
ARTICLE

Genome-wide mapping of individual replication
fork velocities using nanopore sequencing
Bertrand Theulot 1,2,9, Laurent Lacroix 1,9✉, Jean-Michel Arbona 3, Gael A. Millot 4, Etienne Jean1,

Corinne Cruaud5, Jade Pellet1, Florence Proux1, Magali Hennion 6, Stefan Engelen 7, Arnaud Lemainque5,

Benjamin Audit 8, Olivier Hyrien 1✉ & Benoît Le Tallec 1✉

Little is known about replication fork velocity variations along eukaryotic genomes, since

reference techniques to determine fork speed either provide no sequence information or

suffer from low throughput. Here we present NanoForkSpeed, a nanopore sequencing-based

method to map and extract the velocity of individual forks detected as tracks of the thymidine

analogue bromodeoxyuridine incorporated during a brief pulse-labelling of asynchronously

growing cells. NanoForkSpeed retrieves previous Saccharomyces cerevisiae mean fork speed

estimates (≈2 kb/min) in the BT1 strain exhibiting highly efficient bromodeoxyuridine

incorporation and wild-type growth, and precisely quantifies speed changes in cells with

altered replisome progression or exposed to hydroxyurea. The positioning of >125,000 fork

velocities provides a genome-wide map of fork progression based on individual fork rates,

showing a uniform fork speed across yeast chromosomes except for a marked slowdown at

known pausing sites.
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Efficient genome duplication in eukaryotes depends on the
proper progression of multiple replication forks. Perturba-
tions of fork movement lead to fork stalling and collapse,

generating genomic instability that likely drives cancer
development1. Despite this pivotal role, the determinants of fork
progression are still elusive.

Single-molecule (SM) analyses of DNA replication by DNA
fibre autoradiography and its fluorographic evolutions have
revealed relatively constant mean fork speeds (1–2 kb/min) in
eukaryotic cells together with a broad dispersion of individual
fork velocities (0.5–4.0 kb/min) within a given cell line2–4 and
even within a single cell5, suggesting large fluctuations of repli-
cation fork speed along eukaryotic genomes. When combined
with fluorescence in situ hybridization (FISH) of DNA probes,
DNA fibre studies can unveil fork progression within specific
regions6. In some cases no marked differences between local and
genome-wide speeds were observed (e.g., refs. 6–9), but slower
forks along the pericentromeric and centromeric portions of
human chromosomes10 and faster forks in long transcribed genes
in chicken cells9 have been reported. However, only a handful of
loci could be analysed given the excessively low throughput of
such approaches. To map replication genome-wide, Raghuraman
and colleagues determined the mean replication timing (RT)
profile of the entire S. cerevisiae genome and interpreted the
slopes connecting peaks and valleys (i.e., regions of initiation and
termination of DNA replication, respectively) as a proxy for local,
population-averaged fork velocities, calculating a broad range of
speeds depending on genomic location11. In sharp contrast, a
time-course monitoring of replisome progression found that
population-averaged fork velocity is homogeneous throughout
yeast chromosomes12. It therefore remains unclear whether forks
travel at variable or constant speed along eukaryotic genomes.

We have recently developed FORK-seq, a high-throughput,
high-resolution, SM-based replication mapping technique relying
on the detection by nanopore sequencing of 5-bromo-2’-deox-
yuridine (BrdU), a thymidine analogue incorporated in replicat-
ing DNA13. Here we introduce NanoForkSpeed (NFS), a method
capable of positioning, orienting and extracting the velocity of
replication forks from BrdU tracks synthesized during a brief
pulse-labelling of asynchronously growing cells. NFS allows the
determination of the speed of single forks with unprecedented
spatial and temporal resolutions, with an unparalleled through-
put, and with remarkable simplicity in terms of sample pre-
paration and analysis. Thanks to NFS, we generated in S.
cerevisiae a genome-wide map of fork progression based on the
measurement of individual fork velocities.

Results
Detection of BrdU incorporated into replicating DNA. We
previously developed the RepNano software to detect BrdU on
sequencing reads produced by Oxford Nanopore Technologies
(ONT) devices13. Here we anchored our BrdU detection process in
ONT’s Megalodon program (https://github.com/nanoporetech/
megalodon) and estimated BrdU incorporation probability at
each thymidine site rather than over 96 bp windows as in
RepNano13 (see the ‘Methods’ section). Megalodon combines
Guppy (ONT) GPU-accelerated basecalling and read mapping to
the reference genome into one single step, making it a fast,
straightforward and easy-to-use pipeline. Its neural network was
trained using nanopore reads of genomic DNA from thymidine-
auxotroph MCM869 yeast cells14 grown with 11 different pro-
portions of BrdU in the culture medium, from 0 to 100% with
increments of 10% (‘Methods’). We first tested the ability of
Megalodon to recover from nanopore reads the total BrdU content
of these genomic DNA samples determined by mass spectrometry

(Supplementary Fig. 1a). RepNano13 and other published BrdU
basecallers, DNAscent15 and DNAscent v216, were also assessed for
comparison. Megalodon exhibited the lowest background signal
without BrdU and most closely paralleled the perfect correlation
line, despite a slight tendency to underestimate BrdU content
(Supplementary Fig. 1a). Megalodon also gave the most balanced
estimates of BrdU proportion per 1 kb window over the entire
range of tested BrdU contents, including the narrowest peaks of
null BrdU content corresponding to parental DNA, showing again
the lowest background of all basecallers (Supplementary Fig. 1b).

BT1, a yeast strain with optimised BrdU incorporation and
wild-type growth. The budding yeast S. cerevisiae lacks a thy-
midine salvage pathway and is therefore unable to incorporate
exogenous thymidine into DNA. Several strategies have been
adopted to reconstitute this pathway in vivo in order to render
yeasts amenable to DNA labelling with thymidine analogues.
They converged towards the combined expression of human
equilibrative nucleoside transporter 1 (hENT1), which improves
exogenous thymidine uptake, and of Herpes simplex virus thy-
midine kinase (hsvTK) allowing the conversion of thymidine into
thymidine monophosphate (dTMP) (e.g., refs. 17–19). Additional
inactivation of the thymidylate synthase-encoding CDC21 gene
that is essential for de novo dTMP biosynthesis resulted in strains
entirely dependent on external thymidine, or its analogues,
for growth14,20. We previously analysed the replication of the
yeast genome by FORK-seq using one such strain, namely
MCM86913,14. BrdU incorporation is very high in MCM869 cells
due to the absence of competing intracellular thymidine, enabling
the detection of replication tracks synthesized during short pulse-
chase experiments13. However, MCM869 yeasts grew at a reduced
rate compared to wild-type (WT) cells even at saturating thy-
midine concentration (Supplementary Fig. 2a, b). To examine
fork progression in WT conditions, we engineered the BT1 strain
that retained a functional de novo pathway, and therefore had
WT growth properties (Supplementary Fig. 2a–c), while con-
taining codon-optimised hsvTK and hENT1 genes for maximal
protein expression and BrdU incorporation in yeast cells. BrdU
content profiles of nanopore-sequenced genomic DNA from
asynchronously growing BT1 cells pulsed with 100 μM BrdU for
2 min followed by a 20 min chase with 1 mM thymidine showed
that BrdU incorporation was of comparable efficiency as in
MCM869 cells (Supplementary Fig. 2d). In contrast, replication
tracks were hardly detectable on pulse-labelled DNA from thy-
midine-prototroph, BrdU-incorporating strains constructed using
currently available hsvTK and hENT1 integrative vectors17,19

(BT2 and BT3 strains, Supplementary Fig. 2d). BT1 thus con-
stitutes a potent tool to examine fork progression in physiologi-
cally relevant conditions.

Fork orientation and fork speed measurement by NFS. Typical
BrdU signals in sequencing reads of genomic DNA from pulse-
labelled BT1 cells (Fig. 1a) displayed an asymmetrical shape,
consisting of a steep ascending slope starting from a segment of
null BrdU content (BrdU signal increasing from 0 to ≈0.5), fol-
lowed by a shallower decreasing slope (from ≈0.5 to ≈0.1)
(Fig. 1b). These signals resembled those from MCM869 cells
(Supplementary Fig. 2d), previously demonstrated to correspond
to elongating replication forks, with the steep and shallow slopes
reflecting BrdU incorporation during the pulse and the chase,
respectively, and the signal asymmetry revealing fork direction13.
Since fork speed can be measured as the length of the labelled
track divided by the corresponding labelling time, we developed a
pipeline named NFS to capture the track length synthesized
during the BrdU pulse, that is the section between the starting
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Fig. 1 Replication fork speed measurement procedure by NFS. a Scheme of the protocol for BrdU pulse-labelling of DNA replication in BT1 cells. The usual
timeline is indicated. b BrdU content profiles of nanopore sequencing reads of genomic DNA from pulse-labelled BT1 cells processed by NFS. Panels show
typical replication signals, namely rightward, leftward, diverging and converging forks. Light blue dots, raw data from Megalodon (dots represent the
probability of BrdU at each thymidine position); blue curve, smoothed signal; orange lines, segments resulting from the piecewise linear simplification
method using the Ramer-Douglas-Peucker algorithm (RDP) to detect and orient BrdU tracks (B, flat segments with background BrdU level; A, flat segments
with a BrdU level above background; P, segments with a positive slope; N, segments with a negative slope); X0, estimated position of the start of BrdU
incorporation; X1, estimated position of the start of the thymidine chase; green arrow, fork direction, with fork velocity (bp/min, in green) indicated below.
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and ending points of the steep slope. A piecewise linear simpli-
fication method first converted reads into a sequence of segments
classified into 4 categories based on their slope and mean BrdU
signal: (i) flat segments with background BrdU level (B); (ii) flat
segments with a BrdU level above background (A); (iii) segments
with a positive slope (P); and (iv) segments with a negative slope
(N) (Fig. 1b). We then identified two patterns for elongating forks
depending on their direction. Rightward forks were preceded by a
B segment which replicated before the BrdU pulse, then consisted
in one or successive P segments, occasionally interrupted by A
segments owing to noise, and followed by at least one N segment
corresponding to DNA replicated during the chase (Fig. 1b, reads
1, 2). Consequently, we used a regular expression procedure to
search for the “BP(P|A)*N+” pattern. Leftward forks were
recognized with the symmetrical pattern “P+(N|A)*NB” (Fig. 1b,
reads 3, 4). This procedure excluded both incomplete replication
tracks (Fig. 1b, read 3, position 1020 kb, and read 7, position
800 kb) and symmetrical signals due to pairs of forks initiated
after the start of the pulse or terminated before the end of the
pulse, for which the actual labelling time could not be precisely
estimated (Fig. 1b, read 10, position 640 kb). The precision of
track detection and orientation by NFS was confirmed by (i) a
virtually null false-positive rate (≈50 mapped forks per 10 Gb of
DNA with no BrdU labelling versus ≈15,000 mapped forks per
10 Gb of pulse-labelled DNA; Supplementary Data 1); (ii) the
remarkable similarity of BT1 replication fork directionality (RFD)
profile aggregating oriented replication tracks detected by NFS
with MCM869 RFD profiles computed by FORK-seq or Okazaki
fragment sequencing13 (Spearman’s pairwise correlation coeffi-
cients of 0.83 and 0.88, respectively, Supplementary Fig. 3a, b)
and (iii) the spatial coincidence between known yeast origins21,
upward slopes (i.e., initiation regions) on BT1 RFD profile and
individual initiation sites defined as the midpoints between
diverging forks (Supplementary Fig. 3a, c).

For every read, NFS yielded the coordinates of each of the B/P/A/
N segments decomposing replication tracks. The length of DNA
replicated during the BrdU pulse was then readily computed as the
distance between the B/P (X0, start of BrdU incorporation) and (P|
A)/N transitions (X1, start of the thymidine chase) for rightward
forks and between N/B (X0) and P/(A|N) (X1) transitions for
leftward forks (Fig. 1b). Fork velocity was subsequently calculated as
the ratio between track length and BrdU pulse duration. The latter
was set to 2min, which was sufficient for detection of replication
signals while brief enough to maximize the probability of obtaining
complete tracks along nanopore reads averaging ≈15 kb in length.
We first conducted a pilot experiment in which BT1 cells were
pulsed with BrdU doses ranging from 10 μM to 1mM and chased
with a ten-fold excess of thymidine to determine the optimal
labelling conditions. As anticipated, the maximal BrdU signal
amplitude rose with increasing BrdU concentrations, whereas
similar velocities were computed regardless of the BrdU dose
(Supplementary Fig. 4). This indicated that our pipeline was
functional for a broad range of signal amplitudes and that fork speed
measurement by NFS was independent of BrdU concentration in the
tested range. However, in line with reports that high doses of BrdU
are toxic for TK-expressing S. cerevisiae strains20,22, we found that
BrdU concentrations over 100 μM both slowed down BT1 S phase
and triggered checkpoint activation (Supplementary Fig. 5).
Although these doses did not visibly impact fork speed (Supple-
mentary Fig. 4), probably because of the very limited exposure to
BrdU during the 2min pulse, we opted for a pulse concentration of
100 μM BrdU.

Validation of fork speed measurement by NFS. We performed
multiple independent pulse-labelling experiments using the

aforementioned conditions (Fig. 2a). Thousands (tens of thou-
sands) of individual measurements were typically collected in a
single run using the ONT MinION (PromethION) device. All
experiments yielded similar fork speed distributions and mean
velocities between 2045 and 2206 bp/min (average of 2128 bp/
min, Fig. 2a), emphasizing the reproducibility of our analysis.
Above all, these values are in excellent agreement with previous
estimates of ≈2 kb/min in S. cerevisiae cells grown at 30 °C23–26.
NFS also found that the mean fork speed was 1.7 kb/min in cells
grown at 25 °C, which again agreed very well with the average
progression rate of 1.6 kb/min determined at this temperature in
a preceding study12 (Fig. 2b).

Using simulated replication forks to evaluate NFS accuracy. To
further gauge NFS, we generated in silico reads with BrdU signals
mimicking replication forks travelling at a defined velocity
(‘Methods’) and tested NFS ability to recover these velocities.
Simulated forks had similar amplitude range, signal dynamics and
noise as those from authentic reads of 2-min, 100 μM BrdU
pulse-labelled BT1 DNA (Supplementary Fig. 6). In addition, they
displayed the same speed distribution as that of real sequencing
data to allow the comparison of our estimates after NFS pro-
cessing to a known ground truth under the conditions of an
actual experiment (‘Methods’). NFS measurements were extre-
mely precise on simulated reads bearing one or multiple forks in
the absence of signal noise (median error of 7 and 30 bp/min and
interquartile range (IQR) of 123 and 186 bp/min for single and
multiple forks, respectively; Fig. 3a). Importantly, although speed
error distributions broadened when NFS was confronted to
simulated forks with noise closely resembling experimental data
(IQR of 371 and 438 bp/min for single and multiple forks,
respectively; Fig. 3a), the median error remained remarkably low
(−32 and −11 bp/min for single and multiple forks, respectively;
Fig. 3a), demonstrating that the overall evaluation of fork velocity
by NFS was extremely accurate. We noted that NFS tended to
overestimate and underestimate slow and fast forks, respectively,
and that the dispersion of NFS measurements increased with fork
speed (Supplementary Fig. 7). However, the median speed error
remained below 10% relative to theoretical velocities in the 1000
to 3000 bp/min range, which encompasses the vast majority of
physiological fork rates (Supplementary Fig. 7).

Estimating the true fork speed distribution in yeast. The dis-
tribution of fork velocities determined by NFS in BT1 cells is an
approximation of the genuine distribution of individual fork speeds
in yeast owing to signal noise and measurement errors. Since we
could characterize how NFS responded to fork velocities of known
value thanks to simulated reads, we adopted a deconvolution
strategy to predict the original fork speed distribution from our
>125,000 experimental measurements at 30 °C (‘Methods’). Inter-
estingly, the main peak of our estimate of the true speed distribution
consisted of values in the 2486 ± 150 bp/min range that accounted
for two-thirds of all fork velocities (Fig. 3b), suggesting a globally low
dispersion of individual fork speeds in S. cerevisiae. Finally, to
evaluate the deconvolution procedure, we generated 100,000 reads
bearing forks simulated on the basis of the deconvolved true fork
speed distribution and analysed them with NFS; the obtained dis-
tribution closely approximated the experimental one (Fig. 3c), vali-
dating our approach.

NFS retrieves expected shifts in fork speed. We next investi-
gated if NFS was able to detect changes in replication fork velocity
in conditions known to alter fork progression (Fig. 4). We first
performed pulse-chase experiments in cells exposed to hydro-
xyurea (HU), a commonly used drug inducing replication fork
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slowdown. As expected, we observed a gradual decrease in fork
speed with increasing HU concentrations (Fig. 4a). We could
detect fork slowdown induced by doses as low as 1 mM HU,
indicating that NFS is a very sensitive tool to reveal replication
stress. We then measured fork velocity in cells with mutations
impacting replisome progression. We were able to recover the
previously reported decrease in fork speed in the absence of
Mrc125,27–30, Tof128,30 and Csm330 (Fig. 4b). Interestingly, fork
speed was equally reduced in tof1Δ and csm3Δ cells, consistent
with the fact that these proteins form a complex at the front of the
replisome31,32. Moreover, fork progression was affected to a lesser
extent in those mutants than without Mrc1, as already
described29,30,33. NFS also detected the acceleration of replication
forks observed in the absence of Rtt109 acetyltransferase26, as well
as in sml1Δ mutant exhibiting increased dNTP pools34 (Fig. 4b).
Altogether, these results demonstrate that NFS can precisely
quantify fork speed variations both in physiological and per-
turbed conditions.

Genome-wide mapping of replication fork progression. NFS
allowed us to generate a genome-wide map of replication fork
progression based on individual fork velocities (Fig. 5 and Sup-
plementary Fig. 8). In order to distinguish meaningful changes in
local fork speed distribution, the experimental map was super-
imposed to a randomized map where fork locations remained
unchanged but velocity values were shuffled. This showed that
fork movement was largely uniform across the yeast genome, in
agreement with the results obtained by Sekedat and colleagues12,
although several loci clearly stood out. We next performed a
multi-scale statistical analysis to precisely identify regions of
significantly lower or higher fork speed than the bulk genome
along with the underlying factors likely responsible for the
observed alterations. We detected several regions of fork slow-
down but only one locus, located between the FLO10 and NFT1
genes on chromosome XI, showed fork acceleration (Fig. 5 and
Supplementary Fig. 9). Salient features inside slow regions nar-
rowed down to 1 kb included centromeres, telomeres, tRNA
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a, average fork speed of all samples (2128 bp/min). The name of the sequencing run is indicated below each plot; detailed run information is presented in
Supplementary Data 1.
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genes, the rDNA locus and the HML silent origin cluster (Fig. 5
and Supplementary Fig. 8), all known impediments to replication
forks35,36. Targeted analysis of forks overlapping these DNA
elements confirmed that centromeres and telomeres quite con-
sistently exhibited a reduced fork speed (Fig. 6a and Supple-
mentary Fig. 10) and that fork slowdown at the rDNA locus
occurred in the vicinity of the replication fork barrier (RFB),
as anticipated (Supplementary Fig. 11). Fork progression was
globally slower at tRNA genes having a direction of transcription
opposing that of forks (Fig. 6b), in agreement with tRNA
genes being polar obstacles to replication35–37, although speed
was markedly reduced only at a small subset of tRNA genes
(Supplementary Fig. 12). We speculate that those exhibit a par-
ticularly strong binding of TFIIIB transcription factor, considered

as the main impediment to fork movement at tRNA genes38.
Thanks to the mapping of oriented tracks to Watson or Crick
strands, we could distinguish fork progression on the leading and
lagging strands. We found that DNA synthesis proceeds sig-
nificantly faster on the leading strand (Fig. 6c), although the very
weak difference in speed with the lagging strand (12 bp/min)
is possibly devoid of biological significance. Finally, as it
remains unclear whether fork velocity changes during S phase in
eukaryotes2,3,8,39–41, we compared the speed of replication forks
with the timing of the region they are replicating42, noting that
forks appear to slightly accelerate during S phase in yeast
(Fig. 6d).

Discussion
Under conditions of BrdU incorporation that do not perturb
DNA replication, NFS recovers former estimations of fork speed
in yeast in a WT-like growing strain and in mutants known to
have altered fork progression, with an excellent reproducibility
between biological replicates. This validates our measurement
procedure and emphasizes the robustness of our method.
Moreover, NFS is remarkably efficient in detecting replication
fork slowdown, from the slightest to major decelerations, making
it a suitable tool to detect replication stress. NFS accuracy has
been further verified on simulated forks of known speed, which
also offered the opportunity to recreate the presumed true fork
velocity distribution in S. cerevisiae from the experimental dis-
tribution that is inevitably altered by NFS measurement errors,
however small they may be. Our results suggest that the majority
of fork speeds are narrowly distributed in yeast (two-thirds within
2500 ± 150 bp/min), in apparent contrast with the large disper-
sion of individual fork velocities observed by conventional SM
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methods in eukaryotes2–4. However, it is important to note that
although a 10-fold difference between the fastest and slowest
forks is commonly found in standard DNA fibre analysis of a
given cell line, most fork rates actually fall within less than
twofold of the median velocity4. For instance, half of the forks
travel within ±20% of the 1.5 kb/min median speed in chicken
DT40 cells9. Extreme values may reflect rare events or may be, at
least in part, artefactual. For instance, exceptionally high velo-
cities may originate from the fusion of forks emanating from
adjacent origins that fired during the labelling pulse, which may
go unnoticed even when using a robust analysis methodology4. In
that regard, the use of a much shorter labelling pulse in our
conditions compared to standard SM techniques minimizes the
probability that BrdU tracks result from the activity of more than
one fork.

In agreement with a low dispersion of fork speeds in S. cere-
visiae, the mapping of individual fork velocities shows that the
rate of fork progression does not significantly change across the
yeast genome except at previously known fork pausing sites35,36,
plus at a single locus situated between FLO10 and NFT1 genes
where forks appear to move faster for reasons that remain to be
determined. We have not attempted here to verify whether low
fork speeds around pausing sites result from transient stalling
rather than uniformly slow progression, but the former seems
likely, especially since fork slowdown at the rDNA locus mapped
to the ribosomal RFB pausing site. Our observations of a con-
sistent velocity across the yeast genome support several earlier
studies12,24 and are in line with a very recent nanopore
sequencing-based analysis of excised full-length replicons con-
cluding that fork progression is remarkably homogeneous along
S. cerevisiae chromosomes43, but they are at odds with those of
Raghuraman and colleagues who interpreted variations in RT
profile slopes along different parts of the genome as fluctuations
in fork speed11. However, it has since been demonstrated that RT
slopes depend not only on fork speed but also on the local

proportion of rightward and leftward forks in the cell
population8,44,45. Our results suggest that RT profile slope var-
iations observed in that pioneering study predominantly if not
exclusively stem from variations in the proportion of rightward
and leftward forks.

Determining fork speed is mandatory in circumstances known
or speculated to influence replication dynamics. Existing methods
include DNA fibre analysis2–4,46, hydrodynamic techniques2,3,
slope computation from RT profiles (e.g., refs. 8,11,25,26,47–50),
mathematical modelling of DNA replication (e.g., refs. 24,44) and
time-resolved (i) dense-isotope substitution experiments (for
instance, see ref. 51), (ii) two-dimensional gels27, (iii) chromatin
immunoprecipitation of replisome components12,23,26,27 or (iv)
isolation of BrdU- or 5-ethynyl-2’-deoxyuridine-labelled
DNA52,53. All these approaches are demanding and difficult to
implement, and none of them allows the mapping of individual
fork velocities on entire genomes. Not only does NFS have this
ability, but it also combines a straightforward protocol with a
ready-to-use analytical pipeline (available on GitHub at https://
github.com/LacroixLaurent/NanoForkSpeed) enabling an auto-
mated measurement of fork speed. NFS should advantageously
replace DNA fibre analysis as the “gold standard” method to
determine fork velocity as it surpasses it in simplicity, rapidity
(estimation of fork speed in 6 days for NFS versus weeks or
months for DNA combing or spreading especially when com-
bined with FISH probe detection), number of measurements
(thousands of values versus a few tens to a few hundreds) as well
as in spatial (precision approaching the nucleotide resolution of
sequencing versus precision limited to ≈1 kb by the resolution of
optical microscopes) and temporal (fork speed averaged over
2 min versus typically 20 min) resolutions. Estimation of fork
velocity by NFS is certainly applicable to BrdU pulse-labelled
DNA from other eukaryotes, notably mammalian cells, although
a higher sequencing depth will be required to obtain a compar-
able coverage. The rapid evolution of nanopore sequencing
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technologies offering increased throughputs at reduced costs will
contribute to overcome this limitation. Meanwhile, the simulta-
neous processing of multiplexed samples should facilitate the
screening of knockouts libraries, particularly in yeast, to uncover
new factors involved in replisome progression and broaden our
understanding of eukaryotic DNA replication.

Methods
Yeast strains and growth conditions. All strains used in this study are W303
derivatives and are listed in Supplementary Table 1. Standard yeast genetic tech-
niques and media were used54. Cells were grown at 30 °C in YPD medium (MP
Biomedicals #114001032) unless stated otherwise. BT1 strain was obtained by
integrating at the ura3-1 locus of W303 cells StuI-linearized pBL-hsvTKCO-
hENT1CO plasmid (Supplementary Table 1), a modified version of the p306-BrdU-
Inc vector17 in which both the hsvTK and hENT1 genes were replaced by versions
that had been codon-optimized for expression in yeast. hsvTK was codon-
optimized for yeast using JCat55 and synthesized by GeneScript; codon-optimized
hENT119,56 was a generous gift from E. Schwob (IGMM, Montpellier, France).
Detailed cloning procedures are available upon request. The BT2 strain was
obtained by reintroducing the WT CDC21 allele encoding the thymidylate synthase
into the MCM869 strain14 by crossing. The BT3 strain was obtained by inserting
the regular p306-BrdU-Inc plasmid17 purchased from Addgene at the ura3-1 locus
of W303 cells.

Growth curve and doubling time. Yeasts were grown overnight in YPD (sup-
plemented with 100 μM thymidine for MCM869 cells), diluted in fresh medium
(supplemented with 100 μM thymidine for MCM869 cells) at an optical density at
600 nm (OD600) ≈ 0.1 and grown for 6 h. OD600 was measured every 2 h. Doubling
times (T) were estimated on the basis of the growth curves based on the formula
T= [culture duration*log(2)]/[log(final OD600)− log(initial OD600)].

Analysis of S phase progression by fluorescence-activated cell sorting
(FACS). Exponentially growing cells were synchronized in G1 by addition of
0.2 μM α-factor (Sigma #T6901) for 3 h then washed and resuspended in fresh,
prewarmed YPD medium containing 50 μg.mL−1 pronase (Millipore #53702) to
release them into the cell cycle. In the experiment examining the impact of BrdU
on S phase progression, BrdU was added 15 min after cell release. Aliquots were
taken at regular time intervals and fixed in ethanol. Fixed cells were washed with
50 mM sodium citrate pH 7.4, incubated in sodium citrate buffer supplemented
with 0.25 mg.mL−1 RNAse A for 1 h at 50 °C, added with 2 mg.mL−1 proteinase K
and incubated for one additional hour. DNA was counterstained overnight with
1 μM SYTOX Green (Invitrogen #S7020). Samples were analysed using a Beckman
Coulter CytoFLEX LX flow cytometer. Data were collected using CytExpert
v2.4.0.28 and analysed using FlowJo v10.7.1. Gating strategy is illustrated in Sup-
plementary Fig. 13.

Rad53 immunoblot analysis. Total protein extracts were obtained by tri-
chloroacetic acid (TCA) precipitation, separated by SDS-PAGE on a 7.5% gel and
transferred to a nitrocellulose membrane. Rad53 immunoblot was performed with
rabbit anti-Rad53 antibody at 1:10,000 (Abcam #104232, batch GR3353005-2),
using HRP-conjugated anti-rabbit (Promega #W401B) at 1:5000 as secondary
antibody. Detection was performed with SuperSignal West Pico (Thermo Scientific
#34078) chemiluminescent reagents. ImageQuant LAS 4000 mini (GE Healthcare,
software version 1.3) was used for imaging.

Samples used for neural network training. Neural network training was per-
formed using nanopore-sequenced genomic DNA displaying variable BrdU sub-
stitution rates extracted from the thymidine-auxotroph MCM869 strain. For that
purpose, MCM869 cells were grown overnight in synthetic complete medium
(Dropout Base medium with Complete Supplement Mixture, MP Biomedicals
#114025032 and #114500012) with 100 μM thymidine, washed twice to remove
thymidine, transferred at OD600 ≈ 0.1 into fresh synthetic complete medium sup-
plemented with various mixtures of BrdU and thymidine (0:100; 10:90; 20:80;
30:70; 40:60; 50:50; 60:40; 70:30; 80:20; 90:10 and 100:0) and grown for 24 h.
Genomic DNA was isolated by zymolyase, RNAse A, and proteinase K digestion
using Genomic DNA Buffer Set (Qiagen #19060) and Qiagen Genomic-tips 20/G
(Qiagen #10223) according to the manufacturer’s instructions and subsequently
subjected to nanopore sequencing.

Mass spectrometry. LC-MS/MS was performed on the 11 samples prepared for
neural network training (see above) using a TSQ Quantiva triple quadrupole mass
spectrometer (Thermo Scientific) coupled to an UltiMate 3000 XRS HPLC system
(Dionex, Thermo Scientific) as described in ref. 13. Samples were analysed in
technical duplicates using the software TraceFinder (Thermo Scientific,
version 5.1).

Pulse-chase labelling. In most experiments, BT1 cells and its derivatives as well as
BT2 and BT3 strains were grown overnight in YPD, diluted in fresh medium at an
OD600 ≈ 0.1 and pulsed after 3 doublings (OD600 ≈ 0.8) with 100 μM BrdU for
2 min followed by a 20 min incubation with 1 mM thymidine. For the experiment
carried out with different BrdU concentrations, BT1 cells were pulsed in the same
conditions as above with either 10, 25, 50, 100, 250, 500, 750 μM or 1mM BrdU
and chased with a ten-fold excess of thymidine. For experiments in the presence of
HU, cells were grown for 2 doublings (OD600 ≈ 0.4) and treated for 1 h with HU
prior to BrdU pulse-labelling. MCM869 cells were cultured overnight in YPD
supplemented with 100 μM thymidine, diluted in fresh YPD with thymidine at an
OD600 ≈ 0.1 and grown to OD600 ≈ 0.8 before being washed twice with YPD to
remove thymidine, transferred to YPD for 30 min, pulsed with 100 μM BrdU for
2 min and chased with 1 mM thymidine for 45 min. Cells were pelleted after the
thymidine chase, washed with water before DNA extraction as in ref. 57.

Library preparation and data acquisition. All samples were sequenced using
R9.4.1 chemistry flow cells from Oxford Nanopore Technology (ONT). MinION
and GridION sequencing libraries were prepared using ligation sequencing kits
SQK-LSK108 or SQK-LSK109 (ONT) in combination with ONT EXP-NBD103
Native Barcoding kit or ONT EXP-NBD104 Native Barcoding Expansion 1–12
pack in case of multiplexing according to ONT protocols with the modifications
presented in ref. 57. PromethION sequencing libraries were prepared using the
ultra-long DNA sequencing kit SQK-ULK001 (ONT) according to ONT protocols.
Data were acquired using MinKNOW (ONT, MinKNOW Core versions 1.14.1 to
4.4.13, Supplementary Data 1) with default parameters. Demultiplexing of bar-
coded nanopore reads was performed as described in ref. 57.

Training of the BrdU basecalling model. Our model was built in three successive
steps. First, we modified the architecture of RepNano convolutional neural
network13 in order to obtain a nucleotide resolution for BrdU detection, creating
RepNano v2. We next performed a first training of our model with ONT’s Taiyaki
from the Megalodon program (version 2.2.9 downloaded from https://
nanoporetech.github.io/megalodon/, Guppy version 4.4.1) using RepNano v2
outputs, then trained our model a second time using the outputs of the first
training and adding specific false positive BrdU signals to the training dataset in
order to reduce background and false-positive signals.

RepNano v2 architecture. We used two convolutional layers with kernel size 7 and
filter size 32 with no padding followed by a long short-term memory (LSTM) layer
with 32 hidden units that output a vector of the same length as the input, then a
convolutional layer with kernel size 1 and filter size 1 and finally an averaging layer
outputting the BrdU percent of the segment. The initial length of the input vector
was 112 so that after two convolutions without padding the final length was 100.
The LSTM layer also produced a 100 × 32 vector and the last convolutional layer
produced a 100 × 1 vector that was averaged and compared to the expected output
of BrdU content via a logcosh loss. We extracted the vector from the last con-
volutional layer to basecall BrdU at the nucleotide level.

RepNano v2 training. RepNano v2 was trained using nanopore reads of the 11
genomic DNA samples with various BrdU substitution rates described above
(BrdU contents measured by mass spectrometry of 0, 9.4, 16.6, 27.9, 35.1, 46.1,
54.8, 59, 72.6, 78.8 and 80.3%). For each of the 11 samples, composed of a mix of
substituted and unsubstituted reads (corresponding to parental DNA), 400 reads
were used for the learning. To separate substituted reads from unsubstituted ones,
we first ran two training cycles with a neural network made of only three con-
volutional layers (no LSTM and no averaging layers) in order to avoid an over-
fitting of the data. At the end of the first cycle, the quality of the prediction was
good enough to allow the discrimination of substituted from unsubstituted reads
for the 40 to 100% BrdU samples. Reads were relabelled as substituted or unsub-
stituted based on these results, and a second training cycle was run. This allowed
the separation of substituted from unsubstituted reads for the 20 and 30% BrdU
samples. The final network (RepNano v2 architecture) was trained on this cleaner
dataset of 400 reads per sample.

Megalodon model training. We performed a first training of our model with ONT’s
Taiyaki software on 400 reads from each of the 11 BrdU samples described above
basecalled with RepNano v2 using a LSTM architecture referred to as
mLstm_cat_mod_flipflop with default parameters. Meanwhile, we selected 100
reads from the 0% BrdU sample where forks had been detected, corresponding to
false positives (these were mainly found in the rDNA and at the positions of Ty
elements). We also selected 100 reads in the same regions from the 100% BrdU
sample not to introduce a bias in the neural network at these locations. These reads
were added to the outputs of the first model to perform a second training. Finally,
the Taiyaki model was converted into a Guppy model.

BrdU basecalling and read mapping. Basecalling and read mapping were per-
formed from MinKNOW-generated fast5 files upon sequencing using Megalodon,
that combines Guppy basecalling (using the model trained as described above to
detect BrdU at the nucleotide level) and read mapping to the reference genome (see
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basecalling_sample.sh script on NanoForkSpeed GitHub repository). This step was
carried out using a GPU-enhanced computer to allow fast processing. As the
resulting BAM files could be quite big, a custom R58 script (R version 4.0.3) named
basecalling_sample.r first split BAM files into 50,000 read subfiles. The parsing was
then performed in R with the mega_parsing homemade function. For each read,
this function imported from the BAM file the read identity (read_id), the DNA
strand, the chromosome name, the start position and length of the read, the
sequence and the Mm and Ml fields which contain the position and output score of
detected BrdUs, respectively, using Samtools (version 1.10). The function then
allocated a probability of being a BrdU at every position corresponding to a thy-
midine in the mapped sequence. All discontinuities (gaps) longer than 100
nucleotides introduced during the mapping step were recorded; this information
was used after the fork detection procedure to filter out forks overlapping such gaps
as discontinuities in the BrdU signal may interfere with fork speed measurement.
Data were then smoothed using a combination of a rolling mean on 100 nucleo-
tides and a Gaussian weighted rolling mean on 2.5 kb, with exclusion of the first
and last 2.5 kb windows (which removed reads <5 kb from our analysis). This
smoothing procedure was designed to allow the piecewise linear simplification (see
below) without altering the shape of the signal too much. The output file contained
both the raw and the smoothed signal as well as the mapping information (read_id,
chromosome name, start and end positions, strand and gap positions).

BrdU basecaller comparison. For each of the 11 genomic DNA samples with
different BrdU substitution rates described above, a set of 8000 nanopore reads
were basecalled either with Megalodon or with DNAscent v115, DNAscent v216,
RepNano13 transition matrices (RepNano_TM) and RepNano convolutional neural
network (RepNano_CNN). RepNano_TM and RepNano_CNN were used as in
ref. 13. For each basecaller, the BrdU content was computed in 1 kb bins for every
read. The overall BrdU content of a given DNA sample corresponded to the mean
of the BrdU content values per 1 kb window. Means of the 11 samples were plotted
against BrdU contents measured by mass spectrometry (MS) in Supplementary
Fig. 1a. The proportionality between basecaller and MS estimates was assessed
using a linear regression and by computing the mean square error between the
observed and ideal lines. Distributions of BrdU content values per 1 kb window for
the reads from the 11 samples were represented as normalized densities using the
geom_freqpoly() function of the ggplot2 R package in Supplementary Fig. 1b–f.
Although reads used for the analyses shown in Supplementary Fig. 1 came from a
different sequencing run than reads used for the training of Megalodon, we cannot
completely exclude that Megalodon’s performance might benefit from having been
trained on DNA originating from the same samples as those used to compare
basecallers.

Fork detection and orientation. After pulse-labelling, BrdU signals corresponding
to ongoing replication forks are visualized on nanopore reads as a steep ascending
slope starting from a segment of null BrdU content followed by a shallower
decreasing slope; the steep and shallow slopes reflect BrdU incorporation during
the pulse and the chase, respectively, and this signal asymmetry allows the deter-
mination of the direction of fork progression13. Fork detection and orientation
were performed with custom R scripts using a piecewise linear simplification
approach deriving from the original FORK-seq manuscript13. Reads were first
converted into a series of segments using the Ramer-Douglas-Peucker
algorithm59,60 (Hausdorff distance epsilon= 0.1, using DouglasPeuckerEpsilon
function of the kmlShape R package). Only reads with 3 or more segments were
kept as reads with less segments could not form a complete fork. Segments were
classified into 4 categories using their slope and mean BrdU signal (B= flat seg-
ment with a background BrdU level, A= flat segment with a BrdU level above
background, P= segment with a positive slope and N= segment with a negative
slope). In order to set the background threshold, the distribution of the mean BrdU
signal on 1 kb windows computed for the reads containing at least 3 segments of a
given experiment was plotted; in every experiment, DNA replicated before the
BrdU pulse (i.e., DNA with a theoretical null BrdU signal) was separated from the
rest of the DNA by local minimum near 0.02, which was therefore set as the
background threshold (b2a.thr parameter) for all samples.

We were specifically interested in capturing the segment corresponding to BrdU
incorporation during the pulse, that is the section between the starting and ending
points of the steep slope, in order to extract fork speed defined as the length of
DNA replicated during the duration of the pulse (i.e., 2 min) divided by the
labelling time. We thus focused on pulse segments for which we could determine
the start and end positions. We determined two patterns to identify forks
depending on their orientation on the nanopore reads. Rightward forks must be
preceded by a B segment, then must contain one or several P segments that may be
interrupted by A segments owing to noise and then at least one N segment; they
must not be directly followed by a B segment as the BrdU level corresponding to
the thymidine chase is above background. We then used a regular expression
approach to recognize the “BP(P|A)*N+” pattern, excluding forks for which the
following segment was a B. Leftward forks were identified thanks to a symmetrical
pattern “P+(N|A)*NB”, excluding forks for which the preceding segment was a B.
This prevented any overlap between forks detected on a given read (forks must
start with a B segment and cannot end on a B segment) and excluded incomplete
replication tracks as well as symmetrical signals due to pairs of forks initiated after

the start of the pulse or terminated before the end of the pulse, for which the actual
labelling time could not be precisely estimated. Furthermore, in case of multiple
replication signals on a single read detected as a succession of leftward and
rightward forks, we could determine the position of individual initiation
(termination) sites defined as the midpoints between diverging (converging) forks.

Our procedure was performed using the homemade NFSmaster function of the
NFS_function.r script. It creates an output file saved in the .rds format in which the
data are organised as a list of 4 elements: (1) a list of tibble (specialised type of
data.frame in the R tidyverse) containing (1.1) the reads filtered according to their
length and the presence of 3 or more linearized segments and (1.2) the reads with
detected forks; (2) a tibble of all the detected forks; (3) a tibble containing the
detected initiation (Ini) and termination (Ter) events; (4) a table summary of
different metrics of the experiment. Fork detection was performed on the split data
corresponding to the basecalling of 50,000 reads and results were merged using the
NFS_merging function of the NFS_function.r file. Merged files have the same
organization with a slightly simplified summary table but do not contain reads
without fork; they were used to produce the figures and data discussed in this
manuscript.

Fork speed analysis. Fork data from every read and experiment were collected in
a master data table containing read information (read_id, chromosome name, read
start and end positions, read strand), fork parameters (X0= start of BrdU incor-
poration= position of the B/P and N/B transitions for rightward and leftward
forks, respectively; X1= start of the thymidine chase= position of the (P|A)/N and
P/(A|N) transitions for rightward and leftward forks, respectively; speed in bp/min
= fork speed averaged over the 2 min of the pulse= absolute value of (X1− X0)/2;
direction= Left or Right; type= leading or lagging; d.Y= BrdU signal amplitude at
X1 position minus BrdU signal amplitude at X0 position) and experimental
parameters (Exp= name of the experiment; B_pulse= BrdU concentration in the
medium during the pulse (in µM); t_pulse= duration of the pulse (2 min in all
experiments); T_chase= thymidine concentration in the medium during the chase
(in µM); temp= growing temperature (in °C); strain= yeast strain used;
mutant=wild-type (WT) or name of the inactivated gene; HU= hydroxyurea
concentration in the medium (in mM)). Data were filtered using these parameters
to group fork speeds according to the criteria presented in the figures of this
manuscript. Detailed information for every sample sequenced in our study are
presented in Supplementary Data 1.

Computing fork velocity from reads of increasing minimal length resulted in a
negligible rise in the median fork speed estimated by NFS, confirming that a 2 min
BrdU pulse duration was adequately suited with respect to read length to detect
short as well as long tracks in our experiments; the median length of reads with
forks is indicated for each sample in Supplementary Data 1.

Genomic map of fork speed. Forks detected in all BT1 biological replicates grown
in standard conditions at 30 °C were converted into GenomicRanges using the
GenomicRanges R package and reduced to their centre. The velocities of these forks
were then binned into non-overlapping windows of different width (1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 15 and 20 kb). The number of forks (coverage), the median speed and
the 98% confidence interval of the median (using the MedianCI function of the
DescTools R package) were computed for every window. In addition, a
Mann–Whitney–Wilcoxon test was performed to compare the speed distribution
in a given window to the speed distribution on the whole genome. P-values for
slower and faster speed were corrected for the multiplicity of testing using the
Holm method from the p.adjust function, taking into account the number of
windows for all scales. Results were saved as bigwig files and used for plots in Fig. 5
and Supplementary Figs. 8, 9 and 11, setting statistical significance to p < 0.01. Bins
with no fork were tagged N/A. In order to distinguish meaningful changes in local
fork velocity distribution, the experimental map was superimposed to a rando-
mized speed map. To generate this map, fork locations were kept unchanged but
speed values were randomized 1000 times and binned into 20 kb (Fig. 5 and
Supplementary Fig. 8) or 1 kb (Supplementary Figs. 9 and 11) windows. For each
bin and each randomization, the median speed was computed, generating 1000
medians of randomized speeds per bin. The overall median and the 1st and 99th
percentiles were extracted from these data for every bin and plotted as the median
speed and 98% confidence interval of the median to build the shuffled speed map.
In Fig. 5 and Supplementary Figs. 8 and 11, genomic feature coordinates are from
the UCSC SGD_other track and replication origins (ORIs) are from ref. 21.
Oriented genes in Supplementary Fig. 9 are from the Saccharomyces_cer-
evisiae.R64-1-1.104.gtf file from Ensembl (see “Computational resources” below for
further details).

Replication fork directionality (RFD) computation. RFD is calculated for a given
position as the difference between the proportions of rightward- (R) and leftward-
(L) moving forks (RFD= R− L). RFD profiles from MCM869 FORK-seq and OK-
seq data were computed as in ref. 13. BT1 RFD profile from NFS data (i.e., X0 and
X1 coordinates of oriented forks) was generated in a similar way with the sim-
pleRFD function of the script helper_function.r (this function produces 4 bigwig
files corresponding to the RFD and the total, leftward and rightward forks cov-
erage) using forks from all BT1 biological replicates grown in standard conditions
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at 30 °C. RFD data were binned into non-overlapping 100 nucleotide windows to
reduce the size of the plot files. The correlation table in Supplementary Fig. 3b
reporting Spearman’s pairwise correlation coefficients was produced using the
cor.rfd function of the helper_function.r script and the ggcorrplot function of the
ggcorrplot R package. The cor.rfd function rests on the base R cor function but
works on a coverage type of data (RleList) and excludes positions where N/A are
present in at least one of the RFD profiles for which the correlation is computed.

Analysis of initiation and termination events. Initiation (ini) and termination
(ter) event positions, defined as the midpoints between diverging and converging
forks, respectively, were extracted from all BT1 biological replicates grown in
standard conditions at 30 °C and processed as in ref. 13. Replication origins (ORIs)
are from ref. 21. Distance of each ini or ter to the centre of the nearest ORI was
computed using the distanceToNearest function of the GenomicRanges R package.
Empirical cumulative distribution functions were plotted using the Ecdf function of
the Hmisc R package. Shuffled versions of ini and ter positions were produced as a
control using the custom shuffleGRen function of the helper_function.r script,
which randomizes GenomicRanges positions while conserving the number of
events per chromosome.

Simulation of BrdU incorporation during DNA replication. We simulated reads
containing a BrdU signal mimicking an elongating fork as well as reads bearing
multiple forks. Simulations were performed using Python scripts (Python
version 3.6).

Simulation of BrdU level. We modelled intracellular BrdU level b(t) as a function of
time t as (i) zero before the BrdU pulse; (ii) an ascending section modelled by an
exponential increase AsðtÞ ¼ Mð1� expð� t

τ1
ÞÞ where t is the time since the start of

the pulse, M the saturating concentration of BrdU and τ1 the characteristic time of
BrdU intake; (iii) a decreasing section starting at the start of the chase at time tpulse
(also corresponding to the duration of the pulse) that was modelled by a similar
exponential decrease from the value attained at t ¼ tpulse:

DsðtÞ ¼ AsðtpulseÞ þ ðm� AsðtpulseÞÞð1� exp(-
t�tpulse

τ2
)Þ, where m is the asymptotical

BrdU concentration and τ2 the characteristic time of BrdU outtake.

Simulation of a single replication fork. Given a fork speed v and a start position used
as x= 0, BrdU time pulse shape was converted into a spatial BrdU incorporation
pattern BrdU(x) using the simple relation: BrdU(x)= b(x/v). 10,000 reads con-
taining a single fork were simulated with or without noise (see below) for the
analyses presented in Fig. 3a and Supplementary Fig. 7.

Simulation of multiple replication forks. To simulate multiple forks, we created a
DNA segment of 300 kb in length. We then randomly positioned 6 origins on it to
have on average an origin every 50 kb. The firing time of each origin was randomly
chosen between 0 and 30 min. A fork speed randomly drawn from a given dis-
tribution (see below) was assigned to the whole segment, which was simulated only
if firing times, origin positions and fork speed created a set of 12 forks. Next, the
moment of the pulse was randomly chosen between the firing time of the earliest
origin and the three-fifths of the firing time of the latest origin (this time interval
was chosen because it allowed to obtain replication signals in most simulated
reads). Finally, to simulate molecules of similar length as experimental reads, the
DNA segment was sliced into fragments according to a truncated log-normal
distribution (truncations at 5 and 300 kb) with a shape parameter of 0.5 and a scale
of 350. 100,000 reads containing one or several forks were simulated with or
without noise (see below) for the analyses in Fig. 3a and Supplementary Fig. 7.

Choice of the simulation parameters. A replication fork was modelled by two shifted
exponentials, each having two parameters (M, τ1 and m, τ2 for the ascending and
descending parts, respectively; see above). To simulate replication signals resem-
bling those found on real sequencing reads, we used parameters coming from
experimental data. To do so, we selected among the >125,000 individual forks
detected by NFS in BT1 cells grown at 30 °C those for which the chase was long
enough (>2.5 kb), fitted the ≈90,000 forks meeting this criterion using the model
described in the ‘Simulation of BrdU level’ section and the speed measured by NFS,
and extracted fork parameters. In order to retain potential correlations between
parameters, all four parameters of a randomly chosen experimental fork were
assigned to a simulated fork. Fork speed v was randomly chosen from the
deconvolved true fork speed distribution (see below) except when indicated
otherwise.

Adding simulated experimental noise to the signal. To take into account signal
variability between reads, we added to the BrdU(x) signal a read-dependent offset
value (O) drawn from a log-normal distribution of shape 1.98, location −4.09e−06
and scale 0.001 fitting the BrdU signal distribution of nanopore reads of DNA with
no BrdU labelling. O was drawn again if its value was >0.2 or <1e−7. BrdU(x)+O
signals reaching values >1 were truncated to 1. We then randomly assigned “Nan”
(Not a number) values to ≈77% of the signal so that only thymidine (T) positions
had information about the BrdU content. Finally, to mimick Megalodon’s output

signal, which is a probability of being a BrdU at each T site peaking at either 0 or 1,
we assigned to each T position a value B drawn from a binomial law B(n,p) with
parameters p= BrdU(x)+O and n randomly chosen in [1,2,3]; B was subsequently
divided by n to normalize between 0 and 1. Visual inspection of simulated versus
experimental reads confirmed that they were virtually indistinguishable.

Mean BrdU traces and signal noise analysis for experimental and simulated
forks. The experimental and simulated mean BrdU traces of oriented replication
signals in Supplementary Fig. 6f, g were computed from ≈90,000 forks selected
among the >125,000 detected by NFS in BT1 cells grown at 30 °C for which the
chase was >2.5 kb (please note that leftward forks were reoriented in the rightward
direction) and from 10,000 simulated reads containing a single fork, respectively,
with the BrdU signal being smoothed using a 100 bp running average to have
information even at non-thymidine sites. In order to characterize signal fluctua-
tions (i.e., signal noise) in experimental and simulated data, the autocorrelation of
the mean BrdU signal smoothed at 100 bp minus the signal smoothed at 1000 bp
was computed. Subtracting the signal smoothed at 1000 bp removed slow BrdU
variations from each track to solely keep local fluctuations that define signal noise.

Analysis of simulated data. The smoothing process of simulated reads during the
parsing procedure and fork detection with NFS was performed with the same
settings as for experimental reads. Speed error was computed by subtracting, for
each simulated replication fork, its true speed to the speed estimated by NFS. For
simulated reads with multiple replication forks, all forks within a given read had
the same speed. To estimate NFS error for different speed categories, true speeds
from simulated reads were grouped into bins of 100 bp/min.

Estimation of the true fork speed distribution in yeast from experimental
measurements. A measured fork speed is an approximation of the true fork speed
as (i) BrdU incorporation and detection by nanopore sequencing are subject to
noise, and (ii) the measurement by NFS is sensitive to the noise and amplitude of
BrdU signals in a complex manner. We used simulated reads to estimate the
“transfer function” between the true and the observed fork speed distributions
allowing us to deconvolve the measurement errors from the observed fork speed
distribution and in turn to estimate the true speed distribution underlying the
observed speed distribution. We first built a library of 100,000 reads with known
true speeds following a uniform distribution between 50 and 5000 bp/min. We
processed each noisy BrdU incorporation profile with NFS and obtained, for each
true speed, the response fork speed distribution of the experimental procedure. We
then determined the weight of each true speed category required to recover the
experimentally observed distribution of >125,000 fork velocities at 30 °C. The
weights corresponded to the deconvolved true fork speed distribution. The com-
putational details of this procedure are detailed in the following paragraph.

We considered 44 discretised true fork speed values vk= k*100 bp/min for
1 ≤ k ≤ 44. The 100,000 simulated reads following the uniform speed distribution
were then affected to 44 classes if their true speed fell inside a window centred on vk
and of width 400 bp/min, i.e., reads belonged to more than one class. This strategy
was adopted in order to have enough reads in each class. Then, for each class k, we
collected fork speeds estimated by NFS processing, leading to NFS fork speed
distribution in response to true speed vk that was subsequently fitted with a five-
component Gaussian mixture. We then determined the weight wk so that the
weighted sum of those 44 distributions best fitted the experimental fork speed
distribution. The weights wk are an estimate of the true fork speed distribution
within the 44 classes. This procedure was repeated independently 5 times and the
average of the 5 weight sets were used as the deconvolved true fork speed
distribution. Finally, this discretised distribution was fitted using a Gaussian
mixture with six components to create a continuous true fork speed distribution.
To evaluate the deconvolution procedure, we generated a new set of 100,000 reads
with multiple forks following the estimated true fork speed distribution and
processed them with NFS. The obtained observed fork speed distribution closely
resembled the experimental distribution of >125,000 fork velocities, validating our
approach. Deconvolution was performed with custom Python scripts using a
library from ref. 61.

The mode of the estimated true speed distribution in Fig. 3b was determined
using the mlv1 function of the modeest R package. The major peak of the
distribution was fitted with a normal distribution with a mean equal to this mode.
Standard deviation and weight of the normal distribution were then adjusted to
best fit the peak.

Fork speed versus replication timing. Replication timing (RT) data are from
ref. 42. The liftOver tool (http://hgdownload.soe.ucsc.edu/goldenPath/sacCer1/
liftOver/) was used to convert genomic positions from sacCer1 to the sacCer3
version of the yeast genome. Data were normalized between 0 and 1 (start and end
of S phase, respectively). The mean RT was computed for each fork, then fork
speed versus RT was plotted as a 2D density plot with hexagonal bins using the
geom_hex() function of the ggplot2 R package with default parameters. Spearman’s
correlation between fork speed and RT was computed using the stat_cor() function
of the ggpubr R package.
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Statistical analysis. The R environment v4.0.5 was used for all the analyses. Prior to
analysis, fork speed values were averaged for every sample according to the classes of
the studied factors, in order to (1) decrease the sensitivity of the tests, which otherwise
detect fork speed differences of no practical significance when extremely large number
of values are compared and (2) use as a unique source of variation the inter-
experiment variations, which correspond to error variations, while fork speed varia-
tions have a biological origin. Data were fitted to a linear model that included fork
speed as response variable, the factor of interest as predictive variable and the biological
replicate/sequencing run as blocking factor. Two by two effect comparisons (two-sided
contrast comparisons) were performed with the emmeans() function of the emmeans
R package. When only two values were present in one group (Fig. 4a, b and Sup-
plementary Fig. 12), a limma linear fitting and contrast analysis was performed with
the limma R package. Statistical significance was set to p ≤ 0.05. In each case, type I
error was controlled by correcting the p-values according to the Benjamini & Hoch-
berg method (“BH” option in the p.adjust() function of R). Speeds of forks overlapping
two different features (e.g., a tRNA and a centromere) or two tRNAs were removed
from the analyses presented in Fig. 6a, b and Supplementary Fig. 12 to respect the
exclusive factor level requirement of statistical analysis. For the examination of speed at
individual tRNAs (Supplementary Fig. 12), means above 5000 bp/min or showing a
leverage of 1 in the fitted model were removed from the analysis as they strongly
influenced the fitting. This concerned 11 values among the 2984 tRNA x sequencing
run levels analysed. All samples corresponded to independent cell cultures except for
the two BT1 PromethION runs, which were technical replicates (two sequencing
libraries from the genomic DNA of one BT1 cell culture analysed on different Pro-
methION flow cells); the “library plus flow cell” effect was deemed sufficient to con-
sider these as distinct samples. Statistical analysis results are detailed in Supplementary
Table 2.

Visualisation tools. Plots were made using custom R scripts. For half-eye plots, we
used the stat_slab and stat_pointinterval functions of the ggdist R package.
stat_slab outputs a density distribution of the experimental points; stat_pointin-
terval outputs the median and the 50% and 95% intervals of the data centred on the
median.

Reference genome. The sacCer3 genome release (S288C_refer-
ence_sequence_R64-2-1) was used as the reference genome. The rDNA locus is
composed of two ribosomal DNA units on chromosome XII (chrXII:
451,575–468,931) in this version. As rDNA reads containing more than two repeats
tended to incorrectly map and to create artefactual BrdU signals, we added an
artificial chromosome with 10 tandem rDNA repeats to the reference genome. The
external rDNA repeats were flanked by 10 kb sequences located upstream and
downstream of the original rDNA locus to allow the mapping of reads overlapping
the first or last rDNA repeat of the rDNA array. In order to build this extra
“chromosome”, 8 copies of the second rDNA unit (chrXII: 459,793–468,929
fragment) were inserted between the first and second unit of the original S288C
genome, resulting in a 113-kb-long “chromosome” that we named rDNA-10R.
Because the proper alignment of reads on tandem repeats the unit of which is of
similar length to that of the reads requires specialised procedures, reads mapping to
rDNA-10R, which accounted for the most part of rDNA reads, were subsequently
excluded from our analyses.

Computational resources. Genomic feature coordinates (centromeres, telomeres,
HML/HMR loci, rDNA and tRNA genes) were extracted from the UCSC SGD_other
track (https://genome.ucsc.edu/cgi-bin/hgTables) and saved as bed files (script Scrip-
t_YeastAnnotation.r). Please note that “telomere” annotations in the SGD_other track
encompass both the terminal stretch of telomeric repeats (when present in the sacCer3
genome) and subtelomeric sequences; moreover, since our smoothing procedure
removes the first and last 2.5 kb of each read, telomeric repeats were excluded from our
analyses. The UCSC SGD_other track was also used to determine the direction of
transcription of tRNA genes in Fig. 6b and in Supplementary Fig. 12. In this figure,
tRNA genes were subsequently categorized as co-directional (CD) or head-on (HO)
with respect to replication if their transcription was in the same or opposite orientation
to the main direction of fork progression, respectively, which was determined for each
tRNA according to its mean RFD value (RFD> 0, forks travel mostly rightward;
RFD < 0, forks travel mostly leftward). In Fig. 6a, b and Supplementary Figs. 10 and 12,
forks were classified according to their overlap with either a group of features (cen-
tromeres, telomeres and tRNA genes) or individual features (rDNA locus and indi-
vidual centromeres, telomeres and CD/HO-sorted tRNA genes) after fork conversion
into GenomicRanges. The overlap was tested with the OverlapsAny function of the
GenomicRanges R package (minimal overlap was one nucleotide). Yeast replication
origins in Fig. 5 and Supplementary Figs. 3a, c, 8 and 11 are from ref. 21. RT data in
Fig. 6d are from ref. 42 (data accessible from NCBI’s Gene Expression Omnibus
repository, accession code GSM1036187, GSM1036187_T7107_normalised.wig.gz file).
Oriented genes in Supplementary Fig. 9 are from the Saccharomyces_cerevisiae.R64-1-
1.104.gtf file downloaded from Ensembl (http://ftp.ensembl.org/pub/release-104/gtf/
saccharomyces_cerevisiae/). DNAscent v1 and v2 were downloaded from https://
github.com/MBoemo/DNAscent.

R packages. R packages used in this study are kmlShape version 0.9.5 (https://
CRAN.R-project.org/package=kmlShape); DescTools version 0.99.44 (https://
CRAN.R-project.org/web/packages/DescTools); RcppRoll version 0.3.0 (https://
CRAN.R-project.org/package=RcppRoll); Hmisc version 4.6-0 (https://CRAN.R-
project.org/package=Hmisc); tidyverse62; GenomicRanges63; rtracklayer64; BSge-
nome version 1.56.0 (https://bioconductor.org/packages/BSgenome); ggdist version
3.0.1 (https://mjskay.github.io/ggdist/); patchwork version 1.1.1 (https://CRAN.R-
project.org/package=patchwork); ggplot2 version 3.3.5 (https://CRAN.R-project.
org/package=ggplot2); ggcorrplot version 0.1.3 (https://CRAN.R-project.org/
package=ggcorrplot); ggpubr version 0.4.0 (https://CRAN.R-project.org/package=
ggpubr); gridExtra version 2.3 (https://CRAN.R-project.org/package=gridExtra);
modeest version 2.4.0 (https://CRAN.R-project.org/package=modeest); ggprism
version 1.0.3 (https://CRAN.R-project.org/package=ggprism); ggrepel version 0.9.1
(https://CRAN.R-project.org/package=ggrepel); furrr version 0.2.3 (https://CRAN.
R-project.org/package=furrr); devtools version 2.4.2 (https://CRAN.R-project.org/
package=devtools); emmeans version 1.5.5-1 (https://CRAN.R-project.org/
package=emmeans); and limma version 3.46.0 (https://bioconductor.org/packages/
release/bioc/html/limma.html).

Genomic coordinates. Coordinates are given according to the sacCer3 yeast
genome assembly.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Nanopore sequencing data generated in this study have been deposited in the ENA
database under accession code PRJEB50302. Source data are available at https://github.
com/LacroixLaurent/NanoForkSpeed and https://doi.org/10.5281/zenodo.5958270. Yeast
genomic feature coordinates used in this study originate from UCSC SGD_other track
(https://genome.ucsc.edu/cgi-bin/hgTables), oriented genes are from Ensembl database
(Saccharomyces_cerevisiae.R64-1-1.104.gtf file available at http://ftp.ensembl.org/pub/
release-104/gtf/saccharomyces_cerevisiae/), replication origins are from ref. 21 and
replication timing data are from ref. 42 (data accessible at NCBI GEO database,
accession code GSM1036187). Source data are provided with this paper.

Code availability
Megalodon-based BrdU basecaller, NFS software and associated R scripts can be accessed
at https://github.com/LacroixLaurent/NanoForkSpeed and https://doi.org/10.5281/
zenodo.6535390. Custom R scripts for statistical analyses can be accessed at https://gitlab.
pasteur.fr/gmillot/anova_contrasts/-/tree/v7.2.0. Python scripts are available at https://
github.com/organic-chemistry/simunano.
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