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Abstract
Purpose In robotic-assisted partial nephrectomy (RAPN), the use of intraoperative ultrasound (IOUS) helps to localise
and outline the tumours as well as the blood vessels within the kidney. The aim of this work is to evaluate the use of the
pneumatically attachable flexible (PAF) rail system for US 3D reconstruction of malignant masses in RAPN. The PAF rail
system is a novel device developed and previously presented by the authors to enable track-guided US scanning.
Methods We present a comparison study between US 3D reconstruction of masses based on: the da Vinci Surgical System
kinematics, single- and stereo-camera tracking of visual markers embedded on the probe. An US-realistic kidney phantom
embedding a mass is used for testing. A new design for the US probe attachment to enhance the performance of the kinematic
approach is presented. A feature extraction algorithm is proposed to detect the margins of the targeted mass in US images.
Results To evaluate the performance of the investigated approaches the resulting 3D reconstructions have been compared to
a CT scan of the phantom. The data collected indicates that single camera reconstruction outperformed the other approaches,
reconstructing with a sub-millimetre accuracy the targeted mass.
Conclusions This work demonstrates that the PAF rail system provides a reliable platform to enable accurate US 3D recon-
struction of masses in RAPN procedures. The proposed system has also the potential to be employed in other surgical
procedures such as hepatectomy or laparoscopic liver resection.

Keywords 3D ultrasound · Laparoscopy · Surgical robotics · Soft robotics

Introduction

Pre-operative medical imaging techniques like computed
tomography (CT) [1] andmagnetic resonance imaging (MRI)
[2] are generally used during the diagnostic stage of interven-
tional healthcare. This information is however not effectively
utilised during surgery at present. To ensure the surgical
removal of the targeted mass is carried out without leaving
any malignant tissue behind, IOUS [3] is performed. IOUS
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is regarded as the most effective intraoperative localisation
and outlining of malignant masses in robot-assisted mini-
mally invasive surgical procedures like partial hepatectomy
[4] and partial nephrectomy [5] and for identifying blood
vessels within the organ. In the context of RAPN, a drop-
in transducer is deployed through a trocar port (11–13 mm
depending on the model of the probe used) inside the patient
abdomen, grasped with a dedicated laparoscopic tool and
swiped on the targeted kidney. IOUS provides a view of the
target mass that is not affected by overlying structures such
as subcutaneous fat, bowel gas, or bones [6] while also avoid
continuous exposition to ionising radiation as in intraopera-
tive fluoroscopy or dyna-CT.

According to [7], during RAPN the surgeon uses a drop-in
transducer to localise the malignant mass sliding the drop-in
US probe on the surface of the kidney. Swipe by swipe the
surgeon marks with an electro-cautery tool the margins of
resection on the kidney’s surface. The US images are amal-
gamated and then visualised in real-time on the display of
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the console of the da Vinci� Surgical System (Intuitive Sur-
gical Inc., Sunnyvale, CA, US). When marking the margins
of resection, a portion of healthy tissue must be removed
around the malignant tissue to minimise the risk of relapse.
Depending on the tool configuration adopted and on the
patient-specific pathology there are two possible scenarios:
(1) The US probe can be used at the same time of the electro-
cautery tool [8]; (2) the US probe needs to be released to hold
the electro-cautery tool [9]. In the latter scenario, given that
the US images are displayed in real-time, the surgeon must
memorise the position of the targeted mass while switching
to the electro-cautery tool. Additionally, due to the mor-
phology of the kidney, multiple swipes and multiple organ
re-positioning actions are generally required, further increas-
ing the cognitive load and the risk of organ perforation and
internal bleeding. In [10] the potential benefit of the use of
real-time US overlay intraoperatively has been discussed to
reduce these risks. In [11], the authors also raise the prob-
lem of the carcinogenic hazard posed by the surgical smoke
produced by the electro-cautery tool.

Instead of physically outlining the margins on the sur-
face of the kidney, the relative position of the tumour can be
presented using 3D-reconstructed ultrasound images of the
targetedmass overlaid on the 3Dviewer of the daVinci� Sur-
gical System. Instead of producing a series of cross-sectional
US images, 3D ultrasound [12] produces a volume to recon-
struct the anatomy of the targeted organ. Firstly introduced
in [13], there are different approaches to 3D US including:
freehand [14], generating a 3D ultrasound image by insert-
ing a series of 2D images with the correct correspondences
in desired coordinates, mechanically steered [15], imple-
menting a mechanical steering system that sweeps a linear
probe back and forth within fixed housing in certain man-
ners, mechanically rotated [16], producing a 3D image by
controlled retraction of the transducer and 2D-phased array
probe [17], a specifically designed transducer that outputs a
3D volume instead of a cross-sectional image. Considering
the RAPN scenario and the linear drop-in transducer used
we are in the case (1). Two major challenges exist when per-
forming 3D reconstruction based onUS images in a freehand
scenario. The first is to guarantee contact with the targeted
surface in order to generate a high-quality ultrasound image.
The second is the acquisition of accurate poses of the trans-
ducer while performing the scanning. Although the scanning
process is simplified thanks to the dexterity of the robotic-
assisted tool, due to the limited operation space and the
slippery of the target surface, this procedure is regarded as
challenging and it requires skilled clinicians to be success-
fully performed.

In [18], the concept of pneumatically attachable flexible
(PAF) rails has been proposed by the authors to enable track-
guided IOUS scanning in RAPN. Illustrated in Fig. 1, the
proposed system is composed of two components: the PAF

rail and a customised clip-on attachment to be installed on
the drop-in US transducer to enable mechanical coupling
between the probe and the rail. The PAF rail is first affixed
on the surface of the target organ which is the kidney in
the study presented, however, the authors highlighted how
the use of this system can be extended to other organs, e.g.
the liver, and other procedures, e.g. partial hepatectomy. The
PAF rail attaches on the organ by means of a series of bio-
inspired suction cups. A vacuum pump is used to produce
suction. Once the transducer is paired with the rail by means
of the add-on attachment installed on it, the probe can be
moved along the rail to perform the scanning sequence. By
employing such system a clear and stable trajectory is defined
by the rail and the pairing between the probe and the PAF
rail also constrains the movement of the probe reducing its
degrees of freedom (DOFs) from six to two: sliding along
the rail and rotating around the attachment joint. As a result,
the ultrasound probe cannot slide away from the surface and
the rotational DOF is the only one that needs to be controlled
to ensure contact between the probe and the surface. The
resulting modified procedure is deskilled in comparison to
the original one and potentially faster. Ultimately, this will
enable super-imposition of the 3D reconstructed images onto
the surgical images, removing the need for multiple swiping
and outlining.

In this paper, we investigate how to create 3D images of
the malignant masses typically targeted in RAPN based on
the cross-sectional US images collected with the US probe
when the PAF rail system is used. The objective of the experi-
mental analysis presented here is to evaluate the performance
of different tracking methods. The data presented have been
collected using a first-generation da Vinci� Surgical System
and the da Vinci� Research Kit (dVRK) to extract kinemat-
ics data of the patient-side manipulator (PSM) as well as
videos of the stereo endoscope, building also on the work of
the authors on autonomous pick-and-place of the PAF sys-
tem presented in [19]. In this comparison study, we analyse
the performances of three different approaches to estimate
the pose of the US probe to perform 3D reconstruction of
US images of a malignant mass: robot kinematics (I), visual
markers embedded on the probe using single camera (II) and
stereo vision (III). The resulting 3D reconstructed images of
the targeted mass are then compared with a CT scan image
that is used as the ground truth.

The paper is organised as follows: In section “Methods”
the methods are discussed, including the hardware modifica-
tions implemented on the PAF rail system presented in [18]
to improve the pairing between the grasper and the probe, as
well as the modifications to embed the visual features. The
proposed algorithm to segment the targeted mass is also pre-
sented. In section “Results” the overall experimental setup is
presented together with the results. In section “Conclusions”
the conclusions are presented.
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Fig. 1 Pneumatically attachable
flexible rails: overview of the
system when used to guide a
drop-in US probe for tumour
margins outlining in RAPN
procedures
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Fig. 2 Grasping comparison: a
grasping configuration between
the EndoWrist� PrograspTM

Forceps gripper and the BK
X12C4 drop-in US probe in
standard clinical use and b when
the custom connector for the
PAF rail system is embedded
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Methods

Hardwaremodifications to the system

The work presented in this paper builds on the design pre-
sented in [18] where experiments were conducted to evaluate
different designs of the PAF rail in order to maximise its
adherence to the targeted organs. In this work, the optimised
PAF rail design discussed in [18] is used to perform the tests
described in the next section. Here a new custom attachment
developed for the drop-inUS probeBKX12C4 (BK-Medical
Holding Inc., Peabody, Massachusetts) is introduced for the
first time. The new attachment presents a number of new
design features. As shown in Fig. 2, where a side-by-side
comparison between the standard system and custom sys-
tem is presented, the standard connector of the drop-in US
probe is significantly smaller than the slot of the tool used
to grasp it. This results in the grasping configuration, hence,
the relative orientation between the tool and the probe, being
different every time the two are paired. This makes the use
of the inverse kinematic description of the manipulator unre-
liable for the computation of the position of the probe. With
the system presented in Fig. 2b this problem does not sub-
sist because the attachment embeds a slot that is designed
to match exactly the cavities of the EndoWrist� PrograspTM

Forceps, ensuring that only one grasping configuration is pos-
sible. This allows significantly more accurate computation

of the probe position using the inverse kinematic description
of the manipulator. Another modification is also shown in
Fig. 2b: three squared slots have been added on each side of
the attachment to embed visual markers. In our experiments,
ArUco markers [20] are affixed into these slots.

Pose estimation using kinematics

As introduced in section “Introduction”, kinematics data of
the PSM can be recorded via the dVRK, which is the pose
between the robot base and the current end-effector in the
Cartesian space. Also, the scaling factors of the ultrasound
image are given. In order to generate a 3D ultrasound model,
we need to determine the transformation between the end-
effector (E) and the ultrasound image plane (P) TP

E. By
assuming there is a fixed grasping configuration between the
end-effector and the transducer, the desired transformation
is calculated as:

TU
B = TE

B · TP
E · VU

P (1)

where T is 4-by-4 transformation matrices composed of a
3-by-3 rotation matrix and a 3-by-1 translation vector, TE

B is
the recorded PSM data presented as 4-by-4 transformation
matrices,TP

E is the unknown 4-by-4 transformation remained
to be determined and VU

P is the 4-by-1 vector containing

123



1150 International Journal of Computer Assisted Radiology and Surgery (2020) 15:1147–1155

scaling factors that transform from world coordinate system
in mm to ultrasound image plane in pixel.

In order to calculate TP
E, a calibration experiment is

conducted following the rigid-body point-based registration
method detailed in [21–23]. Multiple swipes are performed
using the ultrasound transducer on the surface of a tank filled
with water with a silicon carbide ceramic sphere glued to the
bottom, keeping the sensing surface of the probe submerged
and pointed towards it. In this experiment, TP

E is calculated
by minimising the fiducial registration error (FRE), which
can be represented as:

FRE2 ≡ 1

N

N∑

t=1

|Rx + t − y|2 (2)

where N is the number of data, x is the 3D coordinate of
fiducial points observed in one coordinate system, y is the
3D coordinate observed in the other coordinate system and
T = [R t] is the rigid transformation matrix that maps
fiducial points from one coordinate systems to the other
one. Stated in [23], the solution can be calculated using
singular value decomposition (SVD) [24]. This experiment
is developed based on an assumption that the connection
between the end-effector and the transducer is only onegrasp-
ing configuration, which, as explained in section “Hardware
modifications to the system”, is not in the original design.
After switching to the updated attachment, the grasping
configuration is physically constrained and TP

E is measured
directly from the CAD model.

Optical tracking

After switching to the updated attachment, there are three
square marker slots on each side of the transducer, where
visual markers are affixed. Shown in Fig. 2b, the Aruco
marker is a N-by-N asymmetric rectangular matrix with a
black boundary. Eachmatrix is designed to be unique and can
be generated or decoded using specific dictionaries. Thus, we
can affix multiple markers on the same side for comparison.
The detection of the Aruco marker requires a series of steps:
(1) Segment the original image and apply edge detection. (2)
Enhance borders and extract rectangular contours. (3) Per-
form perspective projection and separate the targeted region
into regular binary grids. (4) Generate four sets of codes
corresponding to four possible rotations of targeted grids.
(5) Check if any of these codes match the dictionary. As a
result, we are able to know the ID of the marker together
with its orientation and four corner coordinates if there is
a match in the dictionary. The pose of the marker then can
be estimated by solving a Perspective-n-Point (PnP) prob-
lem. Meanwhile, we also triangulate corner points by means
of stereopsis visual cues from the stereo endoscope, which

gives us four 3D coordinates of the targeted marker. The
pose then is estimated by solving a least-square optimisation
problem using SVD [25]. For both visual tracking methods,
the pose we estimated is in the camera coordinate. Because
the markers we used are affixed into the marker slots on the
attachment, which is directly mounted onto the transducer,
there are constant transformations from the marker slots to
the US image plane that can be measured from the CAD
model.

Tumour segmentation and visualisation

Suffering from the speckle noise, it is difficult to segment
the mass from the phantom in ultrasound images. Thus, a
feature extraction algorithm is proposed to detect the region
of the mass and outline its boundary, which is summarised
as follows:

1. Apply a high-pass filter to the image to sharpen it;
2. Apply image thresholding to the sharpened image;
3. Find the connected components using blob analysis;
4. Apply edgedetector to targeted components andfind their

contours;
5. Fit an ellipse to each contour in the original image.

An example of the application of feature extraction
algorithm is available at the following link: https://bit.ly/
2UJmEk6. In this case, the region of the mass is replaced
by an ellipse with high greyscale value. To eliminate false
positives in the detection, we mark certain frames that can
see the targeted mass and only apply the algorithm on these
frames with a predefined rectangular region. We also kept
the bottom surface of the phantom in the segmented image
for comparison. The 3D model is generated using the PLUS
software library [26], by which segmented US images are
inserted into a 3D space with their poses calculated with our
approach.

Results

Experimental setup

Illustrated in Fig. 3, the proposed system consists of a
standard da Vinci� surgical system, a BK5000 ultrasound
machine with a X12C4 drop-in transducer (BK-Medical
Holding Inc., Peabody, Massachusetts) and an updated PAF
rail system. The surgical system is equipped with a forceps
gripper and a stereo endoscope. The endoscope produces
576i stereo images at≈ 30 Hz via the dVRK, while kinemat-
ics is streamed at 60 Hz; US images are recorded at 60 Hz
by the da Vinci� logger (courtesy of Intuitive Surgical Inc.,
Sunnyvale, CA, US). Considering the unstable frame rate
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Fig. 3 Experimental setup for phantom tests: the setup includes: the
PVA kidney phantom embedding the targeted mass, the PAF rail sys-
tem, the drop-in US probe BKX12C4 embedding the custom connector
to enable mechanical coupling with the PAF rail system, the BK-5000
US cart to collect the US data, the da Vinci� Surgical System (I Gen-
eration) fitted with the EndoWrist� PrograspTM Forceps to drive the

drop-in US probe and the EndoWrist� Large Needle Driver to position
the PAF rail, the da Vinci� Research Kit to collect kinematic and video
data, the Panasonic camera controller to collect the data from the stereo
endoscope and the single-stage vacuum pump to supply the vacuum
pressure to the PAF rail to enable suction between the suction cup and
the phantom surface

of the endoscopic images and possible frame drops, all the
data are synchronised and downsampled to 25 Hz. The suc-
tion of the PAF rail system is generated by a vacuum pump,
kept in a vacuum chamber and monitored with the embedded
manometer. Three Arucomarkers are affixed onto the add-on
attachment which is mounted to the transducer to facilitate
optical tracking. Tracking of the Aruco markers relies on
having clear edges around the marker and the accuracy of
the corner coordinates directly affect the quality of pose esti-
mation and triangulation.Marker slots on the attachments are
painted to white manually. For optical tracking, two Aruco
dictionaries are tested: the standard 4-by-4 dictionary and a
customised 3-by-3 dictionary. For ex-vivo experiments, US
scans were performed on a custom kidney-shaped phantom
that was developed with methodologies presented in [27,28].
The phantom was designed using CAD software and its neg-
ative mould was generated. The mould was then 3D printed
in polylactic acid (Ultimaker 3), and tissue-mimicking mate-
rial (polyvinyl alcohol—PVA) was poured and casted within
it. To simulate a malignant mass, a spherical structure was
fabricated and embedded within the phantom, following the
same method used to make the kidney phantom except with
an additional freeze–thaw (FT) cycle [28] The additional
FT cycle increased the stiffness of the mass, thereby pro-
viding more realistic mechanical properties. A radiopaque
contrast agent was also added to the mass, which conferred
visibility with CT imaging (O-arm surgical imaging system;
Medtronic plc, Dublin, Ireland).

Kinematics calibration

As detailed in section “Pose estimation using kinematics”, a
calibration experiment is conducted to estimate the transfor-

mation between the PSM and the ultrasound image plane in
the standard clinical scenario where the US probe is grasped
with the PrograspTM Forceps gripper. We take 25 frames
together with their kinematics data. Each image has a clear
view of the ceramic sphere. The position of the sphere in
the robot base coordinate frame is calculated based on the
assumption that all these image planes intersect at the same
point, which can be solved by SVD and is used as the ini-
tial value in the registration problem. After being optimised
by the Levenberg-Marquardt algorithm, the minimum FRE
becomes 1.00e−4, while the initial FRE is 2.77e−4. Figure
4 shows in the xy (a), xz (b) and yz (c) planes the position of
the sphere, the positions calculated from the PSMs data and
the optimised transformation. In an ideal scenario, all the cal-
culated positions of the sphere lie right at the correct position
proving that there is a fixed grasping configuration between
the gripper and the transducer. However, given the multiple
grasping configurations possible, the calculated positions do
not coincide with the real position of the ceramic sphere, due
to the unknown slippage between the gripper and the trans-
ducer. As explained in 2.2, to overcome this design limitation
of the system, we introduce the custom attachment presented
in Fig. 2b to allow a single grasping configuration.

Motion estimation

To evaluate the performance of different tracking methods,
experiments are conducted on the kidney phantom with the
endoscope fixed in position and the phantom placed in the
lower half of its mould to provide a stable platform to be
clamped to the operating table. Kinematics data, endoscopic
and ultrasound images were collected from multiple swipe
sequences in this experiment. A swipe sequence is consid-
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Fig. 4 Distribution of the
positions of the tip of the
end-effector (ProGrasp)
mounted on the PSM (in Blue)
and distribution of the
calculated positions of the
ceramic sphere (in Red) using
the optimised transformation in
the xy (a), xz (b) and yz (c)
planes. Green circle is the real
position of the ceramic sphere
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ered successfully completed when the probe moves from one
side of the kidney to the other without losing contact with
the kidney surface and the embedded mass is correctly dis-
played in the ultrasound images collected. Two scenarios are
considered: freehand and track-guided scanning. Tracking
performance are evaluated in terms of success rate (SR) (only
for marker detection), average duration (AD) of the swipe
sequence, average relative displacement (AveDP) between
one estimated position of the probe and the subsequent one,
standard deviation of displacement (StdDP), average rela-
tive rotation (AveR) of the probe between one estimated
position and the subsequent one and standard deviation of
rotation (StdR). Because pose estimation using kinematics
is conducted based on the assumption that there is only one
grasping configuration between the PSM and the transducer
with the updated attachment, which is measured from its
CAD model, kinematics data is considered as the ground
truth. Table 1 compares the performance of the investigated
methods for pose estimation of the US probe in five dif-
ferent scenarios: freehand based on kinematics data, 3-by-3
and 4-by-4 Aruco markers; track-guided based on kinemat-
ics data and 3-by-3 Aruco markers, comparing the data of
ten swipes for each of the freehand cases and of five swipes
for track-guided cases. Compared to a standard 4-by-4Aruco
marker, which is composed of 16 square binary grids, a 3-
by-3 marker consists of only 9 grids. Thus, its area per grid
is larger than 4-by-4’s, assuming the total area of the marker
is the same. This increases significantly the success rate of
marker’s detection, especially in this case, where relatively
low-resolution images (576i) are used. This is reflected by
the data in Table 1. In light of this, after the freehand testing,
4-by-4 markers were discarded. The kinematics of track-
guided swipes, compared to that of freehand swipes, shows
longer scanning duration and smaller relative displacement
and rotations, owing to the physical connection between the
attachment and the rail. The rail defines a trajectory and

constrains the movement of the transducer, maintaining it
perpendicular to the targeted surface. The slower scanning
speed and the mechanical coupling between the probe and
the rail reduce motion blur in endoscopic images, increasing
the SR of marker detection and the reliability of pose esti-
mation. Thus, optical tracking using 3-by-3 markers shows
a higher success rate in track-guided scanning when com-
pared to freehand case. Considering the unknown slippage
within kinematics data, relative displacement and rotation
of single-camera tracking lie within reasonable tolerances.
We also tested pose estimation using stereo-camera tracking.
Because the performance of both single-camera and stereo-
camera tracking relies on accurate corner coordinates, the
corner optimisation algorithm AprilTag 2 described in [29]
is implemented to refine marker detection.

As shown in Table 2, this approach manages to increase
the SR of both tracking methods to a satisfying level and
also helps to reduce random errors in optical tracking. Com-
pared to single-camera tracking, the stereo method produces
much smaller relative displacement, which is even smaller
than kinematics, as shown in Table 2. Considering dis-
placement is the average of four 3D points triangulated by
stereopsis, its precision depends on the resolution of stereo
images. Thus, both tiny motions and small random errors
may not be reflected. Additionally, due to the insufficient
number of input for least-square optimisation, relative rota-
tion of stereo-camera tracking is a lot worse than those of
single-camera tracking and robot kinematics. Whereas the
relative rotation of single-camera tracking is further opti-
mised by the AprilTag 2 approach. Thus, we replace the
rotation from stereo-camera estimationwith that from single-
camera estimationwhile keeping the displacement.However,
the translation vector obtained via stereo triangulation is also
calculated simply by taking the average of four data, which,
similar to the rotation matrix, is likely to be affected by ran-
dom errors due to the insufficient number of key points.
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Table 1 Quantitative evaluation
of the accuracy of the pose
estimation of the US probe in
freehand scanning and in
track-guided scanning (when the
attachment is paired with the
PAF rail system)

SR (%) AD (s) Displacement (mm) Rotation (◦)

Freehand kinematics NA 5.4 3.62 ± 2.97 20.33 ± 17.82

Freehand 3-by-3 79.9 5.4 4.77 ± 5.29 25.29 ± 23.67

Freehand 4-by-4 48.7 5.4 5.73 ± 8.12 35.65 ± 26.26

Track-guided kinematics NA 13.3 0.24 ± 0.16 0.12 ± 0.22

Track-guided 3-by-3 83.5 13.3 2.89 ± 4.67 3.22 ± 2.60

The pose estimation data of the US probe are compared when computed from kinematics data, from tracking
3 × 3 Aruco markers and from tracking data of 4 × 4 Aruco markers. Displacement unit in mm and values
shown in format AveDP ± StdDP. Rotation unit in degrees and values shown in format AveR ± StdR

Table 2 Performance of the
single and stereo camera optical
tracking methods for the
detection of 3 × 3 Aruco
markers in track-guided swipes
with and without the AprilTag 2
corner optimisation algorithm

SR (%) Displacement (mm) Rotation (◦)

Single without the AprilTag 2 86.2 2.89 ± 4.67 3.22 ± 2.60

Stereo without the AprilTag 2 83.3 0.10 ± 0.09 57.08 ± 47.65

Single with the AprilTag 2 99.2 0.40 ± 0.37 2.35 ± 1.41

Stereo with the AprilTag 2 97.77 0.08 ± 0.08 16.10 ± 15.85

Displacement unit in mm and values shown in format AveDP ± StdDP . Rotation unit in degree and values
shown in format AveR± StdR

Fig. 5 Meshes of the targeted
mass inside the kidney phantom
plotted as point clouds built
using CT data (a), ultrasound
data based on DVRK kinematics
data (b), single- (c) and
stereo-camera (d) data based on
visual markers tracking
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Model evaluation

To evaluate the performance of different tracking methods in
terms of tumour reconstruction, ex vivo experiments are con-
ducted on the phantom. For each swipe,we record kinematics
data, stereo endoscopic images and ultrasound images. An
example of the stereo endoscopic and ultrasound images
collected during a full swipe sequence is available at the
following link: https://bit.ly/38i0GJ0. Then, three tumour

meshes are generated using different methods. CT images
of the phantom in the lower half of its mould are available
at the following link: https://bit.ly/2T6eIHd together with a
reconstructed image where it can be seen that the mass lies
in the middle of the phantom, away from the bottom sur-
face. Because also during ultrasound scanning the phantom
is placed in the lower half of its mould to improve its stability
and because the mould has a higher density, than the phan-
tom itself, the surface in the generated meshes is likely to be
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Table 3 RMSE values of the distances between the matched pairs of
points composing the meshes of the US reconstructed model of the
targeted mass based on the data of three different modalities analysed
(kinematics data, single-camera and stereo-camera) and the CT model

RMSE (mm)

Kinematics 1.63

Single-camera tracking 0.76

Stereo-camera tracking 2.26

the surface of the mould instead of the surface of the phan-
tom. Also, because the phantom was scanned together with
the lower half of its mould it is difficult to separate these two
surfaces from the CTmodel. To evaluate the reliability of dif-
ferent tracking methods, we first perform 3D reconstruction
of the targeted mass using the feature extraction algorithm
described in 2.4 using kinematics, single-camera and stereo-
camera to estimate the position of the probe. An example of
data set of segmented images collected during a complete
swipe sequence and used to perform the 3D reconstruction
is available at the following link: https://bit.ly/350PjEB. We
then extract meshes from the generated models (Fig. 5b–d)
and compare with the mesh of the targeted mass obtained
from the CT model (Fig. 5a) using iterative closest point
(ICP) algorithm. The data were analysed with an Intel Core
i7-9750H CPU and to go from raw US images to segmented
images tomeshes it took: 10 s for the kinematics case, 30 s for
single-camera tracking and 1 min and 20 s for stereo-camera
tracking.As shown inTable 3, the bestmesh is achieved using
single-camera tracking. As previously stated, themuch lower
relative displacement from stereo-camera tracking results in
a higher root mean square error (RMSE) value. The stereo
method suffers from the insufficient number of key points
obtained using Aruco markers. Meanwhile, the quality of
stereo calibration remains to be further evaluated, whichmay
contribute to the high RMSE as well. Additionally, our fea-
ture extraction algorithm is developed based on blob analysis,
which only works when the tumour area exceeded the prede-
termined minimum. Hence, this fails to be detected properly
in some slices.

Conclusions

In this paper, we have experimentally investigated the feasi-
bility of using the PAF rails [18] to assist 3D US reconstruc-
tion of malignant masses. Multiple pose estimation methods
were investigated to localise the 2DUS slice in the 3D space,
including robot kinematics, single- and stereo-camera track-
ing and we compared the performance of tracking methods
with different configurations.Quantitative results of 3Dmod-
els from ex-vivo experiments demonstrate that the model

generated using single-camera tracking has the minimum
RMSE (0.76 mm) compared to the ground truth from CT
scans. Future work will focus on improving the 3D visu-
alisation of the targeted mass, optimising current tracking
methods and integrating new ones, analysing organs defor-
mations during ultrasound scans and developing an adaptive
feature extraction algorithm. A wider comparison study
where standard US optical reconstruction is performed will
be also considered for future work, together with the use of
electro-magnetic markers to finely track the motion of the
probe. Given that our long-term goal is to enable overlay of
the 3D US reconstructed image onto the surgical video to
improve visualisation, further user studies are needed to bet-
ter understand clinical needs in terms of system specifications
and user experience.
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