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Highlights:

� Decreased Tregs contribute to HFD-induced hepatic stea-
tosis and insulin resistance.

� Notch1 deficiency in hepatic macrophages reduces lipid
accumulation and restores Tregs.

� Notch1-regulated Exos-miR-142a-3p from macrophages
hinders Treg production in hepatic steatosis.

Impact and implications:

The immune mechanisms driving MASLD progression, partic-
ularly during the early stages of disease, are not fully under-
stood, which limits the development of effective interventions.
This study elucidated a novel mechanism by which hepatic
macrophage Notch1 signaling modulated Tregs through the
exosomal miR-142a-3p/TGFBR1 axis, contributing to the pro-
gression of MASLD. These findings provide a rationale for a
potential immunological approach to treat MASLD in the future.
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Macrophage Notch1 signaling modulates regulatory T cells
via the TGFB axis in early MASLD

Mengya Zhang1,†, Kun Li2,†, Xiaoxing Huang4, Dongqin Xu1, Ruobin Zong3, Qintong Hu1, Xiaoyu Dong1, Qinyong Zhang1, Chaochen Jiang1,
Yue Ge1, Changyong Li3,*, Jie Ping1,*

JHEP Reports 2025. vol. 7 j 1–14
Background & Aims: Hepatic immune imbalance is crucial for driving metabolic dysfunction-associated steatotic liver disease
(MASLD) progression. However, the role of hepatic regulatory T cells (Tregs) in MASLD initiation and the mechanisms responsible
for their change are not completely understood.

Methods: A mouse model subjected to a short-term high-fat diet (HFD) to mimic early steatosis, along with liver biopsy samples
from patients with simple steatosis, and macrophage-specific Notch1-knockout mice (Notch1M-KO), were used to investigate the
role of Tregs in early MASLD and the effect of hepatic macrophage Notch1 signaling on Treg frequency. The miRNAs correlated
with Treg differentiation were analyzed using exosomal miRNA sequencing.

Results: A decrease in Tregs contributed to HFD-induced hepatic steatosis and insulin resistance (five/group/time point, p
<0.001). Remarkably, the frequency of Tregs was negatively correlated with Notch1 activation in hepatic macrophages during
hepatic steatosis (38/group, r = -0.735, p <0.001). Furthermore, Notch1 deficiency attenuated hepatic lipid deposition and
reversed Treg levels (five/group, p <0.01 and <0.05, respectively). Moreover, Treg depletion in Notch1M-KO mice greatly diminished
the ameliorative effect of macrophagic Notch1 deletion on hepatic steatosis. Mechanistically, macrophage Notch1 activation
increased the level of exosomal miR-142a-3p (by one- to two- fold), impairing Treg differentiation by targeting transforming growth
factor beta receptor 1 (TGFBR1) on T cells. Consistently, HFD-fed Notch1M-KO mice exhibited reduced miR-142a-3p levels,
elevated TGFBR1 expression on T cells, and increased Treg frequency in the liver.

Conclusions: These findings highlight the crucial role of hepatic Tregs during the early stage of MASLD and add a novel, non-
negligible pathway for macrophage involvement in hepatic steatosis. We identify a previously unrecognized molecular mecha-
nism involving the macrophage Notch1/exosomal miR-142a-3p/TGFBR1 pathway in regulating Treg differentiation, providing a
rationale for refined therapeutic strategies for MASLD.

© 2024 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Metabolic dysfunction-associated steatotic liver disease
(MASLD), formerly known as nonalcoholic fatty liver disease,
initiating from simple steatosis to steatohepatitis (metabolic
dysfunction-associated steatohepatitis; MASH), ultimately
leading to fibrosis, and hepatocellular carcinoma, has emerged
as the leading cause of gastrointestinal diseases, affecting
�25% of the population worldwide.1 Nevertheless, there are
currently no FDA-approved pharmacological therapies for
MASLD, given that the molecular mechanisms involved have
not been fully elucidated, highlighting the need for deeper in-
sights into the mechanisms underlying MASLD and the iden-
tification of novel therapeutic strategies.

Several hypotheses have been proposed regarding the
pathogenesis of MASLD, from ‘2-hit’ to ‘multi-hit’, which
involve lipotoxicity, oxidative stress, mitochondrial injury,
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immune imbalance, and inflammatory cytokine production.2

Among these factors, immune imbalance is a crucial element
in driving MASLD progression.3 While pronounced inflamma-
tion may only be observed during MASH, profound alterations
of the hepatic immune system occurring even during steatosis,
indicating the involvement of the immune system across the
entire MASLD spectrum.4 Regulatory T cells (Tregs), a distinct
lineage of CD4+ T lymphocytes, have a crucial role in peripheral
immune tolerance, especially in the liver.5 The fine-tuning of
Tregs is thought to contribute to the development of various
liver diseases.6,7 Previous studies found that the frequency of
hepatic Tregs is reduced during MASH,8 but increased during
its premalignant stage.9 These findings suggested the Tregs
undergo dynamic changes during MASLD progression.
Recently, adipose Tregs were shown to directly modulate lipid
metabolism.10 Hepatic steatosis is generally considered to be a
asic Medical Sciences), 185 East Lake Road, Wuhan 430071, China. Tel.: +86
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Immune mechanisms driving early MASLD progression
key initiating event in MASLD;11 however, the role of hepatic
Tregs in hepatic steatosis is not completely clear.

The liver is a vital place for peripherally induced Tregs
because it has unique tolerogenic properties that favor the
differentiation of antigen-specific Tregs.12 The production of
hepatic Tregs depends on multiple cells, including macro-
phages.12 In particular, given the high plasticity of macro-
phages, different macrophage phenotypes exert diverse effects
on Treg differentiation. Under homeostatic conditions, macro-
phages can induce CD4+ T cells to differentiate into Tregs to
maintain hepatic immune tolerance. However, this differentia-
tion is impaired when macrophages display a proinflammatory
phenotype.13 Of note, previous studies demonstrated that he-
patic macrophages preferentially polarize into a proin-
flammatory phenotype and recruit more proinflammatory cells
into the liver during the initiation and development of
MASLD.14,15 Nevertheless, whether and how macrophages
regulate Tregs in initiating MASLD remain elusive.

Exosomes (Exos), which have emerged as crucial mediators
of intercellular communication, carry and deliver miRNAs,
proteins, and metabolites from host cells to recipient cells.16

Their contents are tightly regulated by physiological and
pathological stimuli and highly dependent on the cell type.17

Remarkably, Notch1 signaling has been reported to regulate
miRNA expression and Exo release.18,19 In addition, emerging
reports indicate that Notch signaling has a crucial role in both
innate and adaptive immunity,20,21 and the Notch1 activation-
mediated proinflammatory transforming effect of macro-
phages is involved in multiple chronic inflammatory dis-
eases.22,23 Thus, Notch1 signaling could be a potential
modulating machinery for the crosstalk between macrophages
and Tregs.

In the present study, we revealed the crucial role of hepatic
Tregs and their correlation with Notch1 activation in hepatic
macrophages during the early stages of MASLD. Using
macrophage-specific Notch1-knockout (Notch1M-KO) mice, we
identified that macrophage-derived Exo-miR-142a-3p regu-
lated by Notch1 impedes Treg production during hepatic
steatosis. Our findings provide novel molecular insights into
macrophage–Treg interactions, targeting of which might offer a
potential strategy for preventing MASLD.

Materials and methods

Animals

Floxed Notch1 (Notch1FL/FL) mice (Jackson Laboratory, Bar
Harbor, ME, USA) and Lyz2-Cre mice (LysM-Cre; Jackson
Laboratory) were used to generate Notch1M-KO mice. Mouse
genotyping was performed by PCR of the tail DNA (Fig. S1).
Male Notch1FL/FL and Notch1M-KO mice aged 8 weeks were
used in the experiments.

Methodological details are provided in the Supplementary
information online.

Isolation of Exos

Exo purification was achieved through differential ultracentri-
fugation. Briefly, the supernatant was collected after culturing
bone marrow-derived macrophages (BMDMs) in Exo-free me-
dium for 48 h. Exos were isolated via five sequential centrifu-
gation steps at 4 �C: (1) 10 min at 300 × g to remove cells; (2)
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10 min at 2,000 × g to remove cell debris; (3) 30 min at 10,000
× g to break organelles; (4) ultracentrifugation at 100,000 × g for
120 min to pellet exosomes; and (5) washing with a large
amount of ice-cold PBS and ultracentrifuge at 100,000 g for
120 min. Exos were then resuspended in PBS and stored at
−80 �C until use.

miRNA sequencing and data analysis

miRNA sequencing was done on RNA from BMDMs-Exos by
Novogene (Beijing, China). Briefly, 2 lg of total RNA was used
to prepare the miRNA library after checking the RNA quality and
integrity. Then, miRNA sequencing was performed on TruSeq
SR Cluster Kit v3-cBot-HS (Illumina) following the manufac-
turer’s instructions. Differential expression analysis of the 2
groups was performed using the DESeq R package (version
1.24.0; R Foundation for Statistical Computing, Vienna,
Austria). Sequencing data have been deposited in the SRA
database (www.ncbi.nlm.nih.gov/sra) with the following
accession number: PRJNA1046700.

Details of other methods are described in the
Supplementary information online.

Results

Reduction in hepatic Tregs contributes to HFD-induced
hepatic steatosis and insulin resistance

To evaluate the changes in Tregs during the initiation of
MASLD, we analyzed the proportion and number of hepatic
CD4+CD25+Foxp3+ Tregs and the mRNA level of foxp3, a
specific marker of Tregs, in liver tissues from HFD-fed mice at
1, 2, 4, and 6 weeks after the start of HFD feeding. Compared
with the normal chow diet (NCD) group, the decline in hepatic
CD4+CD25+Foxp3+ Tregs was obvious, starting at 1 week and
continuing until 6 weeks of HFD feeding, as determined by flow
cytometry and quantitative reverse transcription (RT-qPCR)
(Fig. 1A–C). As expected, multiple indices of HFD mice,
including body weight, serum lipid levels, and intrahepatic lipid
content, were higher than those of the NCD group (Fig. S2).
Consistent with the murine model, fewer Tregs were observed
in the steatotic human liver compared with the control
group (Fig. 1D).

Next, to further clarify whether hepatic steatosis was directly
correlated with the reduced Treg frequency, we constructed
Treg-depleted mice and Treg-expanded mice by intraperitoneal
injection of anti-CD25 antibodies24 and low-dose IL-2 (ldIL-2),25

respectively. There was a remarkable reduction in hepatic
Tregs after anti-CD25 antibody administration, whereas ldIL-2
administration resulted in a significant increase in hepatic
Tregs (Fig. 1E). After 4 weeks of HFD feeding, Treg-depleted
mice showed higher body weight gain, whereas Treg-
expanded mice showed lower body weight gain, although the
difference was not significant (Fig. 1F). Glucose and insulin
tolerance testing (GTT and ITT, respectively) showed that Treg-
depleted mice had lower glucose tolerance and insulin sensi-
tivity compared with HFD mice, whereas these phenomena
were improved in Treg-expanded mice (Fig. 1G). Consistent
with the systemic insulin resistance (IR), insulin signaling, as
measured by the phosphorylation of Akt at S473 (pAkt), was
impaired in the liver of Treg-depleted mice, but promoted in
Treg-expanded mice (Fig. 1H). In addition, total cholesterol (TC)
025. vol. 7 j 101242 2
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Fig. 1. Frequency of Tregs is associated with HFD-induced hepatic steatosis and insulin resistance. (A) Representative flow plots of the proportion of hepatic
CD25+Foxp3+ Tregs gated on CD3+CD4+ T cells from mice fed a NCD or HFD (—four to five/group). (B) Number of hepatic CD4+CD25+Foxp3+ Tregs of mice fed a NCD
or HFD for 1, 2, 4, and 6 weeks (five/group). (C, D) Foxp3 mRNA expression of liver tissues from (C) the NCD or HFD group (five/group), and (D) patients with or without
hepatic steatosis (six/group). (E) Schematic of the construction of Treg-depleted mice (injected intraperitoneally with anti-CD25 antibodies) and Treg-expand mice
(injected intraperitoneally with ldIL-2): representative dot plots of CD25+Foxp3+ Tregs gated on CD3+CD4+ T cells in the liver and a graph of the proportion of hepatic
CD4+CD25+Foxp3+ Tregs (five/group). Comparison of (F) body weight (five/group), (G) GTT and ITT (five/group), (H) insulin-stimulated Akt and pAkt expression in the
liver (three/group), (I) serum TC and total TG levels (five/group), and liver TC and TG levels (five/group) in Treg-depleted vs. Treg-expanded mice. (J) Representative
images of H&E and Oil red O staining of liver sections (scale bars: 50 lm and 100 lm, respectively). (K) Representative images of Oil red O staining (scale bar: 100 lm)
and TG content of primary hepatocytes co-cultured with Tregs or not (three/group). (L) Immunoblot analysis of insulin-stimulated Akt and pAkt in primary hepatocytes
co-cultured with Tregs or not (three/group). Values represent means ± SD. Statistical analysis was performed by 2-tailed unpaired Student t test (B–D) or one-way
ANOVA and Tukey’s test (F–I,K,L): *p <0.05, **p <0.01, ***p <0.001. Abbreviations: FFA, free fatty acid; GTT, glucose tolerance test; HFD, high-fat diet; ITT, insulin
tolerance test; ldIL-2, low-dose IL-2; NCD, normal chow diet; pAkt, phosphorylated Akt; TC, total cholesterol; TG, triglyceride; Treg, regulatory T cell.
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Fig. 1. (continued).

Immune mechanisms driving early MASLD progression
and triglyceride (TG) levels in the serum and liver were signifi-
cantly decreased in Treg-expanded mice compared with HFD
mice, whereas these indicators displayed the opposite trend in
Treg-depleted mice (Fig. 1I). Accordingly, H&E and Oil red O
staining of liver sections also reflected significant lipid accu-
mulation in Treg-depleted mice, an effect that was markedly
attenuated in Treg-expanded mice (Fig. 1J). These results
suggested that Tregs influence both hepatic lipid homeostasis
and IR.

Tregs are one of the major sources of IL-10 within the liver,26

which is an important protective factor against diet-induced
hepatic steatosis and IR.27 ELISA results showed increased
IL-10 production and reduced levels in Treg-depleted mice
compared with HFD mice (Fig. S3A). Isolation of Tregs
(Fig. S3B) and their co-culture assays with primary hepatocytes
showed that Tregs significantly reduced free fatty acid (FFA)-
induced lipid accumulation (Fig. 1K) and enhanced insulin-
induced pAkt levels in hepatocytes (Fig. 1L). Neutralization of
IL-10 confirmed that the ability of Tregs to ameliorate IR and
JHEP Reports, --- 2
reduce lipid deposition in hepatocytes was IL-10 dependent
(Fig.S3C-F).

Aberrant activation of hepatic macrophage Notch1
signaling occurs in parallel with reduced hepatic Treg
frequency in hepatic steatosis

To address the reduction in hepatic Treg frequency, we inter-
rogated the GEO database (GEO: GSE83452) and noted that the
reduction in Tregs was accompanied by an increase in the
proinflammatory macrophage population in patients with
MASLD (Fig. S4A). Given the important role of Notch1 signaling
in the proinflammatory transformation of macrophages, we
examined the activation levels of Notch1 (Notch1 intracellular
domain; NICD) in hepatic macrophages of patients with simple
steatosis. Immunofluorescence (IF) staining of liver sections from
patients with hepatic steatosis revealed that Notch1 activation
was increased and predominantly located in macrophages
compared with normal samples (Fig. 2A). Subsequently, we
025. vol. 7 j 101242 4
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monitored the level of hepatic macrophage Notch1 activation
during hepatic steatosis in mice by western blot and flow
cytometry. Mice fed a HFD showed a significant and sustained
increase in Notch1 activation in hepatic macrophages from 1 to
6 weeks of a HFD diet, compared to the NCD group (Fig. 2B–D).
Interestingly, the level of macrophage Notch1 activation was
negatively correlated with the frequency of CD4+CD25+Foxp3+

Tregs (Fig. 2E). These results suggested that Notch1 signaling
activation in hepatic macrophages is involved in the reduced
hepatic Treg frequency during the early stage of MASLD.
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Deletion of Notch1 in macrophages ameliorates HFD-
induced hepatic steatosis and insulin resistance

Next, we investigated the role of macrophage Notch1 in hepatic
steatosis by feeding Notch1M-KO mice and Notch1FL/FL mice
with HFD for 6 weeks. Notch1M-KO mice showed significantly
slower body weight gain (Fig. S4C) compared with Notch1FL/FL

mice. In addition, compared with Notch1FL/FL mice fed a HFD,
Notch1 deficiency showed enhanced glucose tolerance and
insulin sensitivity, as determined by GTT and ITT, respectively
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Immune mechanisms driving early MASLD progression
(Fig. 3A,B). In addition, serum TG, TC, and LDL cholesterol
(LDL-C) were largely reduced, and HDL cholesterol (HDL-C)
was slightly increased in Notch1M-KO mice (Fig. 3C). Consistent
with these results, hepatic TG was significantly lower in
Notch1M-KO mice, whereas there were no differences in hepatic
TC (Fig. 3D). Similarly, H&E and Oil Red O staining of liver
sections also confirmed less hepatic steatosis in Notch1M-KO

mice compared with Notch1FL/FL mice (Fig. 3E). Moreover,
Notch1 deficiency enhanced the insulin-stimulated hepatic
pAkt level, revealing the improvement of hepatic IR in HFD-fed
mice (Fig. 3F). Given that inflammation has a primary role in the
etiology of hepatic IR, we measured the levels of proin-
flammatory (TNF-a and IL-1b) and anti-inflammatory [IL-10 and
transforming growth factor (TGF)-b] cytokines in liver tissues,
finding that Notch1 deficiency reduced the former and elevated
the latter. Consistency changes were also found in the
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percentage of proinflammatory M1 (F4/80+CD11c+) macro-
phages and anti-inflammatory M2 (F4/80+CD206+) macro-
phages (Figs. S4D and E).
Tregs are required to reverse HFD-induced hepatic
steatosis and insulin resistance in Notch1M-KO mice

Next, to confirm the correlation between the activation of
hepatic macrophage Notch1 signaling and the Treg popula-
tion, we analyzed the frequency of CD4+CD25+Foxp3+ Tregs
and the mRNA expression of foxp3 in liver tissues of
Notch1FL/FL and Notch1M-KO mice fed a HFD. Compared with
Notch1FL/FL mice, Notch1 deficiency significantly reversed the
HFD-induced reduction in Treg frequency (Fig. 4A,B, Fig. S5).
Furthermore, we determined whether the ameliorative effects
of macrophage Notch1 deficiency on MASLD were related to
NCD HFD

***

0.0

0.5

1.0

1.5

pA
kt

/A
kt

Notch1FL/FL

Notch1M-KO
O

kDa
60

60

36

NCD HFD

H
&E

O
il 

re
d 

O

Notch1FL/FL Notch1M-KO Notch1FL/FL Notch1M-KO

NCD HFD

Se
ru

m
 L

D
L-

C
 (m

m
ol

/L
)

*****

0.0

0.5

1.0

1.5

2.0
p = 0.054

p = 0.062

NCD HFD
0

1

2

3

Se
ru

m
 H

D
L-

C
 (m

m
ol

/L
) Notch1FL/FL

Notch1M-KO

NCD HFD

** *

IT
T_

AU
C

0

5

10

15

0 15 30 60 120 min

Notch1FL/FL+NCD
Notch1M-KO+NCD

Notch1FL/FL+HFD
Notch1M-KO+HFD

G
lu

co
se

 (m
m

ol
/L

)

0

5

10

15

eatosis and insulin resistance. Notch1FL/FL mice and Notch1M-KO mice were fed
(C), and liver TG and TC levels (D) were measured (eight/group). (E) Representative
n blot analyses of insulin-stimulated expression of Akt and pAkt in the liver (three/
ay ANOVA and Tukey’s test: *p <0.05, **p <0.01, ***p <0.001. Abbreviations: GTT,
rance test; LDL-C, LDL cholesterol; NCD, normal chow diet; Notch1FL/FL, floxed
triglyceride.

025. vol. 7 j 101242 6



I
** **

Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

0

50

100

150

200

250

IL
-1

0 
(p

g/
m

g 
pr

ot
ei

n)

H
** ***

Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

0.0

0.2

0.4

0.6

pA
kt

/A
kt

Notch1FL/FL Notch1M-KO
Notch1M-KO

+Anti-CD25
p-Akt

Akt

β-actin

kDa
60

60

43

G
Notch1FL/FL Notch1M-KO

HFD
Notch1M-KO

+Anti-CD25

F

Li
ve

r T
C

 (μ
m

ol
/g

) n.s. n.s.
** **

Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

0

2

4

6

8

10

Li
ve

r T
G

 (μ
m

ol
/g

)

0

5

10

15

20

E ** **

0

2

4

6

Se
ru

m
 T

C
 (m

m
ol

/L
)

*** **

0.0

0.5

1.0

1.5

Se
ru

m
 L

D
L-

C
 (m

m
ol

/L
) *** * Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

0.0

0.5

1.0

1.5

2.0

2.5

Se
ru

m
 H

D
L-

C
 (m

m
ol

/L
)

*** **

Se
ru

m
 T

G
 (m

m
ol

/L
)

0.0

0.5

1.0

1.5

2.0

D
** **

0

10

20

30

40

50

G
TT

_A
U

C

0.0

0.5

1.0

1.5

G
TT

_A
U

C

** ** Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

0

10

20

30

40

G
lu

co
se

 (m
m

ol
/L

)

0 15 30 60 120 min

0 15 30 60 120 min
0

5

10

15
G

lu
co

se
 (m

m
ol

/L
)

C

1 2 3 4 5 6   W

**
**

15

20

25

30

Bo
dy

 w
ei

gh
t (

g)

Notch1FL/FL

Notch1M-KO

Notch1M-KO

+Anti-CD25

B

NCD HFD

*****

0.0

0.5

1.0

1.5

R
el

at
iv

e 
ex

pr
es

si
on

 o
f f
ox
p3

 m
R

N
A

Notch1FL/FL

Notch1M-KO

A
NCD HFD

Hepatic Tregs

Notch1FL/FL Notch1M-KO Notch1FL/FL

CD25

Fo
xp

3

0

105

104

0 105104

Q1
4.37

Q4
85.8

Q2
3.69

Q3
6.15

-103

0

105

104

0 105104-103

Q1
5.07

Q4
84.5

Q2
3.52

Q3
6.91

0
-103

105

104

0 105104

103

Q1
3.65

Q4
89.1

Q2
1.77

Q3
5.49

Notch1M-KO

0
-103

105

104

0 105104

103

Q1
5.31

Q2
3.43

Q3
5.95

Q4
85.3

Notch1FL/FL

Notch1M-KO

NCD HFD

*****

0

2

4

6

Tr
eg

s 
(%

)

Fig. 4. Improvement effect of Notch1 deficiency in macrophages on hepatic steatosis and insulin resistance is mainly dependent on the increase in Treg
frequency. Notch1FL/FL mice and Notch1M-KO mice were fed a NCD or HFD for 6 weeks. (A) Proportion of hepatic CD25+Foxp3+ Tregs gated on CD3+CD4+ T cells was
analyzed by flow cytometry in Notch1FL/FL mice and Notch1M-KO mice (six/group). (B) Foxp3 mRNA expression in the liver of Notch1FL/FL mice and Notch1M-KO mice (six/
group). Notch1FL/FL mice, Notch1M-KO mice, and Notch1M-KO mice with Tregs eliminated (injected intraperitoneally with anti-CD25 antibodies) were fed a HFD for 6 weeks.
The body weight (C), GTT, ITT (D), serum TG, TC, LDL-C, and HDL-C levels (E), and liver TG and TC levels (F) were measured (five/group). (G) Representative images of H&E
and Oil red O staining of liver sections (scale bar: 100 lm). (H) Western blot analyses of insulin-stimulated expression of Akt and pAkt in the liver (three/group). (I) The level of
IL-10 in the liver was measured by ELISA (five/group). Values represent means ± SD. Statistical analysis was performed by one-way ANOVA and Tukey’s test. *p <0.05, **p
<0.01, ***p <0.001. Abbreviations: GTT, glucose tolerance test; HDL-C, HDL cholesterol; HFD, high-fat diet; ITT, insulin tolerance test; LDL-C, LDL cholesterol; NCD, normal
chow diet; Notch1FL/FL, floxed Notch1; Notch1M-KO, myeloid-specific Notch1-knockout; TC, total cholesterol; TG, triglyceride; Treg, regulatory T cell.

JHEP Reports, --- 2025. vol. 7 j 101242 7

Research article



F BMDMs-Exos BMDMs-NICD-Exos

CD25

Fo
xp

3

0
-103

105

104

0 104103

103

Q1
4.10

Q4
89.3

Q2
2.69

Q3
3.87

0
-103

105

104

0 104103

103

Q1
4.28

Q2
1.45

Q3
1.48

Q4
92.8

**

Fr
eq

ue
nc

y 
of

 T
re

gs
in

 C
D

4+ 
T 

C
el

ls

pEF-flag
pEF-flag-NICD

0

1

2

3 ** BMDMs-Exos
BMDMs-NICD-Exos

0

2,000

4,000

6,000

# 
Tr

eg
s 

/g

E PBS DiR-Exos

4.75E + 0.09

p/sec/cm2/sr
Min = 4.65E + 0.09
Max = 4.90E + 0.09

1.50E + 0.010

1.00E + 0.010

p/sec/cm
2/sr

M
in = 4.65E + 0.09

M
ax = 4.90E + 0.09

D

Foxp3

SS
C

2.15

0
50K

100K
150K
200K
250K

0 105 105104
0

50K
100K
150K
200K
250K

0 104

Notch1FL/FL Notch1M-KO

EXO

7.74

*** Notch1FL/FL

Notch1M-KO

 F
ox

p3
+ 
(%

)

0

2

4

6

8

10

C

DAPI

PKH-26

Merge

0 h 8 hB GW4869DMSO

Foxp3

SS
C

0
50K

100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 104 105

5.4820.1

*** DMSO
GW4869

 F
ox

p3
+ 
(%

)

0

5

10

15

20

25

A Unstim LPS + PA
Notch1FL/FL Notch1M-KO Notch1FL/FL

Foxp3

SS
C

18.619.1

0
50K

100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104

9.76

Notch1M-KO

15.0

Foxp3

Unstim LPS + PA
pEF-Flag pEF-Flag-NICD pEF-Flag

SS
C

20.620.4

0
50K

100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 105104

13.3

pEF-Flag-NICD

4.46

Unstim LPS + PA

****** pEF-flag
pEF-flag-NICD

 F
ox

p3
+ 
(%

)

0

5

10

15

20

25

Unstim LPS + PA

******
Notch1FL/FL

Notch1M-KO

 F
ox

p3
+ 
(%

)

0

5

10

15

20

25

Fig. 5. Exos from Notch1-activated macrophages impede Treg differentiation. BMDMs from Notch1FL/FL and Notch1M-KO mice and pEF-Flag-NICD or pEF-Flag
transfected BMDMs were stimulated with LPS (100 ng/ml) and PA (250 lM) or PBS for 12 h and then co-cultured with naïve CD4+ T cells for 3 days. (A) Induction of
Foxp3+ Tregs was analyzed by flow cytometry (three/group). (B) Naïve CD4+ T cells were co-cultured with BMDMs treated with GW4869 (5 lM) for 3 days, and the
induction of Foxp3+ Tregs was detected by flow cytometry (four/group). (C) BMDM-Exos were labeled with PKH26 (red) and then co-cultured with naïve CD4+ T cells
for 8 h. The resulting T cells were collected for fluorescence confocal microscopy to detect Exo uptake and their nuclear location was determined by DAPI (blue)
staining (scale bar: 25 lm). (D) BMDMs from Notch1FL/FL and Notch1M-KO mice were stimulated with LPS (100 ng/ml) and PA (250 lM) for 12 h. Naïve CD4+ T cells were

JHEP Reports, --- 2025. vol. 7 j 101242 8

Immune mechanisms driving early MASLD progression



=

Research article
Treg frequency changes by abolishing Tregs in Notch1M-KO

mice fed a HFD. Elimination of Tregs significantly increased
the body weight (Fig. 4C), systemic IR (Fig. 4D), serum lipid
levels (TC, TG, LDL, but not HDL) (Fig. 4E), and intrahepatic
lipid content (Fig. 4F,G), but dramatically decreased pAkt and
IL-10 (Fig. 4H,I) levels in the liver of Notch1M-KO mice, sug-
gesting that these phenotypes associated with the deletion of
Notch1 in macrophages were substantially offset by Treg
elimination. Together, these results imply that the ameliorating
effect of Notch1 depletion in macrophages on hepatic stea-
tosis and IR is largely dependent on the increased frequency
of Tregs.
Exos from Notch1-activated macrophages impede Treg
differentiation

Given that the liver is the main source of peripherally induced
Tregs derived from naïve CD4+ T cell differentiation, we pro-
posed the hypothesis that Notch1 activation in hepatic mac-
rophages impedes Treg differentiation in hepatic steatosis. To
test this hypothesis, an in vitro BMDM/naïve CD4+ T cell co-
culture system was established (Fig. S6A). BMDMs were
stimulated with lipopolysaccharide (LPS) + palmitic acid (PA)
(the main stimulating factors of hepatic macrophages in he-
patic steatosis) for 12 h, resulting in a significant increase in
Notch1 activation (Fig. S6B). CD4+ T cells were harvested 3
days after the co-culture to analyze Foxp3+ Treg frequency by
flow cytometry. After LPS+PA treatment, the induction of
Foxp3+ Tregs was decreased significantly compared with
those of unstimulated cells (Fig. 5A). Strikingly, BMDMs from
Notch1M-KO mice exhibited higher induction of Foxp3+ Tregs.
Subsequently, we overexpressed NICD in BMDMs through
transfection of NICD overexpression plasmids (Fig. S5C). In-
duction of Foxp3+ Tregs was further reduced in response to
overexpression of NICD in BMDMs (Fig. 5A). Consistent
with this finding, IF staining also showed that the inducible
Foxp3+ Tregs population was markedly enhanced following
Notch1 KO and further reduced following NICD over-
expression (Fig. S6D).

Exos are an effective mechanism of intercellular communi-
cation in the liver.28 Consequently, we sought to determine
whether Exos mediated the effect of macrophages on Treg
differentiation. BMDMs were pretreated with GW4869, a
commonly used chemical inhibitor that blocks the release of
Exos. The inducible effect of BMDMs on Treg differentiation
was significantly blunted after GW4869 treatment (Fig. 5B). To
further define the molecular effects of BMDM-Exos on Treg
differentiation, we isolated Exos from BMDMs and character-
ized them by transmission electron microscopy and flow
nanoanalysis. The vesicles exhibited a cup- or sphere-shaped
morphology with a 40–150 nm diameter (Figs. S7A and B). In
addition, the Exo marker proteins CD63, CD9, and TSG101
were detected in the BMDM-Exos (Fig. S7C). These results
co-cultured with BMDM-Exos for 3 days, and induction of Foxp3+ Tregs was detec
detect the distribution of DiR-labeled Exo fluorescence signals in vivo. (F) Exos were
PA stimulation, and their concentrations were measured using BCA. BMDM-Exos a
week, followed by another week of HFD feeding. Flow cytometry was used to detect
SD. Statistical analysis was performed by (A) one-way ANOVA and Tukey’s test o
marrow-derived macrophage; Exo, exosome; LPS, lipopolysaccharide; NICD, Notch
Notch1-knockout; PA, palmitic acid; Treg, regulatory T cell.
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confirmed that Exos were successfully extracted. Next, we
examined whether these BMDM-Exos could be taken up by
naïve CD4+ T cells. We labeled BMDM-Exos with the red
fluorescent dye PKH26 and then added them into the culture
medium of naïve CD4+ T cells. After 8 h, confocal microscopy
analysis showed that the labeled Exos were efficiently taken up
by naïve CD4+ T cells (Fig. 5C). Furthermore, we explored
whether the Exos mediated the regulation of macrophagic
Notch1 signaling on Treg differentiation. We incubated naïve
CD4+ T cells with Exos isolated from LPS+PA-treated
Notch1FL/FL-BMDMs and Notch1M-KO-BMDMs. Compared
with the Notch1FL/FL group, the frequency of Tregs was
increased significantly in the Notch1M-KO group (Fig. 5D).

To confirm the effect of macrophage-derived Exos on he-
patic Tregs in vivo, we tracked the distribution of Exos after tail
vein injection and found liver enrichment within 6 h (Fig. 5E).
Exos from NICD-transfected BMDMs, stimulated by LPS +
PA, were injected into HFD-fed mice, and flow cytometry
showed a significant reduction in hepatic Tregs compared
with controls (Fig. 5F). Collectively, these data indicated that
Notch1 activation in macrophages impedes Treg production
via Exos.
Notch1-activated macrophages impede Treg differentiation
via exosomal miR-142a-3p

To decipher how the Exos from Notch1-activated macro-
phages affect Treg differentiation, we further analyzed the
miRNA expression profiles in Exos from LPS+PA-treated
Notch1M-KO-BMDMs compared with those in Exos from
Notch1FL/FL-BMDMs exposed to the same treatment. miRNA
sequencing results indicated that there were 335 miRNAs in
common among the two groups (Fig. 6A). The volcano plots
and heat maps displayed remarkable differences in miRNA
profiles between Notch1M-KO-Exos and Notch1FL/FL-Exos
(Fig. 6B,C). Among these differentially significantly expressed
miRNAs, miR-142a-3p was reported to target TGF-b receptor 1
(TGFBR1) in both human and mouse,29,30 which is closely
associated with Treg differentiation.31 Subsequently, we vali-
dated the change in miR-142a-3p in Exos by RT-qPCR, which
was consistent with the miRNA sequencing results. Further-
more, we also found that miR-142a-3p was significantly
decreased in CD4+ T cells co-cultured with Notch1M-KO-
BMDM-Exos, compared with that in Notch1FL/FL-BMDM group
(Fig. 6D). These results indicated that Notch1 activation in
macrophage-modulated Exo-miR-142a-3p was transferred to
CD4+ T cells.

To confirm the effect of miR-142a-3p on Treg differentiation,
naïve CD4+ T cells were transfected with an miR-142a-3p in-
hibitor, mimic, or negative control (NC), and then all cells were
co-cultured with BMDMs stimulated with LPS+PA or not. With
confirmation of successful transfection (Fig. S8A), we found
that the miR-142a-3p mimic significantly inhibited the induction
ted by flow cytometry (five/group). (E) Small animal in vivo imaging was used to
extracted from BMDMs transfected with pEF-Flag-NICD or pEF-Flag after LPS +
t a dose of 200 lg/mouse were injected via the tail vein into mice fed a HFD for 1
the proportion and number of intrahepatic Tregs mice. Values represent means ±

r (B,D) 2-tailed unpaired Student t test. ***p <0.001. Abbreviations: BMDM, bone
1 intracellular domain; Notch1FL/FL, floxed Notch1; Notch1M-KO, myeloid-specific
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of Tregs (Fig. 6E), whereas the miR-142a-3p inhibitor enhanced
the induction of Tregs, compared with the corresponding NC
(Fig. 6F). More importantly, the inhibition of Tregs induced by
overexpressing NICD in macrophages was reversed when
G

+pEF-Flag-N
+inhibitor

+pEF-Flag-NICD
+NC

Foxp3

SS
C

0
50K

100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 1

3.52

+pEF-Flag
+inhibitor

+pEF-Flag
+NC

0
50K

100K
150K
200K
250K

0 105104
0

50K
100K
150K
200K
250K

0 1

7.11

F
+N

SS
C

0
50K

100K
150K
200K
250K

E
+N

SS
C

0
50K

100K
150K
200K
250K

C

21 3 321

mmu-miR-142a-3p
mmu-miR-142b
mmu-miR-340-3p
mmu-miR-130-5p
mmu-miR-669a-5p
mmu-miR-700-5p
mmu-let-7e-3p
mmu-miR-125a-3p
mmu-miR-3473b
mmu-miR-669c-5p
mmu-miR-339-3p
mmu-miR-3470b
mmu-miR-194-5p
mmu-miR-351-5p
mmu-miR-370-3p
mmu-miR-127-3p
mmu-miR-429-3p
mmu-miR-677-5p
mmu-miR-206-3p
mmu-miR-93-3p
mmu-miR-183-5p
mmu-miR-362-3p

Notch1FL/FLNotch1M-KO 0.0 0.2 0.4 0.6 0.8 1.0

B

0

1

2

-2.5 0.0 2.5
-Log2 (fold change)

-L
og

10
 (p

 v
al

ue
)

A Notch1FL/FL Notch1M-KO

Fig. 6. Exo-miR-142a-3p from Notch1-activated macrophages impedes Treg d
with LPS (100 ng/ml) and PA (250 lM) for 12 h. The miRNA expression profiles in B
showing miRNAs in both groups. (B) Volcano plot of differentially expressed miRN
between the groups. (D) Validation of the expression of miR-142a-3p in BMDM-Exo
two groups by RT-qPCR analysis. (E) Induction of Foxp3+ Tregs was detected by flo
were co-cultured with BMDMs (three/group). (F) Induction of Foxp3+ Tregs was dete
3p-inhibitor were co-cultured with BMDMs pretreated with LPS (100 ng/ml) and PA (2
were stimulated with LPS (100 ng/ml) and PA (250 lM) or PBS for 12 h, respectively,
inhibitor for 3 days. The induction of Foxp3+ Tregs was analyzed by flow cytometry (
(D–F) 2-tailed unpaired Student t test or (G) one-way ANOVA and Tukey’s test:
macrophage; Exo, exosome; LPS, lipopolysaccharide; NC, negative control; NICD
specific Notch1-knockout; PA, palmitic acid; RT-qPCR, quantitative reverse transc

JHEP Reports, --- 20
CD4+ T cells were transfected with the miR-142a-3p inhibitor
(Fig. 6G). Overall, these results suggested that Notch1 activa-
tion in macrophages impedes Treg differentiation through Exo-
miR-142a-3p.
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Notch1-induced miR-142a-3p impedes Treg differentiation
by targeting TGFBR1

To confirm the target gene of miR-142a-3p, we constructed a
wild-type (WT) TGFBR1 30-untranslated region (UTR) plasmid,
as well as a control plasmid in which the miR-142a-3p binding
site of the TGFBR1 30UTR was mutated for use in a luciferase
reporter assay (Fig. 7A, Fig. S8B). TGFBR1 30UTR activities
were significantly inhibited by miR-142a-3p-mimic transfection
compared with cells transfected with NC, indicating that this
30UTR is subject to miR-142a-3p regulation (Fig. 7A). Further-
more, we evaluated the effect of miR-142a-3p on the expres-
sion of TGFBR1 on CD4+ T cells co-cultured with BMDMs by
flow cytometry. Overexpression of miR-142a-3p significantly
GF Liver

R
el

at
iv

e 
ex

pr
es

si
on

of
 m

iR
-1

42
a-

3p

Hepatic T cell

NCD HFD

**
Notch1FL/FL

Notch1M-KO

0

1

2

3

NCD HFD

*****

0

1

2

4

3

ED

Unstained

Notch1FL/FL

Notch1M-KO

Notch1FL/FL

+LPS+PA

Notch1M-KO

+LPS+PA

0 104 105

TGFBR1

M
ax

 (%
)

Unstim LPS+PA

*****

TG
FB

R
1 

M
FI

0

500

1,000

1,500 Notch1FL/FL

Notch1M-KO

C

BA

R
el

at
iv

e 
lu

ci
fe

ra
se

 a
ct

iv
ity

(F
ire

fly
/R

en
illa

)

NC Mimic

***
WT TGFBR1
MT TGFBR1

0

2

4

6

8

Fig. 7. Notch1-induced miR-142a-3p impedes Treg differentiation by targeting T
and miRDB (upper panel) and luciferase assay revealing binding of miR-142a-3p to
cytometry after (B) naïve CD4+ T cells transfected with NC or a miR-142a-3p mimic w
NC or miR-142a-3p inhibitor were co-cultured with BMDMs pretreated with LPS (100
with BMDMs from Notch1FL/FL and Notch1M-KO mice pretreated with LPS (100 ng/
cultured with LPS (100 ng/ml) and PA (250 lM) or PBS-pretreated BMDMs transfe
142a-3p (F) and MFI of TGFBR1 in CD4+ T cells (G) in the liver tissues of Notch1
were detected. Values represent means ± SD. Statistical analysis was performed by
test. **p <0.01, ***p <0.001. Abbreviations: BMDM, bone marrow-derived macrophag
NC, negative control; NCD, normal chow diet; NICD, Notch1 intracellular domain;
palmitic acid; TGFBR1, transforming growth factor beta receptor 1; UTR, untransla

JHEP Reports, --- 2
decreased the expression of TGFBR1 on CD4+ T cells co-
cultured with BMDMs (Fig. 7B), whereas miR-142a-3p inhibi-
tion increased TGFBR1 expression on CD4+ T cells co-cultured
with LPS+PA-treated BMDMs compared with the NC
group (Fig. 7C).

Next, to further confirm that the effect of macrophage
Notch1 signaling on Treg differentiation is mediated by
TGFBR1, the expression of TGFBR1 in CD4+ T cells co-
cultured with BMDMs was determined. The expression of
TGFBR1 markedly increased in CD4+ T cells co-cultured with
LPS+PA-treated Notch1M-KO-BMDMs compared with the
Notch1FL/FL group, and was markedly reduced when Notch1
was overexpressed in BMDMs (Fig. 7D,E). In addition, in
Notch1M-KO mice fed a HFD, macrophage Notch1 deficiency
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decreased miR-142a-3p levels in the liver and hepatic T cells
and increased TGFBR1 expression in hepatic CD4+ T cells
compared with Notch1FL/FL mice (Fig. 7F,G). Collectively, these
results suggest that Notch1 signaling in macrophages regu-
lates miR-142a-3p, which subsequently affects the expression
of TGFBR1 on CD4+ T cells, leading to a decrease in Tregs.

Discussion
The role of Tregs in suppressing local inflammation has been
extensively investigated,32 and emerging reports have high-
lighted their function in modulating non-immune lineages to
maintain tissue homeostasis.33,34 In the present study, we
identified that decreased Tregs contributed to HFD-induced
hepatic steatosis and IR during the early stage of MASLD. Our
results are consistent with prior work on hepatic Tregs, in which
hepatic Treg frequency showed a significant decrease in mice
after 1 week of a HFD and continued to decrease throughout the
HFD feeding period.35 Furthermore, our results showed that
hepatic Treg depletion significantly exacerbated lipid accumu-
lation and IR. In agreement with this, a previous RNA-
sequencing study demonstrated substantial changes in the
expression of hepatic genes regulating lipid metabolism
following Treg depletion.36 In addition, Tregs in visceral adipose
tissue have been shown to have a clear insulin-sensitizing
function,37 with adoptive Treg transfer also decreasing adipo-
cyte size in mouse models of obesity.38 However, increasing the
frequency of Tregs only in subcutaneous adipose tissue but not
in the liver can exacerbate hepatic steatosis,39 a phenomenon
that might result from organ crosstalk. In this study, ldIL-2
treatment was used to achieve hepatic Treg amplification,
which significantly reduced hepatic steatosis. This suggests that
attention should be paid to whether Tregs can be specifically
enriched in liver tissue during the expansion of Tregs as part of
in vivo therapy for liver diseases. Hepatic Tregs suppress MASH
by alleviating intrahepatic inflammation,8 whereas they promote
tumor development during the premalignant stage of MASH
livers,9 which suggest that the effect of hepatic Tregs varies in
response to various stimuli and the corresponding microenvi-
ronment during different stages of disease (early or late).

Environmental signals in peripheral tissues favor the devel-
opment of antigen-specific Tregs. It is well documented that
the activation status of macrophages in tissues is tightly con-
nected to Treg homeostasis. For example, tumor-associated
macrophages induce the imbalance of Tregs and T helper
type 17 cells (Th-17),40 and the proinflammatory macrophages
of visceral adipose tissue in obesity can cause Th17/Treg
imbalance in visceral adipose tissue.41 In this study, increased
Notch1 activation in hepatic macrophages was synchronized
with the reduced hepatic Treg frequency in HFD-induced mice
with hepatic steatosis. Additionally, our in vivo data revealed
that deletion of Notch1 in macrophages reversed the HFD-
induced reduction in hepatic Treg frequency, which was
accompanied by improvements in hepatic steatosis and IR,
largely attributed to changes in Treg frequency. Previous
JHEP Reports, --- 20
studies on Treg differentiation have primarily focused on the
intrinsic role of Notch1 signaling in T cells;42,43 however, our
study revealed that Notch1 signaling in macrophages could
regulate macrophage–T cell interactions, highlighting the
importance of cell-specific activities of Notch1 in different
cell types.

Exos have been emerged as crucial mediators of intercel-
lular communication and are involved in various pathological
processes, including liver diseases, as well as carrying and
delivering miRNAs, proteins, and metabolites from host to
recipient cells.16 Previous work in MASH has noted the
importance of Exo-mediated cellular communication between
hepatic macrophages and other cells.44 The present study
identified that macrophage-derived Exos could be taken up by
naïve CD4+ T cells and perform a regulatory function on Treg
differentiation. Notch1-deficient macrophages significantly
improved the induction of Tregs by Exos secreted by LPS+PA-
treated macrophages, suggesting that Exos are an important
pathway for macrophage Notch1 signaling involved in regu-
lating Treg differentiation. Exo-mediated miRNA transfer is
important in various processes, including immune homeosta-
sis.45 Multiple miRNAs have been identified to be involved in
regulating Treg generation and function.46 In addition, Notch1
signaling has been reported to regulate miRNA expression.18,19

Further Exo-miRNA sequencing and functional studies
demonstrated that macrophage Notch1 signaling regulating
Treg differentiation might depend on an Exo-miR-142a-3p–
TGFBR1 pathway. TGFBR1 serves as a crucial receptor in TGF-
b signaling, which is required for the induction of Tregs.47

Kimura et al. revealed that the targeted silence of TGFBR1 in
naïve CD4+ T cells inhibited the differentiation of Tregs.31 Our
study demonstrated that Notch1 deletion in macrophages
reduced the levels of miR-142a-3p, increased TGFBR1
expression on CD4+ T cells, and enhanced Treg frequency both
in vitro and in vivo. These findings suggest that decreased Treg
levels during the early stage of MASLD result from macro-
phages with aberrant Notch1 activation releasing miR-142a-3p,
which inhibits the expression of TGFBR1 on CD4+ T cells,
thereby impeding Treg production.

In conclusion, this study highlights the crucial role of hepatic
Tregs during the early stage of MASLD and identifies a previ-
ously unrecognized molecular mechanism of a macrophage
Notch1/exo-miR-142a-3p/TGFBR1 pathway in regulating Treg
differentiation. Although we cannot rule out that macrophage
Notch1 activation might regulate Treg production through
pathways other than Exos, our findings provide evidence of the
involvement of Exos in the crosstalk between macrophages
and CD4+ T cells. However, because we focused exclusively on
the early stage of MASLD, our findings might not be readily
extended to MASH or fibrotic stages. Nevertheless, this study
expands our current understanding of the role of crosstalk
between immune cell populations in MASLD. Moreover, our
findings provide rationale for a potential immunological
approach for the treatment of MASLD by the induction of Tregs.
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