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abstract

PURPOSE Many patients with breast cancer still relapse after curative treatment. How to identify the ones with
high relapse risk remains a critical problem. Circulating tumor DNA (ctDNA) has recently become a promising
marker to monitor tumor burden. Whether ctDNA can be used to predict the response and prognosis in patients
with breast cancer receiving neoadjuvant chemotherapy (NAC) is unknown. Our study aimed to evaluate the
clinical value of the presence and dynamic change of ctDNA to predict the tumor response and prognosis in
patients with breast cancer treated with NAC.

MATERIALS AND METHODS Fifty-two patients with early breast cancer who underwent NAC were prospectively
enrolled. Serial plasma samples before, during, and after NAC and paired tumor biopsies were harvested and
subjected to deep targeted sequencing using a large next-generation sequencing panel that covers 1,021 cancer-
related genes.

RESULTS Positive baseline ctDNA was detected in 21 of 44 patients before NAC. Most patients with positive
ctDNA had one or moremutations confirmed in paired primary tumor. The ctDNA level after 2 cycles of NAC was
predictive of local tumor response after all cycles of NAC (area under the curve, 0.81; 95% CI, 0.61 to 1.00).
ctDNA tracking during NAC outperformed imaging in predicting the overall response to NAC. More importantly,
positive baseline ctDNA is significantly associated with worse disease-free survival (P = .011) and overall survival
(P = .004) in patients with early breast cancer, especially in estrogen receptor–negative patients.

CONCLUSION Our study demonstrated that ctDNA can be used to predict tumor response to NAC and prognosis
in early breast cancer, providing information to tailor an individual’s therapeutic regimen.
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INTRODUCTION

Breast cancer is the most commonly diagnosed
cancer and the leading cause of cancer death in
women worldwide.1 Although early breast cancer is
a curable disease, up to 40% of such patients still
relapse after surgery.2 It is believed that breast
cancer is a systemic disease and that clinically un-
detectable micrometastases often happened before
the diagnosis.3,4 How to distinguish patients with
early breast cancer with high relapse risk from those
with low risk remains a critical and challenging
clinical question.

Neoadjuvant chemotherapy (NAC) is often used in
patients with locally advanced or triple-negative/Her2-
positive early breast cancer before surgery to decrease
tumor size and enable breast-conserving surgery. The
tumor response to NAC can provide the information
regarding in vivo treatment efficacy and long-term
prognosis of patients. Monitoring the early response

to NAC is key to the clinical decision to continue,
change, or stop NAC. The current consensus to
monitor response to NAC is clinical examination
backed up by radiologic and sonographic measures.5

However, these measures are quite subjective and
have poor inter- and intraobserver reproducibility.6

Moreover, given the heterogeneity of cancer, a reli-
able method to examine the overall response from
local, regional, and micrometastatic lesions in patients
with early breast cancer is still lacking.

Circulating tumor DNAs (ctDNAs) are mutated gene
fragments that are exclusively shed by cancer cells
into blood,7 which can be detected by digital poly-
merase chain reaction (dPCR)8 or sequencing. In
patients with metastatic breast cancer, ctDNA by
dPCR was reported to outperform classic tumor
biomarker (CA15-3/CEA) and circulating tumor cells
in monitoring disease progression9 as well as iden-
tifying resistant clonal evolution during therapy.10 In
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patients with early breast cancer after surgery, ctDNA by
dPCR predicted metastasis at 7.9-11 months earlier than
clinical relapse.11,12 A few studies also explored the role of
ctDNA in patients with breast cancer who received NAC. It
was reported that ctDNA change during NAC was cor-
related with tumor response13-15 or relapse,16,17 although
two of them only used dPCR to detect a single gene (met-
RASSF1A14 or TP5316), and the other study only corre-
lated the ctDNA disappearance after the first cycle of
NAC with two patients who achieved pathologic complete
response.13

Advances in next-generation sequencing (NGS)18 tech-
nology have enabled the rapid identification and broad
coverage of tumor-specific genomic alterations in cell-free
DNA (cfDNA) of individual patients.19-21 The NGS assay
provides an opportunity to screen more genes at a single
time point and avoid missing mutations absent in biopsy
because of intratumor heterogenicity. Here, using a large
NGS panel that covers 1,021 cancer-related genes, we
compared the change of ctDNA and imaging during NAC to
determine whether ctDNA is superior to imaging in pre-
dicting tumor response during NAC and prognosis in pa-
tients with early breast cancer.

MATERIALS AND METHODS

Study Design

This was an observational, prospective, single-center study
to investigate whether ctDNA can predict tumor response
and survival in early breast cancer. Serial plasma samples
were collected from patients scheduled to receive NAC. All
patients were prospectively recruited from Sun Yat-sen
Memorial Hospital between 2013 and 2015. The study
was approved by the ethics committee of Sun Yat-sen
Memorial Hospital and registered on ClinicalTrials.gov
(NCT03260192). Written informed consent was obtained
from all participants. For patient cohort, sample collection

and processing, and NGS sequencing and data analysis,
please see the Data Supplement.

Statistical Analysis

The primary end point of this study was to evaluate the
clinical value of the presence and dynamic change of
ctDNA to predict the tumor response and prognosis in
patients with breast cancer treated with neoadjuvant
chemotherapy. Survival analysis was performed using the
Kaplan-Meier method and the log-rank test. The correla-
tions of baseline ctDNA presence with clinicopathological
markers were assessed using Pearson χ2 test. All P values
are two sided. Receiver operating characteristic (ROC)
models were constructed and compared by pROC
package.22 Cutoff points of the ROC models were calcu-
lated by pROC packages. All statistical analyses were
performed with GraphPad Prism version 6.0 or R
version 3.4.1.

RESULTS

Clinicopathological Features of Patients

A total of 52 patients with early breast cancer who received
NAC were prospectively enrolled in the study since 2013.
Eight patients were excluded from further study because of
insufficient cfDNA in plasma before NAC (Fig 1).

The clinicopathological features of the 44 patients in the
study are listed in Table 1 and the Data Supplement. All
patients received 3-8 cycles of anthracycline/taxane-based
NAC before surgery. Most of them were T2 or above (ap-
proximately 95%) or with lymph node metastasis (ap-
proximately 80%). The plasma was collected from patients
before NAC (baseline), during NAC, and before surgery,
with the tumor tissue biopsy specimens andmatched blood
cells collected before NAC.

According to RECIST1.123 criteria, the majority of patients
were responsive to NAC (complete response [CR], 3/44;
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partial response [PR], 24/44; CR/PR, 27/44; 61%) and the
rest were irresponsive (stable disease [SD], 16/44; pro-
gressive disease [PD], 1/44; SD/PD, 17/44; 39%). After
surgery, the patients were followed up every 6 months.
During the follow-up (median, 46 months; range, 11-68
months), 11 patients (25%) had distant metastasis, and 9
of them died of metastatic breast cancer.

Baseline Mutated DNAs in Plasma and Tumor

All baseline plasma samples, matched blood cells, and 32
paired tumor biopsy samples underwent parallel targeted
NGS to screen for point mutations and structural variants,
using the NGS panel of 1,021 cancer-related genes that
covers a region of 1.1 MB (Data Supplement).24 After
deduplication, the median depths of unique coverage were
984× for primary tumor and 1,225× for plasma DNA. The
analysts were blinded to clinical and follow-up information
during the analysis of sequencing data.

Among the 44 patients, 21 patients were found to have
positive baseline ctDNA. A total of 72mutations in 46 genes
were found in these 21 samples, with 1-8 (median, 3)
mutations per sample (Data Supplement). TP53 (15/21),
PI3KCA (5/21), GAB2 (3/21), and IRS2 (3/21) were the
most frequently mutated genes in plasma (Fig 2A). There

was no significant association between baseline ctDNA
positivity and tumor size, lymph node status, ERBB2 status,
and Ki67 index (Table 1). However, breast cancers with
positive ctDNA were more likely to be negative for estrogen
receptor (ER) or progesterone receptor (P , .05), which is
consistent with a previous report.12 Also, higher baseline
ctDNA levels were significantly associated with larger tumor
size, negative ER, and triple-negative breast cancer sub-
type (Appendix Fig A1).

The objective response rate (ORR) after NAC in ctDNA-
positive patients was lower than that in ctDNA-negative
patients (47.6% v 73.9%), although the difference was not
statistically significant (P = .13), which might be due to the
limited sample size (n = 44).

The mutated DNA is often found to be different between
tumor and plasma, with the former having more mutations
and the latter representing the heterogeneity of tumor.
Thus, we also sequenced the 32 available baseline tumor
biopsy samples and compared them with the paired
baseline plasma samples. Somatic mutations were found in
all 32 tumor biopsy samples. In total, 114 mutations were
identified in 63 genes, with 1-19 (median, 3) mutations per
tumor sample (Data Supplement). Among the 114 muta-
tions, 33 were detected in both tumor and plasma, and 81
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mutations were only detected in tumor. In addition, 29
mutations were only detected in the plasma, but not in
tumor, of these 32 patients (Fig 2B). TP53 (20/32), PI3KCA
(13/32), NF1 (5/32), and GATA3 (4/32) were the most
frequently mutated genes in tumor (Fig 2C).

In the 32 patients with both tumor and plasma sequencing
data, 14 had concordant/partially concordant mutations in
plasma and tumor, 16 patients had mutations only in tumor
with negative ctDNA, and the other two patients (P034 and
P036) had completely different mutations in tumor and
plasma (Fig 2B). In the 16 patients with positive ctDNA, 14
(87.5%) of them had one or more mutations confirmed
independently in tumor sequencing data, indicating that
most positive ctDNA represents tumor-specificmutations in

the primary tumors. Among the 33 concordant mutations
found in both tumor and plasma of the 14 patients, TP53
(12/14) and PIK3CA (4/14) mutations were the most fre-
quent (Fig 2D).

Changes of ctDNA and Tumor Response During NAC

The current gold standard to monitor tumor response
during NAC is ultrasound or magnetic resonance imaging,
although it is subjective and sometimes falls behind the
histologic changes. To explore whether ctDNA surpasses
imaging in monitoring or predicting overall tumor response,
all plasma samples collected during NAC in the 20 patients
(1 patient was excluded because of insufficient cfDNA in
subsequent plasma samples) with positive baseline ctDNA
were sequenced and compared with baseline data to
track the dynamic changes of ctDNA during NAC (Data
Supplement).

In this study, tumor response was defined as CR/PR/SD/PD
using RECIST1.1 criteria when the imaging data of local/
regional tumor before surgery was compared with that
before NAC. SD/PD was classified as no response, and CR/
PR was classified as response. Of the 20 assessable pa-
tients, 11 did not respond to NAC (including a patient with
PD), and 9 responded to NAC (response rate, 45%).

However, patient 038 (P038), who was defined as PR
according to imaging, had an increasing ctDNA amount
(clonal variant allele frequency [VAF]) during all cycles of
NAC,25 and a persisting high ctDNA even after surgery,
although she did not have any clinical metastasis before
surgery. Follow-up showed that she had multiple distant
metastases (liver, lung, and bone) at 21 months and died at
46 months after surgery (Appendix Fig A2). The increase of
ctDNA in this case indicated the early micrometastases
undetected by imaging did not respond to NAC well, al-
though the primary tumor did, suggesting that ctDNA is
better than imaging of local tumor to monitor the overall
response to NAC.

Next we did a longitudinal analysis of ctDNA changes
during NAC and correlated it with local tumor response.
P038 was excluded from this analysis because of dis-
crepant tumor and ctDNA data. The ctDNA amount (clonal
VAF) in baseline plasma was set as 100%, and those in
subsequent plasma from the same patient were normalized
to the baseline value. It was found that patients who
responded to NAC had more decreasing ctDNA than pa-
tients who did not respond to NAC (Fig 3A). The difference
was significant after the second cycle (P = .03) and all
cycles of NAC (P = .02) but was not statistically significant
after the first cycle of NAC (P = .290; Figs 3B-3D).

Next, we constructed ROC22 curves to compare the efficacy
of ctDNA amount (clonal VAF) and ultrasound to predict the
response to NAC (Fig 4). It was found that clonal VAF after 2
cycles, clonal VAF before surgery, and ultrasound after 2
cycles were all predictive of the response to NAC before
surgery. The clonal VAF after 2 cycles (area under the curve

TABLE 1. Clinical Characteristic of the Study Cohort (N = 44)

Clinical Characteristic
All Patients
(N = 44)

PBC
(n = 21)

NBC
(n = 23) P (PBC v NBC)

Clinical tumor stage

1 2 0 2 .66

2 23 11 12

3 14 8 6

4 5 2 3

Clinical nodal status

Negative 9 2 7 .18

Positive 35 19 16

Molecular subtype

HR+/HER2− 21 8 13 .09

HR+/HER2+ 8 2 6

HR−/HER2+ 9 7 2

TNBC 6 4 2

ER status, %

, 10 15 11 4 .03

≥ 10 29 10 19

Progesterone receptor
status, %

, 10 22 15 7 .02

≥ 10 22 6 16

ERBB2

Negative 27 12 15 .81

Positive 17 9 8

Ki67, %

, 14 5 2 3 1.00

≥ 14 39 19 20

Objective response

PR/CR 27 10 17 .13

SD/PD 17 11 6

Abbreviations: CR, complete response; ctDNA, circulating tumor DNA; NBC,
negative baseline ctDNA; PBC, positive baseline ctDNA; PD, progressive disease;
PR, partial response; SD, stable disease; TNBC, triple-negative breast cancer.
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[AUC], 0.81; 95% CI, 0.61 to 1.00) and before surgery
(AUC, 0.82; 95% CI, 0.64 to 1.00) had higher predictive
value than the ultrasound after 2 cycles (AUC, 0.76; 95%
CI, 0.58 to 0.94), although the difference was not statically
significant. The optimal criteria of clonal VAF in predicting
the response to NAC, as determined by the ROC plots, are
40% drop in clonal VAF after 2 cycles and 60% drop in
clonal VAF before surgery, respectively. The optimal cri-
terion of ultrasound after 2 cycles was 20% decrease in the
longest diameter of tumor in our study.

Concordant mutations between tumor and plasma were
also identified in two patients with smaller tumor and
negative lymph nodes (T2N0M0). Notably, the concordant
mutations were still found in the plasma before surgery, and
both patients remained SD until surgery (Appendix Fig A3),
suggesting that ctDNA can be used to track the response of
early tumors (stage IIA) during NAC.

ctDNA and the Prognosis of Patients

To determine whether ctDNA can predict the survival of
patients with breast cancer, we analyzed the association
between ctDNA and patient prognosis.

Baseline ctDNA positivity had a significant impact on the
prognosis of patients with breast cancer, because the
patients with positive ctDNA before NAC had significantly
shorter disease-free survival (DFS) and overall survival (OS)
than those with negative ctDNA (P = .011; hazard ratio
[HR], 5.72; 95% CI, 1.74 to 18.81 for DFS; P = .004; HR,
11.27; 95% CI, 2.99 to 42.45 for OS; Figs 5A and 5B).
Subgroup analysis demonstrated that this impact was
mainly derived from ER-negative patients. There was no
significant difference in the DFS and OS of ER-positive
patients with positive or negative baseline ctDNA (P = .57;
HR, 1.75; 95% CI, 0.23 to 13.39 for DFS; P = .72; HR,
1.66; 95% CI, 0.095 to 28.94 for OS; Figs 5C and 5D).
Nevertheless, the difference of DFS and OS in ER-negative
patients was surprisingly large between those with positive
and negative ctDNA (P = .04; HR, 5.11; 95% CI, 1.08 to
24.18 for DFS; P = .033; HR, 5.46; 95% CI, 1.14 to 26.10
for OS; Figs 5E and 5F). The ER-negative patients with
negative baseline ctDNA had 100% DFS and OS, whereas
those with positive baseline ctDNA had a DFS/OS of only
approximately 36%.

Among the 20 patients with positive baseline ctDNA (one
patient ruled out due to lack of subsequent samples), 6 of
them turned negative and 14 remained positive for the
ctDNA before surgery. The relapse rate in the patients with

persistent ctDNA was 50%, and that in the patients with
negative ctDNA before surgery was 33%. The difference
was more contrasting in ER-negative patients. Six out of 8
(75%) ER-negative patients with persistent positive ctDNA
relapsed, whereas only 1 out of 3 (33%) such patients with
negative ctDNA before surgery relapsed, although the
difference was not statistically significant because of small
sample size (Appendix Figure A4).

DISCUSSION

In this study, we used targeted deep sequencing of cfDNA
with a panel of 1,021 cancer-related genes to screen for
mutated ctDNA in patients with early breast cancer and
found that 21 out of 44 patients had positive ctDNA. ctDNA
tracking during NAC outperformed imaging in predicting
the response to NAC, both in local response and general
tumor burden (patient 038). More importantly, positive
ctDNA before NAC is significantly associated with worse
prognosis in patients with early breast cancer, with the
significance mainly derived from ER-negative patients.

Many patients with early breast cancer still relapse af-
ter surgery because of clinically undetectable micro-
metastases. Current imaging methods are not sensitive
enough to detect micrometastatic lesions; even the most
sensitive positron emission tomography–computed to-
mography has the resolution limit at 4 mm.26 Recently,
ctDNA has been suggested to be an ideal tumor biomarker
because of its specificity, stability, and sensitivity. It is
shown to be better than traditional biomarkers and imaging
in predicting the relapse or progression in both early and
metastatic cancer.9,11,12,27-29 However, the best method to
measure ctDNA is uncertain. dPCR is cheaper and easier,
but it only measures one or few known mutations. Per-
sonalized dPCR is highly sensitive but requires sequencing
of tumor tissue and individualized bespoke probes. NGS
measures many mutations simultaneously and can identify
resistant clones newly emerged during treatment, but it is
also expensive. To our knowledge, this study used the
largest NGS panel so far to look for ctDNA in patients with
early breast cancer.

Using the large 1,021-gene panel, somatic mutations were
found in all the tumor biopsies. More importantly, positive
ctDNA was found in 47% of patients with early breast
cancer and 73% of ER-negative patients, which was
consistent with previous reports.12,16,17,30,31 The majority of
the ctDNA was confirmed in tumor mutation data, sug-
gesting that ctDNA can be used to detect tumor-specific

FIG 2. The baseline somatic mutations found in the plasma and tissue of patients with early breast cancer. (A) The baseline plasmamutations in
the 21 patients with positive circulating tumor DNA. Left panel shows mutations in individual patients with different ER and Her2 positivity; right
panel shows mutation frequency of individual genes. (B) Mutation profiles in the 32 paired tumor biopsy and plasma samples. Left panel shows
the concordance of mutations in the 32 patients; right panel shows the distribution of 143 mutations found in tissue and/or plasma. (C) The
mutation frequency of the top 15mutated genes found in baseline tumor biopsy. (D) The concordantmutated genes in both tumor and plasma of
the 14 patients.
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mutations in patients with early breast cancer. In the 21
patients with positive baseline ctDNA, 16 patients had
paired plasma and tumor biopsy samples for NGS analysis,
and 14/16 had at least one mutation confirmed in primary
tumors. With the high specificity, at 98.72%, the dis-
crepancy between the mutations in plasma and the mu-
tations in tumor may be explained by the small tumor
biopsy specimen not representing the whole primary tumor
or micrometastasis. Similar to previous studies, we found
that TP53 and PI3KCA were the most commonly mutated

genes both in tumor and plasma. But this study also
identified 24% (5/21) of patients with positive ctDNA who
had mutations other than TP53 and PI3KCA.

Interestingly, our data showed that dynamic change of
ctDNA can be used to monitor and predict the response to
NAC in early breast cancer. After one cycle of NAC, patients
who eventually responded well to NAC began to have lower
clonal VAF than that of patients with no response. After 2
cycles of NAC, patients who responded well showed sig-
nificantly lower clonal VAF than patients with no response.
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The change of ctDNA level after 2 cycles of NAC predicted
local tumor response to NAC better than ultrasound, al-
though this was not statistically significant. More impor-
tantly, patient 038 had increasing high levels of ctDNA even
when partial remission of primary tumor was confirmed by

imaging. Early recurrence of this case suggested the de-
velopment of resistance in undetectable micrometastases
during NAC. This indicates that ctDNA is superior to im-
aging in monitoring the overall response to NAC in early
breast cancer.
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Our results showed that baseline ctDNA has strong
prognostic value, especially in ER-negative patients. In-
terestingly, none of the four ER-negative patients with negative
baseline ctDNA relapsed during the follow-up, which was
strikingly different from the high relapse rate in ER-negative
patients with positive baseline ctDNA. This finding is in-
consistent with a previous report that showed postsurgery
ctDNA, but not baseline ctDNA, predicted early relapse in
breast cancer.12 However, the follow-up study of the afore-
mentioned report, which used dPCR assay, showed that
positive baseline ctDNA was a marker of poor prognosis, with
an HR similar to our study (5.8 v 5.7).17 These data together
indicate that the presence of ctDNA before NAC is amarker of
poor prognosis that helps physicians to distinguish the pa-
tients with high risk of metastasis from those with low risk.

Unfortunately, a significant portion of patients in our study
did not have plasma samples drawn after surgery, pre-
venting the comparison between baseline and postsurgery
ctDNA. Other limitations of this study include limited
sample size and suboptimal NAC cycles, which hinder
further subgroup analysis.

In conclusion, our study demonstrates the feasibility and
validity of ctDNA in patients with early breast cancer re-
ceiving NAC. Serial tracking of ctDNA has significant po-
tential to complement imaging-based tumor assessment
during NAC in early breast cancer. Moreover, the ctDNA
presence before NAC correlates with worse prognosis, es-
pecially in ER-negative patients. ctDNA analysis may help to
identify high-risk patients for escalating the treatment.
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FIG A1. Circulating tumor DNA distribution in patients with breast cancer. TNBC, triple-negative breast cancer.
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