana-
logs (erythropoiesis stimulating agents, ESAs) has been
used for over 3 decades in the treatment of anemia. EPO
is a glycoprotein mainly produced in the kidney that
raises blood hemoglobin mass by anti-apoptotic effects on
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receptor is also present in nonerythroid tissues including
the brain, heart, kidney, and vascular endothelium, and
the biologic actions of EPO extend beyond its effects on
erythropoiesis. Numerous in vitro studies and experimen-
tal studies in animals have suggested that rhEPO has
potential cytoprotective effects, as well as beneficial effects
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on inflammation and wound healing (Brines and Cerami
2005; Arcasoy 2008). The recognition of the pleiotropic
properties of EPO has prompted the onset of clinical tri-
als testing the potential of early treatment with high doses
of rhEPO as a tissue-protective agent.

Administration of thEPO has been consistently shown
to increase arterial blood pressure in both normal subjects
and patients with chronic kidney disease, and presumably
the increased cardiovascular risk is linked to the vasocon-
strictive effect of thEPO (Krapf and Hulter 2009; Lundby
and Olsen 2011). The hypertensinogenic effects of rhEPO
is independent of its erythropoietic effect (Krapf and Hul-
ter 2009; Lundby and Olsen 2011) and we have previously
shown that both acute short-term, high-dose rhEPO and
prolonged low-dose thEPO augment systemic and cere-
bral vascular resistance well before increases in hematocrit
(Lundby and Olsen 2011; Rasmussen et al. 2012). When
assessed in isolated rat renal and mesenteric arterioles
(Heidenreich et al. 1991) and human placental blood ves-
sels (Resch et al. 2003) rhEPO has a direct vasoconstric-
tive effect that may involve nitric oxide, endothelin, and
prostaglandin-dependent =~ mechanisms.  Furthermore,
rhEPO attenuates the increase in bleeding time induced
by aspirin (Tang et al. 2007), a commonly used anticoag-
ulant for patients at cardiovascular risk. rhEPO may
induce a procoagulant state by stimulating throm-
bopoiesis, platelet activity and endothelial activation
(Stohlawetz et al. 2000), and sudden death after stroke,
myocardial infarction, or pulmonary embolism in elite
athletes has been linked with illegitimate use of rhEPO
(Tokish et al. 2004).

In addition to systemic vasoconstriction, the arterial
hypertension may also arise from intrinsic renal effects of
rhEPO. Acute administration of rhEPO in perfused iso-
lated kidneys in a dose-dependent manner decreased renal
sodium excretion (Brier et al. 1993). We have previously
reported that rhEPO promptly, and before any changes in
blood volume and hematocrit take place, causes a down-
regulation of the renin-aldosterone system (Olsen et al.
2011). Conceivably, activation of such a negative-feedback
system that serves to downregulate the endogenous renal
synthesis of EPO in the presence of high levels of circulat-
ing rhEPO is expected to involve renal afferent arteriolar
constriction. In rodents, administration of rhEPO acutely
reduced renal cortical blood flow (Ishikawa et al. 1999;
Coleman et al. 2006). Interestingly, plasma levels of
endogenous EPO, even within the normal range, in
patients with essential hypertension is inversely correlated
with renal blood flow and positively correlated with arte-
rial blood pressure and total peripheral resistance
(Langenfeld et al. 1997; Schmieder et al. 1997).

Tubular segmental function can be evaluated with
lithium clearance studies. Using renal lithium clearance as
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an index of proximal tubular fluid outflow (Thomsen
1984; Thomsen and Olesen 1984; Olsen 1998) it is possi-
ble to estimate the proximal reabsorption of sodium dur-
ing rhEPO administration. The net result would be
increased kidney oxygen tension causing a downregula-
tion in endogenous EPO. This hypothesis fits well with
the work of Lasne et al. who reported a decrease in renal
excretion of endogenous EPO after administration of
rhEPO (Lasne and de Ceaurriz 2000; Lasne et al. 2002).
The use of the lithium clearance method in combination
with renal clearance measurements of glomerular filtra-
tion rate (GFR) and renal clearances of sodium and water
makes it feasible to elaborate on the effects of rhEPO on
segmental tubular handling of sodium and water.

The link between administration of rhEPO and the
renin—angiotensin—aldosterone  system is  interesting
because the production of endogenous EPO, in part, may
be regulated by this system. Several studies have demon-
strated that the endogenous synthesis of EPO is stimulated
by activation of an angiotensin II type 1 receptor-depen-
dent pathway (Freudenthaler et al. 1999, 2000; Gossmann
et al. 2001). Other studies have shown good effects in treat-
ing polycythemia with angiotensin converting enzyme
(ACE)-inhibitors (Conlon et al. 1993; Gaston et al. 1993),
perhaps by inhibiting sodium reabsorption leading to
higher oxygen tension within the kidney and reduced EPO
synthesis (Kristensen et al. 2009).

We speculate that thEPO may have distinct effects on
renal function besides the effect on the renin—angiotensin
system. Treatment with thEPO may result in suppression
of endogenous EPO synthesis secondary to a decrease in
intrarenal oxygen consumption. Conceivably, activation
of such a negative-feedback system that serves to down-
regulate the endogenous renal synthesis of EPO in the
presence of high levels of circulating rhEPO is expected
to involve renal afferent arteriolar constriction. thEPO
may directly downregulate the renin-angiotensin system
or perhaps the changes in the renin-angiotensin system
are secondary to changes in proximal tubular reabsorp-
tion. It is yet to be revealed how administration of rhEPO
in humans is associated with changes in renal hemody-
namics, GFR, segmental renal tubular function and
sodium excretion.

Material and Methods

In the present double-blinded, placebo-controlled study,
we used classic renal clearance studies with renal vein
catherization and constant infusions of ideal markers and
urine collections to examine the effects in humans of both
prolonged low-dose and short-term high-dose rhEPO on
renal plasma flow and GFR. In a cross-over study, 16
healthy males, in random sequence, were given low-dose
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Epoetin beta (5000 IU every second day for 2 weeks),
high-dose Epoetin beta (30,000 IU every day for 3 days),
and placebo. We also used lithium clearance studies
(Olsen et al. 2011) for evaluation of segmental tubular
handling of sodium and water and performed sodium
balance studies with the subjects at a low-sodium diet
advised by a dietitian. In addition, we assessed the hyper-
emic response to brachial artery occlusion by peripheral
arterial tonometry (PAT) and measured venous blood
concentrations of biomarkers reflecting endothelial and
glycocalyx integrity and colloid osmotic pressure. Plasma
volume, total hemoglobin mass and blood volume was
estimated in single measurements at days 4, 11, and 25
during all 3 series by the use of the optimized
CO-rebreathing method (Schmidt and Prommer 2005).

Subjects

Sixteen healthy male volunteers (age 25.4 [3.6] vyears,
(mean [SD]), height 183.5 (6.6) cm, body weight 76.9 (7.3)
kg and body mass index 22.9 (2.7) kg/m®) were included in
the study. Before inclusion each subject underwent a medi-
cal examination and had to fulfill the following inclusion
criterias: male gender, age between 20 and 40 years, non-
smoking, arterial systolic blood pressure below 140 mmHg
and diastolic blood pressure below 90 mmHg, no actual
medication, and body mass index <25. Exclusion criteria
were participation in other studies, history of elite athletic
performance, history of neoplastic diseases, polycythemia,
epilepsy or allergy to rhEPO, and/or exposure to altitude
(>1500 meters above sea level) within 3 months prior to
the study. All subjects received 100% of the planned injec-
tions. One subject was excluded due to illness during the
first wash-out period. It was not characterized as an adverse
effect by the GCP unit, and the subject’s data are included
in the statistical calculations.

Experimental protocol

The effect of both low and high doses of rhEPO (Epoetin
beta, NeoRecormon, Roche, Welwyn Garden City, UK)
and placebo was evaluated in each subject by a randomized,
double-blinded, placebo-controlled, cross-over design with
a 5 weeks wash-out interval between the series:
1 Low-dose rhEPO: 5000 IU (~65 IU/kg) of subcuta-
neously administered Epoetin beta every second day for
2 weeks (days 1, 3, 5,7, 9, 11, and 13; placebo on day 2).
2 High-dose rthEPO: 30,000 IU (~390 IU/kg) of subcuta-
neously administered Epoetin beta every day for 3 days
(days 1, 2, and 3; placebo on days 5, 7, 9, 11, and 13).
3 Placebo (sodium chloride, isotonic 9 mg/mL, B.Braun,
Melsungen, Germany) administered subcutaneously on
days 1, 2, 3,5,7,9, 11, and 13.
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The primary endpoint in all series was changes in renal
plasma flow (RPF) at days 4 and 25 and creatinine clear-
ance and GFR at days 4, 11, and 25.

Randomization for the entire study (all 3 test series) was
done before the beginning of the experiment. An indepen-
dent investigator (NVO) generated a restricted randomiza-
tion list and after inclusion each subject were given a
number and a code, unique for subject and intervention. It
was not possible for the subjects to visually distinguish
between placebo or study medication. Randomization lists
were sealed and not available for persons involved in end-
point registration. NVO did not participate in subject
inclusion, study management, end-point evaluation or data
analysis. The study was approved by the Regional Commit-
tee on Biomedical Research Ethics, Committee B (protocol
no. H-2-2011-068) and the Danish Medicine Agency
(EudraCT 2001-005, 137-39). The study was conducted
according to the principles of Good Clinical Research
(GCP), monitored by the GCP Unit at Copenhagen
University Hospital (Bispebjerg Hospital) and registered on
www.clinicaltrials.gov (NCT01584921). All subjects were
informed verbally and in writing before the beginning of
the study and gave written informed consent to participate.
All experiments were done at the Copenhagen University
Hospital (Rigshospitalet), Denmark.

All  injections were administered subcutaneously
between 08.00 and 11.00 am. The subjects did not receive
any iron supplementation. Three days before each test
day subjects refrained from excessive salt intake, accord-
ing to written instructions from a dietitian. The subjects
refrained from alcohol, caffeine-containing drinks, and
extensive exercise 24 h before each test day. Anticubital
vein plasma samples were collected on day 4, 11, and 25,
renal vein plasma samples on day 4 and 25. Blood sam-
ples were obtained after at least 60 min of rest in a sitting
position using EDTA tubes and before administration of
rhEPO. Immediately after centrifugation at 3000 g for
10 min, the plasma were stored at —80°C until analysis.

Total EPO concentration

Plasma EPO concentrations were measured by means of
the commercially available Quantikine® IVD® ELISA kit
(R&D Systems Europe, Ltd., Abingdon, UK) according to
the manufacturer’s protocol which is based on the dou-
ble-antibody sandwich method. Assay results were mea-
sured spectrophotometrically at 450 nm wusing a
microplate reader to determine the optical density. Dupli-
cate readings were averaged for each standard, control,
and specimen. The log of erythropoietin concentration
was plotted versus the log of optical density for the stan-
dard curve. Concentrations are given in mIU/mL; samples
with EPO concentrations above the range of the assay
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(2.5-200 mIU/mL) were diluted 10-fold before a second
analysis.

Renal vein catheterization

The patient’s right groin was prepped and drapped in the
usual sterile fashion. Operators wore sterile gloves, caps,
and mask. Large sterile drapes were placed over the inser-
tion site, which was disinfected with chlorhexidine. All
catheters were placed using the Seldinger technique. Right
femoral vein puncture was achieved using ultrasound guid-
ance. A percutaneous sheath introducer (Intro-Flex,
Edwards Lifesciences LLC, Irvine, CA, 6F [2.0 mm]) was
placed in the vein and a Cordis (Johnson-Johnson com-
pany) diagnostic catheter, 5F (1.65 mm), 65 cm, MPA 2
(open end, 2 sideholes) was inserted in the left renal vein.
X-ray verified catheter position along with a renal vein
blood sample with a saturation above 85%. For acceptance
of catheter position at the renal vein both parameters
should be fulfilled. Renal vein catheterization was done on
day 4 and 25.

Urine collection

Subjects collected 24-h urine samples before each test day
during the study. The bladder was emptied just before
start of each 24-h collection period and time point for
first and last voiding was noted. Urine was collected in
preweighed containers and stored in a dark cool place.
On arrival for the test day urine volume and density were
determined and samples were divided into small eppen-
dorf tubes frozen at —80°C until further analysis. During
the 24-h urine collections, we used Para Amino Benzoic
Acid (PABA) tablets three times a day (240 mg/d), to ver-
ify completeness of the 24-h urine collections (Bingham
2003). Acceptable completeness was a PABA recovery
>90% (Bingham 2003). Statistical analyses were done only
with complete collections (129 completed out of 139 pos-
sible urine collections).

Renal Tc-99 m-DTPA and I-131-hippuran
clearances

GFR was measured on day 4, 11, and 25 and RPF and
ERPF were measured on day 4 and 25 by a constant infu-
sion technique with urine collection and peripheral and
renal vein plasma sampling. After an overnight fast, the
clearance studies were started at 08.00 am by oral intake
of bottled water to facilitate urine collections (500 mL/h
without initial load). The water intake was maintained
prior to and during tracer infusion to produce a state of
water diuresis where the urine outflow approximately
equaled the water intake. Except for briefly standing when
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voiding every 30 min, the subjects were confined to a
resting sitting position.

Tc-99 m-diethylenetriamine pentaacetate (DTPA;
Mallinckrodt Medical, Petten, the Netherlands), 4.8 MBq
for GFR measurement, and I-131-hippurate (Polatom,
Otwock, Poland), 0.3 MBq for RPF/ERPF measurements,
were administered as bolus iv injections. At the same time
a constant infusion of 500 mL isotonic glucose (162 mL/
h) containing 6.7 MBq Tc-99 m-DTPA and 2 MBq I-131-
hippurate was initiated. Resulting infusion rates were
0.037 MBq Tc-99 m-DTPA and 0.011 MBq I-131-hippu-
rate per min. After a 60 min equilibration period and
immediately before the investigation, the subjects emptied
their bladder and the time was noted (T = 0 min). There-
after, urine was collected for two 60 min clearance periods
(Ul and U2) and plasma was sampled at the beginning
and end of each period (T=0, T=60 and T = 120).
Urine and plasma samples were counted on a gamma-
counter (Cobra II, Packard, Mriden, CT) using two energy
windows and corrected for cross-talk between the two iso-
topes. Using standard clearance equations renal clearances
of the two tracers were calculated for each 60 min period
and the averages of the two periods were used — Tc-99 m-
DTPA clearance for GFR and I-131-hippurate for ERPF.
RPF was calculated using the measured renal arterial-
venous plasma difference from sampled peripheral vein
blood (=zarterial) and renal vein blood.

Renal clearance measurement

Measurements of the renal clearance of lithium, used in
this study as an index of proximal tubular fluid outflow
(Thomsen 1984), were done simultaneously with the mea-
surements of GFR, RPF, and ERPF on days 4, 11, and 25.
Lithium carbonate (300 mg; 8.1 mmol) was given orally
on the evening before each investigation Renal clearances
of lithium (C;;) and sodium (Cy,) were each calculated
from Ul and U2 urinary excretion rates and representa-
tive values of plasma concentrations of lithium and
sodium calculated as the mean from blood samples
obtained at T =0, T = 60, and T = 120 min.

Colloid osmotic pressure

Plasma samples from the anticubital vein (7 = 120 min)
were analyzed in duplicates on colloid osmometer, Osmo-
mat® 050, Gonotec GmbH, GSG-Hof Reuchlinstr. 10-11,
10553 Berlin Germany.

Analytical methods

99mT . DTPA and "I activity in plasma, urine, and stan-
dards was measured in a well gamma-counter (Cobra-II,
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Pachard Instrument Company, Meriden, CT). Plasma
sodium was measured with a Technicon SMAC instru-
ment, and urinary sodium was determined with a Techni-
con RA 1000 instrument (Tarrytown, NY). Plasma and
urinary lithium were measured by atomic absorption
spectrophotometry (model 403; Perking-Elmer, Norwalk,
CT).

Calculations

Reabsorption and excretion rates of sodium and water
were calculated based on the assumption that Cp; pro-
vides an accurate measurement of the rate of end-proxi-
mal delivery of fluid and sodium (Thomsen 1984):
Absolute proximal reabsorption rate (APR) = GFR — Cy;;
proximal fractional reabsorption (FPR) =1 — (Cpi/GFR);
absolute distal reabsorption of sodium
(ADRya) = (Cp; — Cna) X Pna» where Py, is plasma con-
centration of sodium; absolute distal reabsorption of
water (ADRy»o) = Cp; — V, where V is urine flow rate;
fractional distal reabsorption of sodium
(FDRy,) = (Cr; — Cna)/Cyi. Fractional —excretions  of
sodium (FEy,), lithium (FE;;) and water (FEy,o) were
calculated as Cyn,/GFR, C;/GFR, and V/GER, respectively.
GFR of sodium and renal excretion rate of sodium were
determined as GFR x Py, and Uy, x V, respectively,
where Uy, is the urinary concentration of sodium. Filtra-
tion fraction (FF) = GFR/RPF.

All calculations were done at both Ul and U2 period
and a mean was used in the final calculations. Values are
corrected for body surface area 1.73 m®.

Finapres

The subjects rested sitting for at least 180 min after which
HR (heart rate), MAP (mean arterial pressure), cardiac
SV (stroke volume), TPR (total peripheral resistance) and
thus Q were assessed noninvasively at heart level from the
left third finger as an average over 90 sec using (Finome-
ter”PRO, FMS Finapres Medical Systems BV, Hogehilweg
8, NL-1101 CC Amsterdam ZO, the Netherlands) (Imholz
et al. 1998; Buclin et al. 1999; Petersen et al. 2014).

Plasma-, blood volume and hemoglobin
mass

Total hemoglobin mass was estimated in single measure-
ments at days 4, 11, and 25 during all 3 series by the use
of the optimized CO-rebreathing method (Schmidt and
Prommer 2005). Briefly, subjects rested for at least
180 min in order to stabilize blood volume (Ahlgrim
et al. 2010). Three baseline capillary blood samples were
collected from a preheated fingertip in 35 uL
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preheparinized tubes (Clinitubes; Radiometer, Breonshgj,
Denmark). After baseline sampling the subjects inhaled a
bolus of 1.2 mL per kg bw of chemically pure CO deliv-
ered via a 100-mL plastic syringe (Omnifix, Braun, Mel-
sungen, Germany) to a custom designed spirometer
(Blood tec GbR, Bayreuth, Germany) creating a closed
system. The system contained 3 L of pure oxygen, and
was rebreathed for 2 min. Three blood samples were col-
lected 7 min following the inhalation of CO wusing the
same technique as during baseline sampling. Blood sam-
ples were immediately analyzed for percent carboxy
hemoglobin (%COHb), [Hb], and hematocrit (Hct) on
an ABL 800 blood gas analyzer (Radiometer, Breonshej,
Denmark). A CO analyzer (Draeger, Luebeck, Germany)
was used to evaluate if a leak of the closed system
occurred during the rebreathing period and measured any
leftover CO in the spirometer and lung cavity following
the rebreathing period.

Venous [Hb] and Hct were calculated using the results
from the capillary blood and the following equations:

[Hb] = [Hb) X 0.8787 + 1.2

capillary
Het = Heteapilary X 0.8425 + 5.23

The difference in %COHDb was used to calculate Hb,y,
(Schmidt and Prommer 2005). Blood volume (BV), red
cell volume (RCV) and plasma volume (PV) was calcu-
lated using the following equations:

BV = Hbynaes(g) X 100/[Hb)(g/dL)

RCV =Hbpass(g) % 100/mean corpuscular hemoglobin

concentration(g/dL)
PV =BV — RCV

All measurements of Hb,,,, and calculations of BV,
RCV, and PV deviating more than two standard devia-
tions from the mean were considered an error of mea-
surement and excluded from all analysis. The coefficient
of variance expressed as the percent typical error (%TE)
was calculated using the following equation on the first
two available measurements of Hb,,,, during placebo
treatment (e.g., day 4 and 11):

%TE = standard deviation of the differences between

measurements//2

Enzyme linked immunosorbent assay
(ELISA) measurement

Soluble biomarkers of endothelial cell and glycocalyx acti-
vation and damage were measured in uniplicate by com-
mercially  available plasma/serum
according to the recommendations:

immunoassays in
manufactures
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Figure 1. Total plasma EPO concentration (mlU/mL). N = 15. Logqo
scale. Values are means [95% Cl]. Data were log;o transformed
before analysis. *P < 0.004; **P < 0.00001 compared with
placebo. Data previously published by Aachmann-Andersen et al.,
PLos ONE, 2014 vol. 9 (Bunke et al. 1994) pp. e110903. Absolute
values are found in Table 1.

Table 1. Total plasma EPO concentration (mlU/mL). N = 15

Day 4 Day 11 Day 25
Placebo 8.1 (2.6) 113 (3.9) 10.1 (3.0)
Low-dose EPO 29.7 (11.2)* 25.5 (8.6)* 8.1 (3.8)
High-dose EPO  470.3 (202.0)* 154 (6.2)* 8.3 (4.9)

Values are means (SD). Data were log;o transformed before analy-
sis. Data has been previously published in PLos ONE, 2014 vol. 9
(10) pp. 110903.

P < 0.01 compared with placebo.

Histone-complexed DNA fragments (hcDNA, Cell Death
Detection ELISAPLUS, Roche, Hvidovre, Denmark; LLD
not stated, relative quantification), soluble thrombomod-
ulin (sTM, Nordic Biosite, Copenhagen, Denmark; LLD
0.38 ng/mL), syndecan-1 (Diaclone SAS, Besancon,
France; LLD 4.94 ng/mL), sVEcadherin (R&D Systems
Europe; LLD 0.113 ng/mL).

Digital pulse amplitude tonometry

We used an EndoPAT 2000 device (Itamar Medical Ltd.,
Caesarea, Israel) consisting of a fingertip plethysmograph
(Faizi et al. 2009; Hamburg and Benjamin 2009). The
device includes two fingerprobes, each placed on a fingertip
on each hand. These are used for parallel measurements
and are connected to a computer. The probe consists of a
rigid external cap around an air-filled chamber with a sen-
sor. When the chamber is filled with air, a uniform
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Renal vascular resistance
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Figure 2. Renal vascular resistance (dyn s/cm®) after 4 and 25 days
of either placebo, low-dose rhEPO, or high-dose rhEPO. N = 16.
Values are means [95% Cl]. *P < 0.05 compared with placebo.
Absolute values are found in Table 6.

pressure is provided which prevents the veno-arteriolar
vasoconstrictive reflex. The probe detects changes in vol-
ume in relation to the arterial pulsation and translates this
to a peripheral arterial tone (PAT). A cuff was placed on
the right arm always in which the measurement was per-
formed. Measurements by the other probe left arm served
as a control. Each measurement consisted of three phases:
baseline, occlusion and reactive hyperemia. Baseline: The
probe was set to inflate to 10 mmHg below diastolic pres-
sure. Occlusion: The test arm was occluded to suprasystolic
pressure for 5 min (Faizi et al. 2009). Reactive hyperemia:
The subsequent increase in blood flow leads to a flow-
mediated dilatation, manifesting as reactive hyperemia,
which was measured by the device as an increase in the
pulse-signal amplitude. The EndoPAT software calculates a
post-occlusion/pre-occlusions-ratio, the reactive hyperemia
index (RHI). An RHI <1.67 is described as being abnormal
by the manufacturer (http://www.itamar-medical.com/ima
ges/EndoPAT Multi Function USA.pdf).

Statistical analysis

Statistical analyses were done by the use of the statistical
SPSS software (IBM SPSS Statistics, version 20.0.0).
Entries into the database of all data were verified by the
GCP Unit at Copenhagen University Hospital. To assess
the effect of rhEPO treatment a mixed general linear
model for repeated measurements was used. (SPSS: Ana-
lyze>Mixed Model>Linear). Repeated measures and pair-
wise comparisons versus baseline were corrected for
multiple comparisons (Bonferroni). Results are expressed
as means (CI 95%). All calculations regarding values on
day 4, 11, and 25 were done comparing each treatment
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Table 2. Endothelial markers, RHI, and colloid osmotic pressure after 4, 11, and 25 days of either placebo, low-dose rhEPO, or high-dose

rhEPO

Day 4

Day 11

Day 25

Syndecan-1 (ng/mL) N = 7
Placebo mean 44.7 [20.5-68.9]
Low-dose EPO
High-dose EPO

Soluble trombomodulin (ng/mL) N = 7

47.8 [19.4-76.1]
39.8 [20.5-59.1]*
41.2 [21.5-60.9]

Placebo mean 2.1 [1.2-2.9] 2.1[1.3-2.9]
Low-dose EPO*?3 2.2 [1.2-3.1]
High-dose EPO 1.8[1.1-2.5]

Vascular endothelial-cadherin (ng/mL) N = 7
Placebo mean 41.9 [32.2-51.6]
Low-dose EPO"3

35.9 [22.6-49.3]
36.3 [23.9-48.7]

High-dose EPO 36.7 [28.1-45.4]
Histone complexed DNA fragments (%) N = 7

Placebo mean 2.9 [1.1-4.6] 3.8 [1.2-6.3]

Low-dose EPQ’ 2.0[0.9-3.1]*

High-dose EPO"> 2.3[1.2-3.5]
Reactive hyperemia index (RHI)

Placebo mean 2.3 [2.1-2.4] 2.2 [1.9-2.5]

Low-dose EPO’ 2.4 [2.0-2.7]

High-dose EPO 2.3[1.9-2.7]
Colloid osmotic pressure (mmHg)

Placebo mean 26.0 [25.2-26.9] 26.3 [25.4-27.1]

26.3 [25.4-27.2]
26.5[25.8-27.3]

Low-dose EPO?
High-dose EPO%?
Plasma volume (mL)
Placebo mean 3653 [3394-3912]
Low-dose EPO
High-dose EPO

3528 [3297-3760]
3355 [3043-3667]
3412 [3147-3676]

45.0 [20.7-69.3]
39.8 [16.8-62.9]*

38.3 [17.0-59.6]**

1.9 [1.1-2.7]
2.1[1.3-2.8]
1.9 [1.2-2.6]

52.5[39.3-65.7]
49.1 [36.7-61.4]
45.3 [33.2-57.3]

2.0 [0.5-3.4]
1.2 [0.7-1.7]**
1.1 [1.0-1.1]*

2.6 [2.2-3.0]
2.0[1.8-2.2]
2.1[1.9-2.3]

25.9 [25.0-26.9]
26.3 [25.0-27.5]
27.1[25.9-28.2]*

3639 [3235-4043]
3503 [3140-3867]
3565 [3349-3779]

41.3[20.9-61.6]
40.2 [21.3-59.1]*
31.2 [16.6-45.9]**

2.1[0.8-3.4]
1.5 [1.0-2.0]*
2.2 [1.2-3.1]*

37.1 [25.7-48.6]
32.5[24.0-41.0]
39.4 [26.1-52.6]

2.8[1.2-4.5]
1.5[0.9-2.2]**
2.2 [1.3-3.1]

2.1[1.9-2.3]
2.1[1.9-2.4]
2.2 [2.0-2.4]

25.5 [24.5-26.5]
25.6 [24.3-26.9]
25.5[24.3-26.7]

3751 [3368-4133]
3626 [3296-3958]
3711 [3456-3966]

N = 16. Values are means [95% Cl]. rhEPO, recombinant human erythropoietin.

*P < 0.05; **P < 0.01 compared with placebo.
123Djfference between day 4-11, 4-25, and 11-25, respectively.
“Difference between high- and low-dose rhEPO.

and day against the mean of placebo values on day 4, 11,
and 25. No significant carry-over or period effect was
found for any of the endpoints. The assumption of nor-
mally distributed residuals was evaluated by visual inspec-
tion of residual histograms. If necessary, data were logj,
transformed before analysis. Two-sided significance tests
were used with a significance level of 5%.

Results

Comparable erythropoietic effects of low-
dose and high-dose rhEPO

As expected both low- and high-dose rhEPO administra-
tion increased total plasma EPO concentration through-
out the treatment period but at day 25 the EPO
concentration had returned to normal with a slight
undershoot for both interventions (Fig. 1, Table 1). Both

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

doses caused small increases in reticulocyte counts and
hematocrit and a decrease in plasma levels of ferritin and
transferrin saturation.

Vasoconstrictive effect of rhEPO
independent of erythropoiesis

Studies with short-term high-dose rhEPO regimes have
shown an increase in arterial blood pressure to the same
level as low-dose rhEPO treatment for 3 months (Ras-
mussen et al. 2010, 2012). In the present study, mean
arterial pressure, diastolic pressure and total peripheral
resistance increased with low-dose rhEPO at day 11,
whereas systolic blood pressure and stroke volume
remained unchanged on all days. Renal vascular resistance
increased with high-dose rhEPO at day 4 (Fig. 2,
Table 2). Plasma concentrations of nitrite and nitrate rose
slightly at days 4 and 11 and returning to baseline at day

2018 | Vol. 6 | Iss. 5 | e13573
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Table 3. Central hemodynamics after 4, 11, and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO

N. J. Aachmann-Andersen et al.

Day 4

Day 11

Day 25

Systolic blood pressure (mmHg)

Placebo mean 119.3 [114.4-124.2]

Low-dose EPO
High-dose EPO

Diastolic blood pressure (mmHg)
Placebo mean 71.1 [69.2-73.1]
Low-dose EPO'3
High-dose EPO

Mean arterial pressure (mmHg)
Placebo mean 88.0 [85.8-90.3]
Low-dose EPQ’
High-dose EPO

Heart rate (beats/min)
Placebo mean 57.6 [54.2-61.0]
Low-dose EPO>
High-dose EPO'3

Cardiac output (L/min)
Placebo mean 5.2 [4.6-5.9]
Low-dose EPO?
High-dose EPO'-3

Total peripheral resistance (dyn s/cm®)
Placebo mean 1438 [1250-1625]

Low-dose EPO?
High-dose EPO'3
NOXx (umol/L)
Placebo mean 28.1 [22.2-34.1]
Low-dose EPO
High-dose EPO?

115.9 [108.5-123.2]
118.8 [111.4-126.1]
121.6 [113.9-129.2]

72.2 [69.2-75.2]
72.7 [69.3-76.1]
70.6 [67.7-73.4]

88.0 [84.2-91.8]
88.6 [84.7-92.5]
89.0 [85.7-92.3]

58.2 [54.1-62.3]
58.2 [53.3-63.1]
57.7 [52.8-62.6]

4.9 [4.1-5.6]
5.0 [4.3-5.7]
6.0 [5.1-6.9]*

1556 [1263-1849]
1532 [1284-1781]
1266 [1084-1448]*

26.4 [18.6-34.1]
28.2 [20.8-35.6]
28.7 [21.1-36.4]

118.9 [109.9-127.9]
121.1 [111.4-130.9]
115.3 [108.6-122.0]

71.6 [66.5-76.7]
77.6 [73.2-82.1]**
72.6 [69.0-76.2]

88.4 [83.0-93.7]
94.3 [89.1-99.4]**
88.5 [84.4-92.6]*

54.6 [48.9-60.5]
56.2 [51.5-60.9]
53.2 [49.1-57.4]*

5.2 [4.1-6.4]
4.4 (3.4-5.4]
4.7 [4.1-5.3]

1475 [1067-1884]
1711 [1386-2035]*
1570 [1373-1767]

30.6 [22.9-38.3]
28.4 [23.3-33.4]
29.5[23.3-35.8]

125.3 [116.8-133.8]
121.7 [115.1-128.3]
120.2 [115.6-124.8]

69.8 [67.6-72.0]
73.6 [71.7-75.6]
69.8 [66.9-72.6]

88.4 [84.8-91.9]
90.5 [88.0-92.9]
87.6 [84.3-90.9]

55.5 [52.3-58.7]
59.1 [54.4-63.9]
57.0 [52.5-61.5]

5.5 [4.7-6.4]
5.2 [4.7-5.7]
5.7 [5.2-6.2]

1312 [1126-1497]
1445 [1266-1624]
1249 [1139-1359]

27.5[22.1-32.9]
26.1[22.4-29.7]
22.1[19.0-25.1]

N = 16. Values are means [95% Cl]. rhEPO, recombinant human erythropoietin.

*P < 0.05; **P < 0.01 compared with placebo.
1.23Djfference between day 4-11, 4-25, and 11-25, respectively.
“Difference between high- and low-dose rhEPO.

25 (Table 3). Ionized calcium remained unchanged com-
pared with placebo (Table 4).

Changes in glycocalyx and peripheral arterial tonometry
(PAT) was used as an indicator of endothelial dysfunc-
tion. High-dose rhEPO decreased at all days syndecan-1
and histone complexed DNA fragments, whereas trombo-
modulin decreased at days 11 and 25 with low-dose
rhEPO (Table 2). D-dimer and International Normalized
Ratio (INR) remained unchanged on all days. Hap-
toglobin, activated partial tromboplastin time and coagu-
lation factor II, VII, and X decreased on all days with
high-dose rthEPO at day 4 (Table 4) along with an
unchanged reactive hyperemia index (RHI). rhEPO
increased thrombocytes on day 11 (Table 2).

rhEPO decreases renal perfusion and GFR

The GFR and renal plasma flow (RPF) were measured by
classic clearance techniques with timed urine collections

2018 | Vol. 6 | Iss. 5 | 13573
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and the use of continous infusion of ideal markers (**™Tc-
DTPA for GFR and "*'I-hippurate for RPF). Furthermore,
GFR was assessed by calculation of creatinine clearance
(GFRcrea) for the same urine collection periods as for
GFRtc.99 m-prpa> and by calculation of creatinine clearance
for each 24-h urine collection (GFR e, 24.1) preceeding the
renal clearance studies. GFRyc.99m-pTPAs GFRCreas and
GFRjeq 24.n decreased for both interventions at days 4 and
11 but only significantly for high-dose rhEPO at day 4
measured by GFRreanqn; thereafter values gradually
returned to placebo values at day 25 (Fig. 3, Table 5). To
measure the overall rhEPO induced vasoconstrictive effect
in the kidneys renal vein catheterization and infusion of I-
131-hippurate were used to determine the renal plasma
flow (RPF) (Hutchings et al. 2002). RPF decreased
throughout the study period for both interventions return-
ing to placebo values on day 25 (Fig. 4, Table 6). The
changes in GFR and RPF resulted in an increase in filtra-
tion fraction for both interventions on all days.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.
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Table 4. Hematological factors after 4, 11 and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO

Day 4

Day 11 Day 25

Thrombocytes (x 107/L)
Placebo mean 206.2 [190.6-221.9]
Low-dose EPO"3
High-dose EPQ-3

lonized calcium (mmol/L) N = 7
Placebo mean 1.22 [1.20-1.24]
Low-dose EPO"?3
High-dose EPO'

Haptoglobin (g/L)
Placebo mean 0.87 [0.71-1.02]
Low-dose EPO
High-dose EPO

D-dimer (mg FEU/L)
Placebo mean 0.34 [0.30-0.37]
Low-dose EPO?>
High-dose EPO

Activated partial thromboplastin time (sek) N = 7
Placebo mean 29.5 [27.8-31.3]
Low-dose EPO
High-dose EPO®

International normalized ratio
Placebo mean 1.13 [1.08-1.19]
Low-dose EPQ'
High-dose EPO

Coagulation factor II, VII, and X (unit/L)
Placebo mean 0.68 [0.62—0.75]
Low-dose EPO

203.6 [180.3-226.9]
200.4 [187.3-213.4]
212.4 [184.4-240.3]

1.22 [1.19-1.26]
1.24 [1.22-1.26]
1.22 [1.20-1.24]

0.91 [0.72-1.10]
0.78 [0.60-0.95]
0.72 [0.53-0.91]

0.36 [0.27-0.45]
0.39[0.29-0.49]
0.35[0.29-0.41]

29.4[27.7-31.2]
28.9 [27.4-30.3]
28.8 [28.2-29.4]

1.14 [1.07-1.22]
1.14 [1.09-1.19]
1.18 [1.08-1.29]

0.65 [0.58-0.72]
0.67 [0.60-0.74]*

205.1 [186.8-223.3]
233.1 [214.4-251.9]**
248.9 [219.7-278.0]**

213.2 [198.1-228.3]
201.5 [178.5-224.5]*
211.1 [192.9-229.2]

High-dose EPO?

0.61 [0.50-0.72]*

1.22 [1.21-1.23] 1.22 [1.20-1.25]
1.20 [1.17-1.23] 1.22 [1.19-1.25]
1.19 [1.18-1.21] 1.21 [1.19-1.24]
0.90 [0.69-1.11] 0.86 [0.65-1.07]

0.65 [0.51-0.79]*
0.73 [0.46-0.99]*

0.73 [0.56-0.89]*
0.74 [0.52-0.96]

0.32 [0.29-0.35] 0.36 [0.28-0.43]
0.43 [0.33-0.53] 0.55[0.28-0.81]**
0.33 [0.28-0.39] 0.41 [0.30-0.52]*
29.7 [27.5-32.0] 29.5[27.2-31.8]
28.3 [27.5-29.2] 29.2 [28.2-30.2]
28.0 [27.3-28.7] 29.0 [27.7-30.3]
1.11 [1.08-1.15] 1.14 [1.07-1.22]
1.20 [1.15-1.25]* 1.16 [1.08-1.23]
1.16 [1.08-1.23] 1.14 [1.05-1.23]
0.71 [0.66-0.76] 0.69 [0.60-0.77]
0.62 [0.55-0.69] 0.66 [0.57-0.75]
0.64 [0.57-0.72] 0.68 [0.59-0.77]

N = 16. Values are means [95% Cl]. rhEPO, recombinant human erythropoietin.

*P < 0.05; **P < 0.01 compared with placebo.
1.23Djfference between day 4-11, 4-25, and 11-25, respectively.
“Difference between high- and low-dose rhEPO.

rhEPO uncouples proximal tubular function
and the renin-angiotensin-aldosterone
system from renal hemodynamics

Lithium clearance was used as an index of proximal tubu-
lar fluid outflow (Thomsen 1984) simultaneously with the
measurements of GFR and RPF. Lithium clearance
remained unchanged on day 4 and 11 but increased non-
significantly on day 25. These changes in GFR and Cy;
resulted in a nonsignificant decrease in absolute proximal
reabsorption of sodium and water (Fig. 5). Sodium excre-
tion decreased throughout the study period for both
high- and low-dose rhEPO.

Plasma levels of renin, angiotensin-II (ANG-II), and
aldosterone decreased promptly after administration of
both doses of rhEPO and before rthEPO had induced
any changes in hematocrit and hemoglobin (Table 2).
Plasma renin concentration was decreased throughout

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.

the study to nadir level at high dose on day 4 and low
dose at day 11. ANG-II increased with high-dose rhEPO
at day 4 but thereafter decreased throughout the study.
ANG-II decreased nonsignificantly with low-dose rhEPO
at day 4 and 11 and returned to baseline values on day
25 (Fig. 6, Table 7). Aldosterone decreased nonsignifi-
cantly on day 4 and returned to baseline values after
rhEPO treatment ended on day 25 with a slight over-
shoot.

Changes in hormones were accompanied by a non-
significant decrease in plasma volume with nadir values
for both interventions on day 4 (Table 2). Blood volume
remained unchanged with a slight decrease on day 4. Red
cell volume increased with maximum values on day 11.
When rhEPO treatment ended, plasma volume, red cell
volume, hematocrit and hemoglobin returned to baseline
values. Colloid osmotic pressure remained unchanged at
all days (Table 2).

2018 | Vol. 6 | Iss. 5 | e13573
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Figure 3. Glomerular filtration rate (relative change compared to baseline) after 4, 11, and 25 days of either placebo, low-dose rhEPO, or
high-dose rhEPO. N = 16. Values are means. *P < 0.05 compared with placebo. GFRtc.99 m-prea (Tc-99 m-diethylenetriamine pentaacetate,
DTPA, infusion method); GFRces (Creatinine clearance during test day); GFR¢ea24.n (Creatinine clearance 24-h urine collection). Absolute values

are found in Table 5.

Discussion

This prospective, double-blinded cross-over study demon-
strates for the first time a link between EPO and renal
function in humans. Recently, we confirmed that rhEPO
in normal subjects produces arterial hypertension (Ras-
mussen et al. 2012) and a reduction in plasma volume
(Lundby et al. 2007; Olsen et al. 2011). The mechanism
by which rhEPO raises blood pressure is yet to be fully
understood, but may include inhibition of eNOS medi-
ated NO synthesis (Wang and Vaziri 1999; Scalera et al.
2005), increased release of endothelin (Bode-Boger et al.
1996) and degradation of endothelial function. Changes
in the plasma volume is controlled via feed-back mecha-
nisms in the kidneys (Dunn and Donnelly 2007). Several
studies have shown that administration of ANG-II in
humans stimulates EPO synthesis and conversely inhibi-
tors of ACE and ANG-II receptors decrease plasma con-
centration of endogenous EPO (Pratt etal. 1992;
Gossmann et al. 2000). Our previous studies have shown
that rhEPO suppress ANG-II — in all this could indicate a
negative feedback between these 2 hormones.

rhEPO decreased RPF and GFR nonsignificant in a
dose-dependent manner together with an increase in renal
vascular resistance. The observed changes in renal hemo-
dynamics resulted in increasing filtration fraction (GFR/
RPF) at all days for both interventions, with highest val-
ues at day 4.

The clearance measurements revealed a decrease in
proximal tubular reabsorption of sodium and a fall in
GFR, after thEPO administration. The combination of
decreased GFR and unchanged Cp; results in a decreased
fractional proximal reabsorption (1-[Cy;/GFR]) and abso-
lute proximal tubular reabsorption of sodium (GFR-Cy;).
This suggests that rhEPO reduces the reabsorption of

2018 | Vol. 6 | Iss. 5 | 13573
Page 10

tubular fluid in the proximal tubules thereby enhancing
delivery of sodium, chloride, and water to the macula
densa. An increased delivery of tubular fluid to the mac-
ula densa due to changes in proximal sodium reabsorp-
tion results in inverse changes in renin release (Briggs
et al. 1990). Thus, the downregulation of renin, ANG-II,
and aldosterone may be secondary to a direct effect of
rhEPO on the proximal tubules. The decrease in GFR
may be a consequence of decreased proximal tubular
reabsorption, which activates the tubulo-glomerular feed-
back mechanism (Holstein-Rathlou 1991) and triggers
afferent vasoconstriction. However, a reduction in abso-
lute proximal reabsorption should result in increased
sodium urine excretion but opposite changes were mea-
sured. Therefore, compensatory sodium reabsorption in
more distal part of the tubules, which is primarily load-
dependent (Subramanya and Ellison 2014), may be
involved to compensate for the reduced sodium reabsorp-
tion in the proximal tubules.

Tubular reabsorption of sodium is the main oxygen
consuming process in the kidney and around 70% of the
filtered load is reabsorbed in the proximal tubule. By
inhibiting proximal tubular reabsorption, which in turn
results in rapid declines in GFR, rhEPO may directly
reduce the major oxygen consuming factor in the kidney.
By inhibiting sodium reabsorption tubular oxygen con-
sumption is reduced and endogenous EPO production
decreases due to a higher local oxygen tension. Our stud-
ies support these findings and we suggest that the renal
effects of thEPO may be part of a feedback system that
serves to downregulate the endogenous renal synthesis of
EPO in the presence of high levels of circulating EPO. In
support of such a feedback system, evidence exists to
indicate that prolonged administration of rhEPO results
in suppression of urinary excretion of endogenous EPO

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.
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Table 5. Renal clearance measurements after 4, 11, and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO

Day 4

Day 11

Day 25

GFRT(.99 m-DTPA (mL min 1.73 mz)
Placebo mean
105.8 [100.4-111.3]
Low-dose EPO
High-dose EPO
GFRcreatinin clearance (ml- min 1.73 mZ)
Placebo mean 135.6 [124.7-146.6]
Low-dose EPO 128.5 [116.3-140.6]
High-dose EPO 131.6 [127.4-135.9]
Creatinine clearance during 24-h urine collection (mL min 1.73 m?)
Placebo mean 137.0 [123.0-150.9] 135.3 [121.2-149.5]
Low-dose EPO 125.9 [116.6-135.3]
High-dose EPO%? 121.7 [110.0-133.4]*
Lithium clearance (mL min 1.73 m?)

103.8 [97.7-109.8]

104.3 [98.4-110.2]
104.1 [98.7-109.4]

137.1 [126.6-147.7]

Placebo mean 23.3 [20.5-26.1] 23.0 [19.9-26.0]
Low-dose EPO 23.5 [20.4-26.6]
High-dose EPO 21.6 [19.4-23.7]

Absolute proximal reabsorption (mL min 1.73 m?) GFRrc.00 m-otpa — Cui

Placebo mean 82.2 [77.9-86.5] 81.7 [76.7-86.7]
Low-dose EPO 81.2 [76.9-85.4]
High-dose EPO? 82.9 [78.2-87.6]

Absolute proximal reabsorption (mL min 1.73 m?) GFRreatinin clearance — CLi
Placebo mean 111.7 [102.6-120.9] 114.7 [105.2-124.3]
Low-dose EPO 105.0 [93.4-116.6]
High-dose EPO 110.4 [105.6-115.3]

Sodium clearance (mL min 1.73 m?)
Placebo mean 0.6127 [0.4768-0.7486]
Low-dose EPO 0.6164 [0.4518-0.7810]
High-dose EPO 0.6000 [0.3970-0.8031]

Absolute distal reabsorption of sodium (mmol min 1.73 m?)

0.6023 [0.4482-0.7564]

Placebo mean 3.01 [2.60-3.43]
3.04 [2.66-3.42]

Low-dose EPO 3.15 [2.71-3.60]

High-dose EPO 2.79 [2.51-3.07]

Fractional distal reabsorption of sodium
Placebo mean 0.973 [0.967-0.979]
Low-dose EPO 0.971 [0.963-0.979]
High-dose EPO 0.973 [0.965-0.982]

Absolute distal reabsorption of water (mL min 1.73 m?)

0.972 [0.966-0.978]

Placebo mean 11.5 [9.8-13.3] 11.5[9.3-13.6]
Low-dose EPO? 12.9 [10.3-15.4]
High-dose EPO%? 11.1 [9.1-13.1]

Fractional proximal reabsorption
Placebo mean 0.777 [0.759-0.796]
Low-dose EPO
High-dose EPO

Fractional excretion of sodium
Placebo mean 0.0057 [0.0044-0.0071]
Low-dose EPO?

High-dose EPO

Fractional excretion of water
Placebo mean 0.1092 [0.1032-0.1152]
Low-dose EPO>
High-dose EPO

0.788[0.764-0.812]
0.784 [0.765-0.802]
0.789 [0.769-0.809]

0.0060 [0.0042-0.0077]
0.0071 [0.0050-0.0092]
0.0042 [0.0029-0.0055]*

0.1057 [0.0971-0.1143]
0.1054 [0.0993-0.1115]
0.1051 [0.0947-1154]

108.7 [102.1-115.4]

103.7 [97.7-109.8]
100.9 [92.8-109.0]

130.6 [117.0-144.4]
129.3 [116.0-142.5]
126.4 [112.8-139.9]

136.5 [118.8-154.1]
127.1 [116.6-137.6]
130.2 [116.6-143.7]

24.3[20.5-28.1]
23.1 [20.5-25.7]
22.5[17.8-27.1]

83.1 [78.5-87.6]
80.1 [75.4-84.8]
78.2 [73.4-83.0]

106.4 [95.8-117.0]
106.2 [94.2-118.1]
103.9 [94.2-113.6]

0.6805 [0.4635-0.8986]
0.6431 [0.4996-0.7865]
0.6203 [0.3685-0.8720]

3.16 [2.64-3.67]

2.98 [2.64-3.33]
3.03 [2.41-3.65]

0.971 [0.963-0.980]
0.974 [0.968-0.979]
0.974 [0.965-0.983]

11.9 [9.4-14.5]
11.6 [9.9-13.3]
11.6 [8.5-14.6]

0.766 [0.741-790]
0.773 [0.752-0.794]
0.781 [0.752-0.809]

0.0063 [0.0041-0.0086]
0.0064 [0.0050-0.0080]
0.0059 [0.0035-0.0082]

0.1126 [0.1041-0.1211]
0.1072 [0.0970-0.1173]
0.1030 [0.0913-1148]

106.1 [99.6-112.6]

105.2 [99.2-111.2]
101.0 [95.8-106.0]

139.1 [126.1-152.1]
136.7 [126.5-146.9]
138.0 [123.0-153.0]

139.4 [122.2-156.6]
131.4 [119.4-143.4]
144.3 [126.9-161.6]

23.8 [21.2-26.5]
24.1 [20.7-27.5]
25.3[19.9-30.7]

82.0 [75.6-88.5]
80.7 [75.4-86.0]
76.6 [70.7-82.4]

114.2 [101.6-126.9]
112.0 [102.2-121.8]
112.7 [99.0-126.4]

0.5013 [0.3687-0.6340]
0.5041 [0.3771-0.6312]
0.4788 [0.3124-0.6453]

3.12 [2.76-3.48]

3.11 [2.67-3.56]
3.29 [2.70-3.88]

0.980 [0.974-985]
0.978 [0.972-0.984]
0.980 [0.974-0.985]

11.8[10.2-13.3]
13.6 [11.0-16.1]
14.5[10.3-18.7]

0.772 [0.748-0.797]
0.772 [0.747-0.797]
0.774 [0.738-0.809]

0.0048 [0.0035-0.0061]
0.0048 [0.0037-0.0060]
0.0042 [0.0030-0.0055]

0.1096 [0.1009-0.1183]
0.0998 [0.0917-0.1080]
0.1011 [0.0920-0.1101]

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.
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Day 4

Day 11 Day 25

Fractional excretion of lithium
Placebo mean 0.2226 [0.2040-0.2412]
Low-dose EPO
High-dose EPO?
Sodium excretion during test day (mmol day 1.73 m?)
Placebo mean 118.1 [91.9-144 3] 116.7 [86.7-146.7]
Low-dose EPO 118.4 [86.6-150.3]
High-dose EPO 86.1[61.4-110.8]
Filtration rate of sodium (mmol min)
Placebo mean 14.17 [13.38-14.96]
Low-dose EPO
High-dose EPO
Urine flow rate during water diurese (mL min)
Placebo mean 11.2 [10.1-12.3]
Low-dose EPO 10.6 [9.6-11.6]
High-dose EPO 10.4 [9.3-11.5]
Urine flow rate during 24-h urine collection (mL min)
Placebo mean 1.56 [1.30-1.82] 1.62 [1.25-1.98]
Low-dose EPO 1.45 [1.15-1.76]
High-dose EPO 1.49 [1.29-1.70]
Creatinine excretion during 24-h urine collection (mmol day 1.73 m?)
Placebo mean 15.39 [14.00-16.80]
Low-dose EPO
High-dose EPO?>
Sodium excretion during 24-h urine collection (mmol day 1.73 m?)
Placebo mean 171.7 [145.2-198.3]
Low-dose EPO
High-dose EPO
Tubular secretion of creatinine (mL min 1.73 m?)
Placebo mean 28.1 [18.8-37.3]
Low-dose EPO
High-dose EPO"?

11.0 [9.8-12.2]

28.0 [12.5-43.4]
21.1[10.6-31.6]
12.6 [2.2-22.9]*

0.2120 [0.1878-0.2364]
0.2164 [0.1981-0.2348]
0.2110 [0.1908-0.2311]

13.92 [13.05-14.79]
14.33 [13.16-15.49]
14.25 [13.22-15.28]

15.68 [13.88-17.49]
14.90 [14.00-15.81]
14.01 [12.92-15.10]

182.1 [140.6-223.6]
150.2 [124.2-176.2]
126.5 [95.3-157.8]*

0.2343 [0.2099-0.2587]
0.2268 [0.2057-0.2480]
0.2192 [0.1906-0.2478]

0.2279 [0.2033-0.2525]
0.2281 [0.2230-0.2533]
0.2358 [0.1970-0.2748]

131.0 [88.9-173.1]
122.9 [95.4-150.5]
96.7 [55.0-138.3]

96.2 [70.7-121.7]
96.3 [71.9-120.7]
81.4 [55.8-107.1]

14.58 [13.61-15.54]
13.77 [12.91-14.63]
13.77 [12.85-14.69]

14.17 [13.24-15.10]
13.98 [13.13-14.96]
13.61 [13.09-14.12]

11.5[10.1-12.9] 11.2 [10.1-12.3]
11.5[10.0-13.1] 10.5 [9.4-11.6]
11.0 [9.3-12.7] 11.0 [9.7-12.4]
1.57 [1.25-1.89] 1.50 [1.21-1.80]
1.56 [1.24-1.89] 1.47 [1.20-1.74]
1.56 [1.29-1.82] 1.65 [1.25-2.06]
15.20 [13.84-16.56] 15.40 [17.17]

15.31 [14.28-16.35]
14.28 [13.22-15.34]

15.34 [13.94-16.74]
16.04 [14.09-17.98]

163.7 [131.8-195.6]
132.9 [111.9-153.9]*
142.4 [110.4-174.4]

159.5 [104.9-214.1]
116.8 [90.2-143.4]**
138.9 [109.5-168.4]

27.3[16.7-37.9] 28.9 [16.4-41.4]
22.9 [15.9-30.0] 29.1 [20.0-38.1]
29.9 [18.7-41.0] 40.3 [17.9-62.6]

N = 16. Values are means [95% Cl]. rhEPO, recombinant human erythropoietin.

*P < 0.05; **P < 0.01 compared with placebo.

1.2.3Djfference between day 4 and 11, 4, and 25, and 11 and 25, respectively.

“Difference between high- and low-dose rhEPO.

(Lasne and de Ceaurriz 2000; Lasne et al. 2002). However,
it is known that renal vasoconstriction as a result of Ca**
influx causes a fall in renin secretion (Carlstrom et al.
2015). Together with the observed general vasoconstric-
tion following rhEPO administration, we speculate that
rhEPO could, in addition to the effect on the proximal
tubule, also act directly on the juxtaglomerular cells, caus-
ing an increase in intracellular Ca*" independent of the
effect mediated via the tubule-glomerular response. Also,
the early rhEPO-induced reduction in RAAS occurred
before changes in plasma and blood volumes, indicating a
direct effect of rhEPO on the proximal tubules and/or
renin-producing cells in the macula densa.

In support of a direct effect of thEPO on the proxi-
mal tubules Eckardt et al. (1989) showed that blocking
sodium reabsorption in the collecting duct, distal tubule,

2018 | Vol. 6 | Iss. 5 | 13573
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and thick ascending limb of the loop of Henle with
amilorid, hydrochlorothiazide, and furosemide, respec-
tively, did not change EPO production. But blocking
sodium reabsorption in the proximal tubules with azeta-
zolamide, however, led to a dose-dependent decrease in
EPO synthesis that was correlated with the increased
natriuresis (Eckardt et al. 1989). This strongly indicates
that the synthesis of EPO is linked to proximal tubular
sodium reabsorption. These results suggest a link
between rhEPO and renal tubular function. The under-
standing of rhEPO mechanisms of action on proximal
tubular reabsorption is yet to be discovered, but may
involve increased levels of endothelin-1 (Bode-Boger
et al. 1996), which in low doses is known to attenuate
sodium reabsorption in the proximal tubule (Clavell
et al. 1995).

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.
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Figure 4. Renal plasma flow (mL/min 1.73 m?) after 4 and 25 days
of either placebo, low-dose rhEPO, or high-dose rhEPO. N = 16.
Values are means [95% Cl]. *P < 0.05; **P < 0.01 compared with
placebo. Renal vein catherization and I-131-hippurate infusion
technique. Absolute values are found in Table 6.

Normally a decrease in plasma volume/hypovolemia
increases proximal tubular sodium reabsorption in order
to compensate the lost volume. Changes in proximal
reabsorption activates the tubuloglomerular feedback

Effect of Recombinant Erythropoietin on RAAS

mechanism (TGF) which results in GFR changes.
Decreased NaCl load at the macula densa normally leads
to higher levels of renin, ANG-II, and aldosterone. Its
seems though that rhEPO induces a reduction in plasma
volume and causes a hyporeninemic and hypoaldostero-
nism state paradoxically leading to a decrease in sodium
excretion. We speculate that tThEPO may cause a down-
regulation of plasma volume and renal EPO isoform dis-
tribution (Aachmann-Andersen et al. 2014) secondary to
an inhibition of sodium reabsorption in the proximal
tubules. The inhibition of renin must be a direct antago-
nistic effect of rhEPO as a reduction in plasma volume
would tend to stimulate secretion. Yet rthEPO causes a
reduction in proximal tubular reabsorption of sodium
and seems to trigger the TGF and downregulate the
RAAS. These opposing changes with decoupling of RAAS
together with changes in the renal and systemic hemody-
namics is not detected previously in humans.

We also found changes in biomarkers reflecting vascu-
lar endothelial glycocalyx damage. Endothelial glycocalyx
is a complex carbohydrate-rich layer of negatively charged
anticoagulant membrane-bound proteoglycans and glyco-
proteins covering the lumen of the vascular endothelium.
Its main function is to protect and maintain the vascular
barrier function and its integrity is important for vascular

Table 6. Renal hemodynamics after 4 and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO

Day 4 Day 25

Renal plasma flow (mL min 1.73 m)
Placebo mean 707.0 [627.0-787.1]
Low-dose EPO
High-dose EPO'

Renal blood flow (mL min 1.73 m)
Placebo mean 1227.3 [1068.4-1386.2]
Low-dose EPO
High-dose EPQ'

Filtration fraction
Placebo mean 0.148 [0.131-0.167]
Low-dose EPO
High-dose EPO

Renal vascular resistance (dyn s/cm®)
Placebo mean 5116 [4336-5897]
Low-dose EPO
High-dose EPO

Renal fraction of cardiac output
Placebo mean 26.5 [24.8-30.6]
Low-dose EPO
High-dose EPO

695.0 [620.0-770.0]
670.8 [576.0-765.6]
584.7 [505.2-664.2]**

1215.2 [1066.6-1363.8]
1170.8 [999.3-1342.2]
997.1 [850.8-1143.4]*

0.149 [0.131-0.167]
0.163 [0.150-0.175]
0.161 [0.144-0.179]*

668.0 [550.6-785.3]
664.4 [580.8-748.1]
692.4 [532.1-852.8]

1126.5 [904.4-1348.7]
1179.3 [1031.2-1327.3]
1204.5 [918.3-1490.7]

0.157 [0.135-0.180]
0.160 [0.145-0.174]
0.159 [0.131-0.188]

5093 [4335-5858]
5328 [4579-6077]
5935 [5217-6017]*

28.8 [23.3-34.3]
28.0 [25.8-30.3]
22.1[16.3-27.9]*2

5669 [4173-7165]
5508 [4595-6422]
5476 [3330-7623]

22.7 [16.8-28.7]
28.0 [23.8-32.3]
24.6 [18.0-31.2]

N = 16. Values are means [95% Cl]. rhEPO, recombinant human erythropoietin.

*P < 0.05; **P < 0.01 compared with placebo.
'Difference between day 4 and 25.
“Difference between high- and low-dose rhEPO.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on
The Physiological Society and the American Physiological Society.
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Figure 5. Absolute proximal reabsorption (relative change compared to baseline) after 4, 11, and 25 days of either placebo, low-dose rhEPO,
or high-dose rhEPO. N = 16. Values are means. *P < 0.05; **P < 0.01 compared with placebo. APR = GFR — C; Absolute values are found in

Table 5.
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Figure 6. Renin-Angiotensin-Il-Aldosterone (relative change compared to baseline) after 4, 11, and 25 days of either placebo, low-dose rhEPO,
or high-dose rhEPO. N = 16. Values are means [95% Cl]. *P < 0.05; **P < 0.01 compared with placebo. Absolute values are found in Table 7.

permeability (Reitsma et al. 2007). Degradation of
endothelial glycocalyx has been demonstrated during glo-
bal ischemia (Rehm et al. 2007) and early trauma-

induced coagulopathy resulting in increased values of syn-

decan-1  (Johansson et al. 2012), trombomodulin
(Ostrowski and Johansson 2012) and APTT causing
hypocoagulopathy.

Syndecan-1 has also been linked to cancer where it is
used as an independent prognostic factor and seems to
have a protumorigenic role (Gharbaran 2014). A damaged
endothelial barrier changes the balance between intra- and
extravascular volume, and increased permeability results in
local edema, endothelial cell swelling, and necrosis (Johans-
son et al. 2011). These changes showing evidence that
rhEPO results in impaired endothelial function, increased

2018 | Vol. 6 | Iss. 5 | 13573
Page 14

total peripheral and renal vascular resistance together with
a systemic procoagulant state. EPO has been linked to
hypertension, sudden death after stroke, myocardial infarc-
tion, and pulmonary embolism in elite athletes (Pope et al.
2014) which these findings support.

This study indicates that rhEPO increases arterial blood
pressure and changes renal hemodynamics in a dose-
dependent manner resulting in decreased renal perfusion
and GFR that was associated with an increase in total
peripheral and renal vascular resistance.

Overall thEPO causes hypertension and decreases RPF.
There are two options that should be mentioned and they
probably work together. First, the decline in RPF may be
secondary to acute increase in renal vascular resistance
and later general vasoconstriction. Second, the decrease in

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society.
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Table 7. Renin, Angiotensin-Il, and aldosterone after 4, 11, and 25 days of either placebo, low-dose rhEPO, or high-dose rhEPO

Day 4 Day 11 Day 25
Renin (pg/mL)
Placebo mean 16.4 [6.4-26.5] 17.7 [4.7-30.7] 21.9 [2.9-40.8] 14.6 [4.3-24.8]
Low-dose EPO 13.4 [6.5-20.2]* 13.5[3.8-23.2]** 14.5 [3.7-25.3]*
High-dose EPO 14.5 [2.6-26.5]* 13.8 [3.7-23.8] 12.9 [2.6-23.2]
Angiotensin Il (pg/mL)
Placebo mean 2.9 [2.3-3.5] 3.2 [1.7-4.7] 2.9 [2.3-3.4] 2.7 [2.4-3.1]
Low-dose EPO 2.7 [1.9-3.4] 2.7 [2.2-3.1] 2.9[2.5-3.3]
High-dose EPO"? 3.5[2.9-4.1] 2.6[1.7-3.6] 2.6[2.0-32]
Aldosterone (pg/mL)
Placebo mean 59.2 [0-138.0] 67.2 [0-178.3] 65.5 [0-173.7] 31.9 [0-50.6]
Low-dose EPO 49.6 [0-132.4] 49.8 [0-103.2] 50.3 [11.5-89.0]
High-dose EPO 40.5 [0-81.2] 80.0 [234.9] 56.2 [0-118.4]

N = 7. Values are means [95% Cl]. Statistics calculated on relative changes within each subject. rhEPO, recombinant human erythropoietin.
*P < 0.05; **P < 0.01 compared with placebo.
2Difference between day 4 and 11, 4 and 25, and 11 and 25, respectively.
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Figure 7. Suggestion on the mechanism involved in the changes in renal hemodynamics (yellow boxes) and systemic hemodynamics
(red boxes).

RPF may be due to the decrease in proximal tubular
reabsorption and fall in renin and ANG-II concentration.
It is noteworthy that the general vasoconstriction occurs

despite the decline in RAAS. Normally a decrease in
RAAS would result in vasodilation and decrease in blood
pressure (Ma et al. 2010) and several studies have

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of
The Physiological Society and the American Physiological Society.

2018 | Vol. 6 | Iss. 5 | e13573
Page 15



Effect of Recombinant Erythropoietin on RAAS

reported that ACE inhibitors increase eNOS activity
(Wassmann et al. 2002; Imanishi et al. 2008).

Our results suggest that rhEPO may activate a pathway
to downregulate the activity of the RAAS independent of
changes in red blood cell mass, blood volumes and blood
pressure, and to have a direct effect on renal hemody-
namics (Fig. 7). These results demonstrate for the first
time in humans a direct effect of thEPO on renal hemo-
dynamics and a decoupling of the renin-angiotensin-
aldosterone system.
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