
Downregulation of miR-205 and miR-31 confers
resistance to chemotherapy-induced apoptosis
in prostate cancer cells
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Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-
induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we
compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26
cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26
cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w)
and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and
miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene
was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the
downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-20-deoxycytidine induced miR-205 expression,
downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of
miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.
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Prostate cancer is one of the most common types of
cancer and the second leading cause of cancer death in
men (American Cancer Society). Surgery, radiation therapy,
and hormone therapy are generally effective for early and
localized cancers. However, as the prostate cancers progress
to advanced stages and metastasize, chemotherapy is the
only option and often fails to produce clinical response. It is
known that as the prostate cancers evolve from the
benign stage to more aggressive stages, they become more
resistant to apoptosis.1–5 The resistance to apoptosis has
been associated with increased expression of antiapoptotic
proteins Bcl-2, survivin, XIAP, and the multidrug resistance-
associated protein, as well as decreased expression of the
pro-apoptotic proteins Bax and Bak. The exact mechanism of
how advanced prostate cancers evade apoptosis remains
poorly defined.

microRNAs (miRNAs) are small 19–25 nucleotide-long,
single-stranded non-coding RNAs that silence target genes
by cleaving mRNA molecules or inhibiting translation.6 The
miRNAs are transcribed from their genes by pol II as long
pri-miRNAs and processed into B60–70 nucleotide-long
pre-miRNA by Drosha RNase III endonuclease.7 Another
RNase III endonuclease Dicer further processes the
pre-miRNAs and the mature single-strand miRNAs are
incorporated into the RNA-induced silencing complex (RISC)
to recognize and bind to target mRNAs. Recently, miRNAs

have been linked to cancer pathogenesis, regulating cell
cycle,8 differentiation,9,10 metabolism,11 invasion and meta-
stasis,12 as well as apoptosis.13

In cancer cells, tumor suppressor genes (RB1, CDKN2A,
CDKN1A, CDH1, GSTP1, and so on.) can be silenced through
hypermethylation of the CpG islands within the promoter
region.14 DNA methylation results in the recruitment of
proteins containing the methyl-CpG binding domain, which
in turn attract histone deacetylases and histone methyltrans-
ferases to modify histones and inhibit gene expression.15

More than 40 genes have been shown to be epigenetically
silenced by DNA methylation in prostate cancer.16 More
interestingly, hypermethylation of the promoters of ERa,
hMLH1, and p14/INK4a often occurs in advanced prostate
cancers.17 Recently, a number of tumor suppressing miRNAs
have been shown to be downregulated in cancer cells by
CpG island methylation-associated silencing.18–23 Thus,
epigenetic silencing of the tumor suppressing miRNAs may
contribute as a novel mechanism for cancer development.

WPE1-NA22 and WPE1-NB26 are prostate cancer cell
lines derived from immortalized human prostate epithelial
RWPE-1 cells by treatment with N-methyl-N-nitrosourea
and sequential xenografts in nude mice.24 Although the
WPE1-NA22 cells form small, non-invasive, well-differen-
tiated tumors in nude mice, the WPE1-NB26 cells are highly
malignant and form large, poorly differentiated, invasive
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tumors. We found that WPE1-NB26 cells were highly resistant
to apoptosis induced by various agents, whereas WPE1-
NA22 cells were sensitive. By comparing the miRNA expres-
sion profiles between the two cell lines, we found that miR-205
and miR-31 were significantly downregulated in WPE1-NB26
cells. Downregulation of the two miRNAs resulted in upregu-
lation of antiapoptotic proteins Bcl-w and E2F6 and resistance
to apoptosis. We further demonstrated that promoter hyper-
methylation of the miR-205 gene was responsible for its
downregulation in advanced prostate cancer cells.

Results

WPE1-NB26 cells are resistant to various apoptosis
stimuli. We compared the WPE1-NA22 (early cancer) and
WPE1-NB26 (advanced cancer) prostate cancer cell lines
for their responses to various apoptosis-inducing treatments.
As shown in Figure 1, WPE1-NB26 cells were significantly
more resistant to apoptosis induced by UV irradiation, H2O2,
and chemotherapeutic agents Docetaxel and Cisplatin, com-
paring with the WPE1-NA22 cells. Induction of apoptosis
was determined by the cell death ELISA assay measuring
mono and oligonucleosomes in the lysates of apoptotic cells.
The different apoptotic responses between the two cell lines
were also confirmed by annexin V staining (Supplementary
Figure 1A). To understand the mechanism that is responsible
for the apoptosis resistance in WPE1-NB26 cells, we
examined the expression of several apoptosis regulatory
proteins (including Bcl-xL, Mcl-1, XIAP, Bid, and Bax) in
the two cell lines. However, we did not observe a change in
the levels of these apoptosis regulators that can explain

the observed resistance in WPE1-NB26 cells. In fact, the
levels of both antiapoptotic proteins Mcl-1 and XIAP were
decreased in WPE1-NB26 cells, comparing with those in
WPE1-NA22 cells (Supplementary Figure 1B).

miR-205 and miR-31 are downregulated in WPE1-NB26
cells. To determine whether differential miRNA expression
has a role in the apoptosis resistance in WPE1-NB26 cells,
we compared miRNA expression profiles between WPE1-
NA22 and WPE1-NB26 cells, using the mirVana miRNA
Bioarray. Among the 471 human miRNAs examined, five
miRNAs were found to be decreased and five miRNAs were
found to be increased in WPE1-NB26 cells (Supplementary
Table 1). Among these miRNAs, miR-205 and miR-31 were
the most significantly downregulated ones in WPE1-NB26
cells, decreased by 93.1 and 77.1% of the levels in WPE1-
NA22 cells, respectively. The downregulation of miR-205 and
miR-31 in WPE1-NB26 cells were confirmed by real-time
PCR (Figure 2). We selected these two miRNAs to further
study their roles in prostate cancer apoptosis.

miR-205 and miR-31 are downregulated in advanced
prostate cancer cells. To determine whether miR-205 and
miR-31 are downregulated in other cell lines derived from
RWPE-1 and other malignant prostate cancer cell lines, we
analyzed the expression levels of the two miRNAs by real-
time PCR. As shown in Figure 2, the expression levels
of miR-205 and miR-31 showed sequential decrease as the
prostate cancer progresses from WPE1-NA22, WPE1-NB14,
WPE1-NB11, to WPE1-NB26, in the order of increasing
malignancy.24 Furthermore shown in Figure 2, miR-205 and
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Figure 1 WPE1-NB26 cells are resistant to apoptosis. WPE1-NA22 and WPE1-NB26 cells were treated with the following apoptosis-inducing stimuli and apoptosis
was analyzed using the Cell Death Detection Elisa kit as described in Materials and Methods section. (a) Cells were exposed to various doses of UV and then cultured for 24 h.
(b) Cells were treated with various doses of H2O2 for 24 h. (c) Cells were exposed to various doses of Docetaxel for 24 h. (d) Cells were treated with various doses of Cisplatin
for 24 h. All experiments have been repeated three times, data shown are mean valuesþS.D. (*Po0.05, **Po0.01, ***Po0.001)
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miR-31 were significantly downregulated in PC-3, LNCaP,
Du145, 22Rv1, VCaP, and PC-3M cells. We determined the
responses of these cells to chemotherapy-induced apop-
tosis. As shown in Supplementary Figure 2A and 2B, while
RWPE-1 cells were sensitive to Cisplatin- and Docetaxel-
induced apoptosis, WPE1-NB14 and WPE1-NB11 cells were
resistant to these drugs as the levels of miR-205 and miR-31
were decreased in these cells. Du145 and 22Rv1 cells were
relatively resistant to Cisplatin (comparing with RWPE-1 and
WPE1-NA22 cells, but to a lesser degree when comparing
with PC-3 cells), and both Du145 and PC-3 cells were
more resistant to Docetaxel than the 22Rv1 cells (Supple-
mentary Figure 2C and 2D). As these cell lines all express
low levels of miR-205 and miR-31, we reason that other
drug-resistance mechanisms may contribute to the observed
differences among their responses to these agents. How-
ever, despite the differences of their responses, they were
all relatively resistant to Cisplatin and Docetaxel when
compared with the RWPE-1 and WPE1-NA22 cells, which
express higher levels of miR-205 and miR-31.

miR-205 targets Bcl-w and miR-31 targets E2F6. Using
the computational methods available at http://www.microrna.org
and miRBase (http://microrna.sanger.ac.uk/), we identified
Bcl-w as the potential target for miR-205, and E2F6 as the
potential target for miR-31. Bcl-w is an antiapoptotic member
of the Bcl-2 family proteins.25 E2F6 inhibits UV- and hypoxia-
induced apoptosis.26,27 The antiapoptotic properties of Bcl-w
and E2F6 make them interesting targets for miR-205 and

miR-31. The BCL2L2 mRNA (encoding Bcl-w) contains a
30 untranslated region (30UTR) sequence that is partially
complementary to miR-205, and the E2F6 mRNA has a
30UTR recognized by miR-31 (Figure 3a). When a cDNA
fragment containing the 30UTR sequence of BCL2L2 was
inserted downstream of the green fluorescent protein (GFP)
gene in the pEGFP-C1 plasmid and the plasmid was
transfected into WPE1-NB26 cells together with pcDNA6.2-
GW-miR-205 (to overexpress miR-205), GFP expression
was reduced comparing with cells transfected with pEGFP-
BCL2L2-30UTR and pcDNA6.2-GW-negative-control plas-
mids (Figure 3b, left). Similarly, miR-31 overexpressed
from pcDNA6.2-GW-miR-31 decreased the expression of
GFP when GFP was fused with E2F6 30UTR (Figure 3b,
right). The functions of the miRNAs were dependent on the
miRNA binding sites within the BCL2L2 and E2F6 30UTRs,
as GFP expression was not reduced by the miRNAs when
the binding sites were mutated (Figure 3b). The expression
levels of the Bcl-w and E2F6 proteins were increased in
WPE1-NB14, WPE1-NB11, and WPE1-NB26 cells com-
paring with the RWPE-1 and WPE1-NA22 cells (Figure 3c),
agreeing with that miR-205 and miR-31 may regulate the
expression of these two proteins. Bcl-w and E2F6 levels
were also increased in Du145, LNCaP, PC-3, and 22Rv1
cells, comparing with RWPE-1 cells (Supplementary Figure
3A). To confirm that miR-205 regulates Bcl-w and miR-31
regulates E2F6, we overexpressed miR-205 and miR-31 in
WPE1-NB26 cells using the pcDNA6.2-GW-miR miRNA
expression vectors (Figure 3d, left). Overexpression of
miR-205 and miR-31 downregulated Bcl-w and E2F6,
respectively (Figure 3d, middle). Conversely, transfection of
WPE1-NA22 cells with anti-miR miRNA inhibitors specific to
miR-205 and miR-31 increased the protein levels of Bcl-w
and E2F6, respectively (Figure 3d, right). The anti-miR-205
and anti-miR-31 inhibitors also blocked Docetaxel-induced
apoptosis in WPE1-NA22 cells (Supplementary Figure 3B).
In addition, we found that treatment with Cisplatin induced
miR-205 and miR-31 expression in WPE1-NA22 cells and
induced miR-31 expression in WPE1-NB26 cells (Supple-
mentary Figure 4). Docetaxel had no significant effects on
the expression of these miRNAs.

Bcl-w and E2F6 confer resistance to chemotherapy-
induced apoptosis. We expressed Bcl-w and E2F6 exo-
genously to determine whether these proteins can contribute
to apoptosis resistance in prostate cancer cells. To avoid
toxicities associated with transient transfection, we created
stable WPE1-NA22 cell lines expressing Bcl-w or E2F6.
Overexpression of Bcl-w or E2F6 was confirmed by western
blotting (Figure 4a and c). When treated with Docetaxel or
Cisplatin, two agents used clinically to treat prostate cancer,
cells stably expressing Bcl-w were significantly resistant
to drug-induced apoptosis, comparing with empty vector-
transfected cells (Figure 4a and b). Similarly, cells stably
expressing E2F6 were also resistant to Docetaxel and
Cisplatin (Figure 4c and d). Induction of apoptosis was also
measured by annexin V staining (Supplementary Figure 5A
and 5B). Bcl-w- and E2F6-conferred resistance to drug-
induced apoptosis was confirmed by three independent
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clones of Bcl-w or E2F6 stable expressing cell lines (Supple-
mentary Figure 6A and 6B).

miR-205 and miR-31 sensitize prostate cancer cells
to chemotherapy-induced apoptosis. To determine the
effects of miR-205 and miR-31 on chemotherapy-induced
apoptosis in prostate cancer cells, we established WPE1-
NB26 cell lines stably expressing miR-205 or miR-31. As
shown in Figure 5a and c, stable expression of miR-205
and miR-31 was confirmed by real-time PCR analysis.
Overexpression of miR-205 sensitized WPE1-NB26 cells
to apoptosis induced by both Docetaxel and Cisplatin
(Figure 5a and b). Similarly, stable expression of miR-31
also sensitized WPE1-NB26 cells to apoptosis following
exposure to these agents (Figure 5c and d). Differences in
apoptotic responses were also measured by annexin V
staining (Supplementary Figure 5C and 5D). Sensitization to
drug-induced apoptosis by miR-205 and miR-31 was
confirmed using three independent clones of miR-205 or
miR-31 stable expressing cell lines (Supplementary Figure
6C and 6D).

Promoter hypermethylation causes the downregulation
of miR-205 in advanced prostate cancer. To determine
the mechanism of how miR-205 and miR-31 were down-
regulated in prostate cancer cells, we explored whether
epigenetic silencing by promoter hypermethylation had a role

in their expression. We first performed rapid amplification
of 50 complementary DNA ends (50 RACE) experiments to
identify the transcription start site and the promoter for the
miR-205 gene. The gene encoding miR-205 is located on
chromosome 1. The transcription start site for miR-205 was
identified and a CpG island was found in the promoter region
of the miR-205 gene about 300 base pairs in front of the first
exon (Figure 6a). The CpG island is potential site to be
modified by methylation. To determine whether the miR-205
promoter is methylated in prostate cancer cells, we isolated
genomic DNAs from various prostate cancer cell lines,
treated the DNA with sodium bisulfate, and performed
methylation-specific PCR using appropriate primers that
could detect the methylated or unmethylated promoter
DNAs. As shown in Figure 6b, methylation of the miR-205
CpG island was detected in Du145, PC-3, LNCaP, 22Rv1,
WPE1-NB11, WPE1-NB14, and PC-3M cells, but not in
WPE1-NA22 and WPE1-NB26 cells. When PC-3M cells
were treated with 5-aza-20-deoxycytidine, an inhibitor of the
DNA methyltransferase, the level of miR-205 was increased
(Figure 6c, top). Conversely, the protein level of Bcl-w was
decreased after treatment with 5-aza-20-deoxycytidine
(Figure 6c, bottom). Transfection with anti-miR-205 inhibitor
blocked the decrease of Bcl-w caused by 5-aza-20-deoxy-
cytidine (Figure 6c, bottom). We then tested whether 5-aza-
20-deoxycytidine can potentiate Cisplatin-induced apoptosis
in PC-3M cell. As shown in Figure 6d and e, pre-treatment
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with 5-aza-20-deoxycytidine significantly enhanced Cisplatin-
induced apoptosis, possibly through activating miR-205
expression. The effects of 5-aza-20-deoxycytidine were
blocked by synthetic anti-miR-205 inhibitor. We also cloned
the miR-31 gene promoter. However, the results of miR-31
promoter methylation studies were inconclusive. While
5-aza-20-deoxycytidine induced a modest increase of
miR-31 expression (about 50% increase) in PC-3M cells, it
failed to induce miR-31 expression in other prostate cancer
cell lines (data not shown).

Discussion

MicroRNAs have been indicated to have important roles in the
regulation of cancer cell functions including differentiation,
proliferation, apoptosis, and metastasis.28,29 In this study,
we have demonstrated that miR-205 and miR-31 regulate
apoptosis in prostate cancer cells by targeting antiapoptotic
proteins Bcl-w and E2F6. In prostate cancer cell lines derived
from advanced metastatic cancers, miR-205 and miR-31 are
downregulated to contribute to the resistance to chemo-
therapy-induced apoptosis. Thus, our data have established a
mechanistic basis to explain the resistance to chemotherapy
often observed in advanced prostate cancers. This study has
also identified miR-205 and miR-31 as key targets to improve
prostate cancer response to chemotherapy.

It is known that miRNAs can target many mRNAs and Bcl-w
and E2F6 are not the sole targets of miR-205 and miR-31.
Other genes targeted by these miRNAs could also have a role

in prostate cancer apoptosis. However, as shown by our
studies using Bcl-w and E2F6 stable expressing cell lines,
these two proteins confer strong resistance to chemotherapy-
induced apoptosis, supporting a key role in mediating the
effects of miR-205 and miR-31 on apoptosis. Bcl-w is a
member of the Bcl-2 family proteins25 and inhibits apoptosis
by blocking the intrinsic pathway of apoptosis.30 E2F6 is
a strong transcription repressor and suppresses both
UV- and hypoxia-induced apoptosis.26,27 It is likely that E2F6
blocks apoptosis by suppressing the expression of certain
pro-apoptotic genes. The individual contribution of miR-205
and miR-31 (as well as Bcl-w and E2F6) to apoptotic response
in prostate cancer cells remains to be established. From the
data shown in our studies using the stable cell lines (Figures 4
and 5), overexpression of miR-31 alone seems to be sufficient
to induce apoptosis in WPE1-NB26 cells at comparable level
to WPE1-NA22 cells. In addition, although Bcl-w blocks
Cisplatin-induced apoptosis more effectively than E2F6 in the
overexpression experiments, miR-31 seems to be more
efficient in sensitizing WPE1-NB26 cells to Cisplatin. These
observations could be explained by the possible suppression
of other target genes with miR-31 overexpression, which may
contribute to the increased induction of apoptosis in response
to Cisplatin.

Although we found CpG island methylation in the promoter
of miR-205 in various advanced prostate cancer cell lines, we
did not detect DNA methylation of the miR-205 promoter in
WPE1-NB26 cells. Thus, other mechanisms may be behind
the downregulation of miR-205 in the WPE1-NB26 cells.
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Figure 6 Promoter hypermethylation suppresses the expression of miR-205 in advanced prostate cancer cells. (a) The putative transcription start site (indicated by þ 1)
and genomic sequences of the miR-205 gene is shown. The mature miR-205 sequence is indicated by ‘-’. The DNA fragment covered by methylation-specific PCR is
indicated by ‘–’. The locations of the first four exons on the chromosomes were indicated. (b) Methylation-specific PCR was performed as described in Materials and Methods
section, using genomic DNA isolated from the indicated cells lines. M, methylated DNA; U, unmethylated DNA. Bottom, control PCR was done using Qiagen EpiTect
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Certain types of histone modifications can function as a
silencing mechanism independent of DNA methylation. For
example, it is found that histone H3K27 trimethylation is
responsible for epigenetic silencing of miR-22 independent of
promoter methylation.31 Alternatively, downregulation of the
transcription factors that are required for miR-205 expression
may contribute to the silencing of the miRNA in WPE1-NB26
cells. Whether DNA methylation contributes to the down-
regulation of miR-31 in prostate cancer is not clear. Factors
discussed above may have a role in the silencing of miR-31.
In addition, mutations or deletions of the miR-31 gene may
also be key reasons behind the downregulation of the miRNA
in prostate cancer.

Our data indicate that downregulation of miR-205 and
miR-31 may represent a key step in prostate cancer progres-
sion into the more aggressive and chemo-resistant cancers.
Strategies to reactivating the expression of these miRNAs
(such as the use of 5-aza-20-deoxycytidine in our study) may
prove successful to overcome resistance to chemotherapy
in advanced prostate cancers.

Materials and Methods
Cells and transfection. The cell lines RWPE-1, WPE1-NA22, WPE1-NB14,
WPE1-NB11, WPE1-NB26, PC-3, LNCaP, 22Rv1, VCaP, and Du145 were
purchased from American Type Culture Collection (Manassas, VA, USA). The
RWPE-1, WPE1-NA22, WPE1-NB14, WPE1-NB11, and WPE1-NB26 cells were
cultured in Keratinocyte Serum Free Medium (K-SFM, Invitrogen, Carlsbad, CA,
USA), supplemented with bovine pituitary extract and human recombinant
epidermal growth factor. PC-3, LNCaP, 22Rv1, VCaP, and Du145 cells were
cultured in RPMI1640 media containing 10% FBS. For transient transfection,
plasmids were transfected into cells using LipofectaminePlus Reagent (Invitrogen)
following the manufacturer’s protocol. miRNA mimics and inhibitors were
transfected into cells using X-treme GENE siRNA transfection reagent (Roche,
Indianapolis, IN, USA) following the manufacturer’s protocol.

Drugs and chemicals. Hydrogen peroxide, Docetaxel, and Cisplatin were
purchased from Sigma (St. Louis, MO, USA).

Plasmids construction, miRNA mimics and inhibitors. The 30UTR
cDNA fragments of BCL2L2 and E2F6 genes were obtained by PCR using EST
clones as templates. The 30UTR cDNAs were inserted into pEGFP-C1 plasmid at
the 30 end of the EGFP cDNA (Xho I and BamH I). The pEGFP-C1-30UTR plasmids
containing mutations within the miRNA recognition sites (AAGG to TTCC mutation
for BCL2L2 30UTR, and TTGC to AACG mutation for E2F6 30UTR) were created by
PCR using the QuickChange II site-directed mutagenesis kit (Stratagene, Santa
Clara, CA, USA), following the supplied protocol. The full-length BCL2L2 and E2F6
cDNAs were obtained by PCR using EST clones as templates and constructed into
pcDNA3-HA vector for creation of the stable expression cell lines. To construct
miRNA expression vectors, double-strand oligoes containing pre-miR-205 or pre-
miR-31 were cloned into pcDNA6.2-GW/EmGFP-miR plasmids (Invitrogen) by
directional cloning. For co-transfection of pEGFP-C1-30UTR and miRNA expression
vectors, EmGFP was removed using Dra I digestion to create pcDNA6.2-GW-
miR-205 and pcDNA6.2-GW-miR-31. miRIDIAN miR-205 and miR-31 mimics
(Cat# C-300564-05 and C-300507-05, respectively) and negative control miRNA
(Cat# CN-001000-01-05) were purchased from Dharmacon (Lafayette, CO, USA).
Anti-miR miRNA inhibitors for miR-205 and miR-31 (ID AM11015 and AM11465,
respectively) were purchased from Ambion (Austin, TX, USA).

Creation of stable expression cell lines. Stable cell lines expressing
Bcl-w or E2F6 were established by transfection of WPE1-NA22 cells with pcDNA3-
HA-BCL2L2 or pcDNA3-HA-E2F6. Colonies were selected in G418-containing
media and cloned with cloning cylinders. Overexpression of Bcl-w or E2F6 was
determined by western blotting with anti-HA antibodies. Stable cell lines expressing
miR-205 or miR-31 were established by transfection of WPE1-NB26 cells with
Block-iT Pol II miR expression vectors: pcDNA6.2-GW/EmGFP-miR-205 or

pcDNA6.2-GW/EmGFP-miR-31. Colonies were selected in Blasticidin-containing
media and cloned with cloning cylinders. Overexpression of miR-205 and miR-31
were determined by real-time PCR analysis.

Western blot analysis. Cells were lysed in RIPA buffer (1% NP-40, 0.5%
sodium deoxycholate, 0.1% SDS in PBS). Complete protease inhibitor cocktail
(Roche) was added to lysis buffer before use. Protein concentration was determined
by Bio-Rad DC protein assay (Bio-Rad, Hercules, CA, USA). Protein samples were
subjected to SDS-PAGE and transferred to nitrocellulose membrane. The
membrane was blocked in 5% non-fat milk in PBS overnight and incubated with
primary antibody and subsequently with appropriate horseradish peroxidase-
conjugated secondary antibody. Signals were developed with ECL reagents
(Pierce, Rockford, IL, USA) and exposure to X-ray films. Anti-Bcl-w polyclonal
antibody was purchased from Stressgen or Enzo (Plymouth Meeting, PA, USA).
Anti-b-tubulin and anti-E2F6 antibodies were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA).

Real-time PCR. The miRNA expression was measured by real-time PCR using
TaqMan MicroRNA assays (Cat # TM509 for miR205, TM1100 for miR-31) from
Applied Biosystems (Foster City, CA, USA). Total RNA was isolated from cells using
mirVana miRNA Isolation Kit (Ambion). A measure of 5 mg of total RNA was used
in reverse transcription reaction. The cDNAs were used as templates to perform
PCR on an Applied Biosystems 7500 Real-time PCR System following the
manufacturer’s protocol. Relative miRNA expression levels were calculated using
18S RNA as reference.

miRNA expression profiling. Total RNAs were isolated from WPE1-NA22
and WPE1-NB26 cells using the mirVana miRNA Isolation Kit (Ambion). miRNAs
were further concentrated with the flashPAGE Fractionator System (Ambion). The
miRNAs from WPE1-NA22 and WPE1-NB26 cells were labeled with the mirVana
miRNA Labeling Kit (Ambion) with Cy3 or Cy5 Post Labeling Reactive Dye
(Amersham Biosciences, Piscataway, NJ, USA), respectively. The probes were
then hybridized to the mirVana miRNA Bioarrays (Ambion) overnight. The array
slides were scanned with an Aron 4000B Genepix Microarray Scanner and
analyzed with the Genepix software (Molecular Devices, Sunnyvale, CA, USA).

50 RACE. The transcription start site of miR-205 pri-miRNA was identified by
50RACE experiments with FirstChoice RLM-RACE kit from Ambion, using total RNA
isolated from WPE1-NA22 cells as template.

Methylation-specific PCR. The bisulfate conversion of cytosine to uracil
of the genomic DNA was performed with the EZ DNA Methylation-Gold kit from
Zymo Research (Orange, CA, USA). Methylation-specific PCR was done with
the following primers: miR-205 methylated forward, 50-GAGTTTAAGTTGCGT
ATGGAAGC-30, reverse, 50-AAAACAAATATTTCTTTTATAATCCGAA-30. miR-205
unmethylated forward, 50-GGAGTTTAAGTTGTGTATGGAAGTG-30, reverse, 50-AA
AACAAATATTTCTTTTATAATCCAAA-30. Bisulfite converted methylated and
unmethylated human control DNAs (EpiTect PCR Control DNA Set from Qiagen,
Valencia, CA, USA) were used as positive control.

Detection of apoptosis. The Cell Death Detection Elisa kit (Roche) was used
to detect apoptosis following the manufacturer’s protocol. This assay determines
apoptosis by measuring mono and oligonucleosomes in the lysates of apoptotic
cells. The cell lysates were placed into a streptavidin-coated microplate and
incubated with a mixture of anti-histone-biotin and anti-DNA-peroxidase. The
amount of peroxidase retained in the immunocomplex was photometrically
determined with ABTS as the substrate. Absorbance was measured at 405 nm.
For annexin V staining, cells were washed with cold phosphate-buffered saline
(PBS) and diluted in annexin-binding buffer at 1� 106 cells/ml. A volume of 5 ml of
annexin V fluorescein conjugate (Invitrogen) was added to each 100ml of cell
suspension and cells were incubated at room temperature for 15 min. After
incubation, cells were analyzed by flow cytometry.

Statistical analysis. Differences between the mean values were analyzed for
significance using the unpaired two-tailed Student’s test for independent samples;
Pr0.05 was considered to be statistically significant.
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