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the monitor. Both modifications were also used simultane-
ously in Group 3. SMR activity during the task was recorded 
before and after the training. In Group 3 there was a signifi-
cant improvement in SMR control, compared to subjects in 
Group 2 and 4 (control). Differences between subjects in 
Groups 1, 2 and 4 (control) were insignificant. This means 
that relatively small changes in the training procedure may 
significantly impact the effectiveness of BCI control. Anal-
ysis of behavioural data acquired from all participants at 
training showed greater effectiveness in directing the object 
towards the right side of the screen. Subjects with the great-
est improvement in SMR control showed a significantly 
lower difference in the accuracy of rightward and leftward 
movement than others.

Keywords  Brain–computer interface · Neurofeedback 
training · Sensorimotor rhythms · EEG · Motivation · 
Attention

Introduction

Brain–computer interface devices make it possible to send 
information out of the body directly from the central nerv-
ous system (CNS), omitting endocrine and neuromuscular 
pathways. BCI systems are designed to register CNS activ-
ity in order to activate other devices or applications, which 
replace, restore, augment or supplement natural mechanisms 
of communicating with the environment. The entire process 
is based on the phenomenon of biological feedback (biofeed-
back), i.e. interaction between the user’s CNS and the exter-
nal, as well as internal environment (Wolpaw and Wolpaw 
2012). Brain–computer interfaces employ various techniques 
for recording brain activity, e.g.: fMRI (Posse et al. 2003; 
Yoo et al. 2004; Lee et al. 2009; Sitaram et al. 2011, 2012); 

Abstract  The challenges of research into brain–computer 
interfaces (BCI) include significant individual differences in 
learning pace and in the effective operation of BCI devices. 
The use of neurofeedback training is a popular method of 
improving the effectiveness BCI operation. The purpose of 
the present study was to determine to what extent it is pos-
sible to improve the effectiveness of operation of sensorimo-
tor rhythm-based brain–computer interfaces (SMR-BCI) by 
supplementing user training with elements modifying the 
characteristics of visual feedback. Four experimental groups 
had training designed to reinforce BCI control by: visual 
feedback in the form of dummy faces expressing emotions 
(Group 1); flashing the principal elements of visual feedback 
(Group 2) and giving both visual feedbacks in one condition 
(Group 3). The fourth group participated in training with no 
modifications (Group 4). Training consisted of a series of 
trials where the subjects directed a ball into a basket located 
to the right or left side of the screen. In Group 1 a sche-
matic image a face, placed on the controlled object, showed 
various emotions, depending on the accuracy of control. 
In Group 2, the cue and targets were flashed with different 
frequency (4 Hz) than the remaining elements visible on 
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fNIRS (Coyle et al. 2004; Naito et al. 2007; Sitaram et al. 
2007); microelectrodes (Hochberg et al. 2006, 2012); EcoG 
(Leuthardt et al. 2004; Wilson et al. 2006; Schalk et al. 
2008); and MEG (Mellinger et al. 2007; Buch et al. 2008; 
Broetz et al. 2010). However, some of these methods are less 
frequently used as a basis for developing BCI systems. Due 
to the low operational costs and satisfying ratio of temporal 
to spatial resolution, electroencephalographs (EEG) are the 
basis of approximately 60% of BCI systems tested in recent 
years (Hwang et al. 2013).

The operation of EEG-BCI is based on Steady State 
Visually Evoked Potentials (SSVEP) (Müller-Putz and 
Pfurtscheller 2008), P300 evoked potentials (Sellers et al. 
2012) and sensorimotor rhythms (SMR)-BCI systems today 
predominantly employ the latter (Hwang et al. 2013) and 
such systems are known as SMR-BCI (Pfurtscheller and 
McFarland 2012). Sensorimotor rhythms are activations 
recorded on electrodes over areas of the sensorimotor cor-
tex of the brain (Pfurtscheller and Lopes da Silva 1999). 
They are recorded in three frequency ranges: μ (8–12 Hz), 
β (18–30 Hz) and γ (30–200 + Hz), although the detailed 
limits of frequency ranges tend to be defined individually 
(Pineda 2005).

The phenomenon of SMR oscillations takes two forms: 
a decrease in SMR power during movement, that is the so-
called event-related desynchronization (ERD) (Pfurtscheller 
and Aranibar 1979) and an increase in power after complet-
ing the movement, i.e. event-related synchronization (ERS) 
(Pfurtscheller 1992). The phenomenon of ERD/ERS occurs 
during the actual movement of a single finger, the whole 
hand, foot, and tongue as well as while observing or imagin-
ing such movement (Pineda 2005; Pfurtscheller et al. 2006). 
In the case of hand movements (whether imagined or actual) 
the effects of ERD/ERS occur more strongly on C3 or C4 
electrodes located contralaterally to the hand involved in the 
task (Pfurtscheller and Lopes da Silva 1999).

SMR-BCIs are employed to control such devices 
as wheelchairs (Huang et  al. 2012), prosthetic hands 
(Pfurtscheller et al. 2000), and robot arms (Ang et al. 2010), 
as well as software, which enables the writing of messages 
(Müller and Blankertz 2006), control of a cursor on the com-
puter screen (Wolpaw et al. 1991) or a virtual avatar (Leeb 
et al. 2007).

The effectiveness of SMR-BCI control depends on indi-
vidual factors and subjects participating in the same training 
do not all achieve identical results (Curran and Stokes 2003). 
Indeed, the reported phenomenon of BCI illiteracy, other-
wise known as BCI aphasia (Kübler and Muller 2007), indi-
cates a subject’s inability to control a given type of device 
at a level exceeding random success, despite training. The 
problem affects approx. 15–30% of those participating in 
research utilising brain–computer interfaces. Research cur-
rently being conducted into psychological (Blankertz et al. 

2010; Hammer et al. 2012) and neurophysiological factors 
(Grosse-Wentrup and Schölkopf 2012), aims to improve the 
effectiveness of SMR-BCI control through the use of suit-
able training programmes (Hwang et al. 2009; Zapała et al. 
2015).

Neurofeedback training an essential element of learn-
ing to operate SMR-BCIs, provides a simplified model of 
a situation in which the user controls a BCI (Neuper and 
Pfurtscheller 2010). The purpose of neurofeedback train-
ing is to learn to control one’s own mental activity so that, 
based on observation of the response elicited by such activ-
ity, one can achieve the best possible control of the inter-
face. In order to optimise the effects of training, modifica-
tions are introduced in the types of tasks (McFarland et al. 
2010; Krausz et al. 2003), instructions (Bonnet et al. 2013), 
method of providing feedback (Hwang et al. 2009; Kauf-
mann et al. 2011) and/or duration of specific training ses-
sions and trials (McFarland et al. 2010). The parameters of 
these procedures, however, are defined in an arbitrary man-
ner and most frequently disregard other processes involved 
in the mechanism of learning the skill of controlling one’s 
own brain waves (Lotte et al. 2013).

Studies focusing on variables modifying SMR-BCI con-
trol constitute a small percentage of the research concerning 
the enhancement in performance of such interfaces (Hwang 
et al. 2013). Nevertheless, it has been established that psy-
chological variables significantly impact the effectiveness 
of SMR-BCI control (Nijboer et al. 2010; Hammer et al. 
2012; Jeunet et al. 2015). Such factors can also be modified 
during neurofeedback training (Lotte et al. 2013; Barbero 
and Grosse-Wentrup 2010; Koerner et al. 2014). Researchers 
believe that by reinforcing selected cognitive and motiva-
tional functions in SMR-BCI users, so that they continue to 
learn to control such interfaces, it may be possible to sig-
nificantly improve effective operation of such devices (Leeb 
et al. 2007; Lotte et al. 2013). Currently, studies into factors 
impacting effectiveness of the SMR-BCI operation mostly 
employ standard training procedures, such as the Graz-BCI 
protocol, and their modifications (Jeunet et al. 2015). There-
fore, it seems worthwhile to examine in what way new ele-
ments introduced into neurofeedback training would impact 
SMR-BCI performance.

The present study has been designed to answer the ques-
tion whether it is possible to achieve more effective SMR-
BCI control by modifying visual feedback in user training. 
We put forward the hypothesis that by supplementing the 
training procedure with features which made it easy for 
the subjects to focus their attention on the essential ele-
ments of each trial, such as the visual cues and goal of the 
task, it would be possible to increase control over the skill 
being practised. The subjects’ focus can be increased for 
instance by making sure that the field of vision contains 
objects with a so-called priority feature (McLoad et al. 1991) 
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which differentiates the objects from other elements on the 
screen. If the subject is asked to direct a moving object (e.g. 
a ball) to a target (e.g. a basket) placed on the board, the key 
elements (such as the ball and the basket) should be high-
lighted, for example with blinking at a specified frequency, 
to distinguish them from the other objects which are not 
important for the proper performance of the task.

Accuracy during a task may be reinforced by providing 
feedback about the subject’s current performance (Krausz 
et al. 2003). It is important to make sure that the relevant 
information be given in a way which is emotionally engag-
ing for the subject (Curran and Stokes 2003). In our study 
we were reinforcing subjects’ motivation to continue train-
ing by providing them with additional information about 
their performance in each trial in the form of schematic 
images of faces expressing sadness or joy. Application of 
emotional feedback is justified by some earlier studies which 
reported that users’ positive emotional state was a factor 
increasing motivation for BCI control (Nijboer et al. 2008). 
Furthermore, schematic images of faces have already been 
employed to improve effectiveness in the control of P300-
BCI (Chen et al. 2015).

We also expected that the effectiveness of the training 
would be more strongly influenced if the training procedure 
incorporated elements affecting both the attention and moti-
vation of the subjects in comparison to a situation when 
only one of these factors was applied. This assumption was 
inspired by a study published by Leeb and colleagues (2007) 
suggesting that subjects’ willingness to continue BCI con-
trol training increases if the virtual environment is visually 
more complex. By combining the feedback presented in the 
form of faces expressing emotions with objects highlighted 
to stand out from the background it is possible to create an 
environment which is visually more complex than if these 
two features are applied separately. We assumed that in com-
parison to the other groups accuracy of control would be 
higher in the study group in which both modifications were 
used simultaneously.

Lack of a modification of the feedback method in the 
control group was expected to result in the smallest increase 
in the control of sensorimotor rhythms. The basic train-
ing scheme is similar to the standard Graz-BCI (Neuper 
and Pfurtscheller 2010) and Wadsworth-BCI procedures 
(Wolpaw et al. 1991).

The hypotheses were verified in the course of a multi-
stage empirical study comprising neurofeedback train-
ing with a BCI set, and the measurement of sensorimotor 
rhythms during stationary EEG registration. The effective-
ness of sensorimotor rhythm control was operationalised 
with the use of two indicators: behavioural, i.e. number of 
responses complying with the instruction (online mode), and 
physiological. A physiological indicator of the effectiveness 
of SMR-BCI control is acquired by comparing changes in μ 

(8–12 Hz) and β (13–30) sensorimotor rhythms, before and 
after training (offline mode).

Both bands of sensorimotor rhythms can be modulated by 
various processes accompanying motor activity. The lower 
band is generally linked with processes involved in simple 
movements, and with the mental simulation of movements 
of hand, foot or tongue. (Pfurtscheller et al. 2006). Oscil-
lations in the range of β waves are linked with imagining 
complex movements and those requiring engagement (Naka-
gawa et al. 2011), and the control of various parameters of 
movement (Zaepffel et al. 2013). We expected that separate 
analysis of both frequency bands would show differences 
in β waves, because neurofeedback training should lead to 
increased engagement and improved accuracy of the men-
tally simulated movement.

According to some researchers skill in SMR control may 
be acquired gradually, e.g. from learning to create images 
of one hand, to reaching the ability to create images of both 
hands (Wolpaw and McFarland 2004; Pfurtscheller et al. 
2006; McFarland et al. 2010). Because of this, in our study 
SMR desynchronization at offline and online stage was ana-
lysed separately for imagined movements of the right and 
left hand.

Differences in the strength and topography of the ERD/
ERS effect during imagery of right and left hand movement 
were demonstrated for instance, in a study by McFarland 
and colleagues (2000), yet the effects of such differences in 
the accuracy of SMR-BCI control have rarely been exam-
ined. The present study was designed to investigate whether 
there were statistically significant differences in the accuracy 
of the actual leftward and rightward control of the object 
between participants who were found to have the highest and 
the lowest increase in SMR control skills following the train-
ing. We expect that individuals failing to gain improvement 
in SMR control as a result of the training, who potentially 
are BCI-illiterate, also face difficulties in creating different 
motor imagery. Individuals presenting with poorer SMR-
BCI performance are also less capable of creating vivid kin-
esthetic imagery (Vuckovic and Osuagwu 2013; Marchesotti 
et al. 2016). Those affected by BCI illiteracy face difficulties 
creating separate imagery for both hands which results in 
one-sided control; they may also be found with indistinct 
changes in SMR, which results in poorer BCI control.

In accordance with the “gold standard” proposed by 
McFarland and Krusienski (2012) for assessing the effective-
ness of testing a new BCI method, the most valuable results 
are obtained if both online and offline measures are applied 
in one test. The findings acquired in bouth offline and online 
modes were subjected to the same signal processing proce-
dure in order to examine the compatibility of the results.

Earlier studies suggested a significant relationship 
between vividness of motor imagery and SMR-BCI per-
formance (Vuckovic and Osuagwu 2013; Marchesotti et al. 
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2016), and because of this the level of this variable was 
examined during recruitment for the study and at the stage of 
assigning the subjects to experimental groups. The analyses 
took into account the subjects’ gender as one of the inter-
subject factors.

Methods

Participants

The experiment was carried out with 40 subjects (20 
women) aged from 20 to 27 (M = 22.60; SD = 1.72). One 
of the participants reported being left-handed. All the sub-
jects were volunteers who gave their written consent to take 
part in the study and declared they were not taking medica-
tion or other psychoactive substances on a permanent basis. 
Motor imagery ability was controlled with the Movement 
Imagery Questionnaire-Revised Second Version (MIQ-RS) 
(Gregg et al. 2010) and was calculated separately for: visual 
motor imagery—VMI (M = 6.04; SD = 0.64) and kines-
thetic motor imagery—KMI (M = 5.77; SD = 0.87). Experi-
mental groups were not significantly different in terms of: 
VMI [F(3,36) = 0.47, p = 0.703] or KMI [F(3,36) = 1.26, 
p = 0.303]. At the end of the whole procedure, the partici-
pants were each paid a remuneration of 20 USD. The Ethics 
Committee of the Institute of Psychology approved of the 
study.

Apparatus

Measurement of changes in the activity level of sensorimo-
tor rhythms were carried out with EEG system GES 300 
(Electrical Geodesics, Inc. Eugene, OR, USA), comprising 
Net Amps 300 amplifier (output resistance 200 MΩ; record-
ing range from 0.01 to 1000 Hz). The recording was made 
with the use of a 128-channel cap with passive electrodes 
HydroCel Geodesic Sensor Net (resistance during record-
ing < 30 kΩ). Data sampling during examination was defined 
at 500 Hz, and the recording was made with the use of Net 
Station 4.4 (EGI, Eugene, OR, USA). The experimental pro-
cedure was designed and displayed on the screen with the 
use of E-Prime, version 2.0 (Psychology Software Tools, 
Pittsburgh, PA, USA).

Neurofeedback training was carried out using the Dis-
covery 24E DC amplifier, from BrainMaster Technologies, 
Inc. (Bedford, OH, USA) with output resistance below 
1000GΩ and recording range from 0.000 to 1000 Hz. The 
recording was carried out with the use of 10-cup passive gel 
electrodes, Ag/AgCl (C3; C4; FC3; FC4; C5; C1; C2; C6; 
CP3; CP4) with a right-ear reference electrode and ground 
electrode placed on a left ear. Recording and processing of 
the data in online mode was carried out in OpenViBE 0.18.0 

(Inria Hybrid Team, Rennes Cedex, France) with data sam-
pling 125 Hz. The signal was filtered with bandpass filter 
(8–30 Hz). The data were also subjected to spatial filter Com-
mon Spatial Pattern (CSP). Signal classification was carried 
out with the use of Linear Discriminant Analysis (LDA) 
(Lugger et al. 1998). The training programmes were based on 
application systems prepared in C++ programming language.

During EEG measurement, the stimuli were displayed on 
an LCD screen, with a diagonal measurement of 17 inches, 
resolution of 1280 × 1024 pixels, and during the neurofeed-
back training on a 23 inch screen, resolution of 1920 × 1080 
pixels. The subjects were seated at a distance of 60 cm from 
the monitor. Introductory processing of EEG records was 
performed with EEGLab v12.0.2.6b, upgraded to MATLAB 
7.9.0 (MathWorks, Natick, MA, USA), and the statistical 
analysis as well as visualization of the results with STATIS-
TICA 12 (StatSoft, Inc., USA).

Procedure

The experimental stage comprised an initial measurement 
(“Before”) which involved the recording of sensorimotor 
rhythm activity during an imagined hand movement. This 
was followed by a change in the device and training proce-
dure (neurofeedback). The same pattern of recording was 
repeated after the training session as the final measurement 
(“After”).

EEG Recording

The procedure for recording the EEG during the perfor-
mance of a mental imagery task was developed by modify-
ing the paradigm proposed by Hwang, Kwon and Im (2009). 
The data were registered from the moment a visual cue 
appeared until the end of the performance of the imagery 
task (Fig. 1). During the recording undertaken before and 
after neurofeedback training, each subject performed a total 
of 180 trials (90 trials each for imagined left and right-hand 
movement). The trials were displayed for each participant 
at random.

Neurofeedback Training

The training pattern was a modified version of the procedure 
used by Krausz et al. (2003) which is presented in Fig. 2a. 
The training of each participant consisted of trials lasting 
for a few seconds, during which the participant was asked to 
lead a ball, falling from the top to the bottom of the screen, 
to one of the marked baskets. After the ball was placed in 
one of the baskets, or fell freely away from the baskets, the 
next trial started. After 40 trials (constituting a series) were 
displayed, there was a short pause (its length depended on 
the subject). Each series was repeated 4 times, which gave 
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a total of 160 trials, after which there was another pause 
(4 series and 4 pauses constituted one session). During the 
entire neurofeedback training the subject performed a total 
of 480 trials (240 for each hand).

The subjects were divided into four independent groups, 
corresponding to the type of modification introduced in the 
training pattern.

In Group 2 the ball and the highlighted basket were blink-
ing with a frequency of 4 Hz, so that the elements stood out 
against the remaining objects displayed on the screen dur-
ing training. In the variant in Group 1, the subject received 
ongoing feedback about the progress of his/her performance. 
This information was provided to the subject in the form 
of a face expressing various emotional states, as displayed 

on the control ball. At the start, the face exhibited a neutral 
expression. A ball which fell with no user control or was led 
in a wrong direction showed sadness. A ball that led towards 
a correct basket showed a smile (Fig. 2a).

In Group 3 both modifications were used simultaneously, 
i.e. the blinking of the ball with a frequency of 4 Hz and the 
additional feedback. Group 4 (control) participated in train-
ing without any additional features.

Data Acquisition and Processing

Electrophysiological data (initial and final EEG measure-
ments) were pre-processed, first with the use of a high-pass 
filter below 1 Hz, and a low-pass filter over 40 Hz (FIR filter); 

Fig. 1   A Experimental procedure. a The subject is not performing 
any activity; b a cue is displayed and its location shows what move-
ment should be imagined by the subject after the task starts; c time 
for preparing to begin the task; the subject is not performing any 

activity; d X sign starts the imagery task; e the subject imagines 
the movement of clenching his/her right or left hand, in accordance 
with the cue; f end of the imagery task. B Signal processing scheme 
(offline mode)
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that was then followed by a filtering out of the recording cor-
responding to the frequency matching the operation of power 
lines—50 Hz (Notch filter). After filtering, the data were sub-
jected to the process of re-referencing the signal (CAR, com-
mon average reference) for all channels except those closest 
to the eyes (electrodes: 1, 14, 17, 21, 25, 32, 125, 126, 127, 
128). Ocular and muscular artefacts were removed using an 
independent component analysis (ICA) procedure. The blink-
related components of ICA were identified for every subject 
individually, based on their specific time courses (i.e., brief, 
large monopolar potentials) and heuristic stating that the eye 
components project strongest at frontal sites. The lateral eye 
movement components of ICA were identified based on the 
assumption that such components should project strongest 
to far frontal sites, and should show a polarity difference 
between the two periocular sites (see: Jung et al. 2000a, b). 
Such components were removed from the data.

The data prepared in this way were divided into segments 
matching the period of time from the disappearance of the 
visual cue to the end of the imagery task. Calculations for 
the experimental conditions (event) were performed for the 
temporal window with a length of 1 s, counted for the per-
formance of imagery task (Fig. 1) and they were subjected to 
time–frequency decomposition with Event-Related Spectral 
Perturbation (ERSP) (Makeig 1993) in order to calculate 
the signal strength (dB) for the entire window (Formula 1). 

Formula 1 shows the Event-Related Spectral Perturbation 
equation. For n trials, if Fk(f, t) is the spectral estimate of 

(1)ERSP(f , t) =
1

n

μ∑

k=1

||Fk(f , t)
||
2

trial k at frequency f and time t (Delorme and Makeig 2004). 
To compute Fk(f, t) we used a sinusoidal wavelet transforma-
tions (3-cycles; 0.5 s).

The analyses took into account recordings from 12 chan-
nels covering the right and left motor cortex area in the 
HydroCel Geodesic Sensor Net cap (Bernier et al. 2007). 
Comparative analyses related to the task involving right-
hand motor imagery were based on recordings from six elec-
trodes located on the contralateral side (electrodes corre-
sponding with C3 location: 36, 37, 41, 42, 53, 54). Likewise, 
for left-hand movement, the recording from channels on the 
opposite side were used (electrodes corresponding with 
C4 location: 79, 86, 87, 93, 103, 104). The procedure was 
applied to two frequency ranges: µ (8–12 Hz), β (13–30 Hz).

In additionally SMR desynchronization before and after 
neurofeedback training was averaged for the entire frequency 
band, separately for the rightward and leftward movement 
and for both tasks simultaneously. Based upon this, we 
identified two groups of subjects who achieved the greatest 
decrease (N = 10) and the greatest increase in SMR power 
(N = 10). We can say that the subjects in the former group 
improved with respect to SMR control while in the latter 
group, the function deteriorated in comparison to the initial 
measurement.

Electrophysiological data were also subjected to a sepa-
rate offline analysis to enable a comparison of the session 
results (“Before” and “After”) with the training procedure 
results. The analyses were carried out for ten electrodes 
(FC3, C1, C3, C5, CP3, CP4, C2, C4, C6, FC4). EEG signals 
were filtered using a FIR filter with passband 8–30 Hz. In 
the next step, the EEG fragments associated with imagining 
the right and the left hand movement were separated form-
ing EEG data for two classes. For signals associated with 

Fig. 2   a Neurofeedback training pattern. The control stage presented the possible responses of the users (response matching the cue, no 
response, non-complying response) and the elements modified during the study (ball and basket). b Signal processing scheme (online mode)
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imagining the right and the left hand movement, a Com-
mon Spatial Pattern (CSP) filter was applied (Ramoser et al. 
2000). In this method, new signals are formed by spatial fil-
tering, which enables the maximising of variances of signals 
representing the two different classes.

In our experiment each component, following application 
of the CPS filter, was divided into 1-second windows over-
lapping in 0.5 s. The logarithm of power was calculated for 
each window. In this way, we received a feature vector that 
was used for signal classification (2 classes—imagining the 
right and the left hand movement).

Classification was performed using an LDA classifier 
(Lugger et al. 1998). The data were divided into learning 
and testing sets with a10-fold cross validation test. At the 
end the information transfer rate (ITR) was calculated for 
each user session (Formula 2). 

Formula (2) shows the information transfer rate (ITR) 
equation. ITR for a BCI system with N possible choices (e.g. 
mental tasks), with an average efficacy expressed as pa and 
time to make a choice as Tact (in seconds) (Shannon and 
Weaver 1949). ITR (expressed in bits per minute) is defined 
as the amount of information transferred via a BCI in a time 
unit. It combines both the speed and effectiveness of the 
interface.

The signal during neurofeedback training was processed 
in real time, in the same way as the EEG data from meas-
urement (“Before” and “After”) (Fig.  2b). Behavioural 
data were acquired via the automatic recording of correct 
responses during the neurofeedback training. Points were 
given if the ball hit any part of the highlighted basket area. 
No point was scored if there was no response (the ball fell 
down in the area between the baskets) or if the ball was 
placed in an area away from the highlighted basket. The 
results were recorded for accuracy (number of responses 
consistent with the instruction) and in the form of ITR.

Results

Offline Mode

The repeated measure analysis of variance with GROUP 
(1–4) and SEX (Female, Male) as inter-subject factors and 
two within-subject factors: the imagined HAND (left vs. 
right) and MEASUREMENT (before vs. after) was per-
formed separately on two sub-bands within the range of 
sensorimotor rhythms: μ = 8–12 Hz and β = 13–30 Hz.

There were no significant main effects or interac-
tion for μ-frequency: HAND F(1,32) = 0.49, p = 0.488, 

(2)

ITR =
60

Tact

(

log2N + palog2pa +
(
1 − pa

)
log2

1 − pa

N − 1

)

ηp
2 = 0.01; GROUP F(3,32) = 1.22, p = 0.318, ηp

2 = 0.1 SEX 
F(1,32) = 0.43, p = 0.514, ηp

2 = 0.01; MEASUREMENT 
F(1,32) = 0.02, p = 0.901, ηp

2 = 0.004 and HAND × GROUP 
× MEASUREMENT × SEX F(3,32) = 1.18, p = 0.333, 
ηp

2 = 0.09. Also, there were no main effects or interac-
tion in the β—range, HAND F(1,32) = 0.26, p = 0.616, 
ηp

2 = 0.007; GROUP F(3,32) = 1.75, p = 0.177, ηp
2 = 0.14 

SEX F(1,32) = 0.02, p = 0.874, ηp
2 = 0.0008; MEASURE-

MENT F(1,32) = 0.25, p = 0.621, ηp
2 = 0.008 and HAND 

× GROUP × MEASUREMENT × SEX F(3,32) = 0.568, 
p = 0.639, ηp

2 = 0.05, but a significant effect was observed 
between the factors of HAND × GROUP × MEASURE-
MENT F(3,32) = 3.20, p = 0.035, ηp

2 = 0.23. The calculated 
post hoc comparisons with Bonferroni correction confirm 
that the Group 3 (dummy face + flashing elements) after 
the training stage (MEASUREMENT = after), presented 
stronger suppression than was the case with Group 2 
(p = 0.003) and Group 4 (p = 0.04). Moreover, the results of 
Group 1 (p = 0.58) and Group 2 (p = 0.29) did not differ from 
the results of Group 4. In Group 2, the suppression during 
the second measurement was weaker than before NF session 
(p < 0.001) (Fig. 3). The effect was obtained for the task of 
the imagery right-hand movement. The distribution of signal 
power is shown in Fig. 4. Notably, post hoc comparisons 
only showed differences between the experimental groups 
after the training; F(3,32) = 3.48; p = 0.02, ηp

2 = 0.23 Before 
the user training stage there were no significant effects in 
β suppression during imagery left F(3,32) = 0.36; p = 0.77, 
ηp

2 = 0.03 or right, F(3,32) = 1.81; p = 0.16, ηp
2 = 0.13 hand 

movements. This supports the assumption that the differ-
ences between the groups are a result of training.

Online Mode

The analysis of variance, with GROUP (1–4) and SEX 
(Female, Male) as inter-subject factors and a run on behav-
ioural data (accuracy score) acquired during the stage of 
neurofeedback training did not show statistically significant 
main effects or interactions of GROUP: F(3,36) = 1.11, 
p = 0.36, ηp

2 = 0.09 ; SEX: F(1,39) = 0.22, p = 0.641, 
ηp

2 = 0.01 and GROUP × SEX: F(1,39) = 0.93, p = 0.438, 
ηp

2 = 0.08.
Analysis of the data related to control accuracy dur-

ing training with the non-parametric Mann Whitney U 
test showed that the subjects with the most pronounced 
decrease in band power in comparison to the first EEG 
recording (N = 10; M = − 0.78  dB; SD = 0.215  dB) 
achieved lower disparity between the results in rightward 
and leftward control than the subjects who experienced 
an increase in wave strength at the same time (N = 10; 
M = 0.99 dB; SD = 0.386 dB) U M-W = 18; p = 0.015. The 
subjects found to have the strongest effects from the train-
ing achieved similar accuracy in both tasks (Md = 45.50), 
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while those with the poorest results were more successful 
in one type of movement (Md = 132). Figure 5 presents 
the topography of the ERD/ERS effect relative to the size 
of difference in accuracy during the training session.

A t test revealed significant differences in successful 
performance dependent on the specific task during train-
ing t(1,39) = 2.06, p = 0.046. The subjects more often 
correctly hit the target situated on the right (M = 60.70; 
SE = 29.09) than on the left (M = 44.38; SE = 26.7). The 
effect was observed during all training sessions and in all 
the experimental groups (Fig. 6).

ITR from the training session shows a positive corre-
lation with the difference in the accuracy of the imagery 
classification (“After”–“Before”) calculated from EEG 
measurement data subjected to the same procedure as the 
signal from the neurofeedback session r = 0.37, p = 0.02. 
This means that the subjects’ greater ability to control 
movement during sessions with feedback coincided with 
higher improvement in SMR control recorded during 
offline registration.

Discussion

As expected, after neurofeedback training, Group 3 (dummy 
face + flashing elements) presented with greater suppression 

during imagined movement than Group 4, which partici-
pated in training with no modifications. Furthermore, Group 
3 achieved significantly better results during the second 
measurement in comparison to Group 2 subjected to the 
training procedure with a single modification (flashing ele-
ments). The findings relating to the second group were the 
opposite of those expected. After the relevant training pro-
cedure was employed, there was a significant decrease in 
suppression of sensorimotor rhythms, an effect of its key 
importance in SMR-BCI control. This specific procedure 
may have resulted in a greater level of fatigue in the users 
than the remaining variants. Fatigue during the observation 
of objects displayed at low frequencies is a common prob-
lem in SSVEP (Cao et al. 2014) and P300 BCI (Fazel-Rezai 
2007). In this context it seems interesting that in Group 3 
the same flashing movement had no negative impact on the 
effects of training. Moreover, following the training proce-
dure accompanied only with a display of a face showing 
emotions, Group 1 was found with suppression of SMR 
which did not differ significantly from that recorded in either 
the group training with no modifications (Group 4) or the 
group whose training comprised two new elements (Group 
3). It is likely that when it was applied alone, the flashing 
movement caused fatigue as it attracted attention only to 
the objects which were moving on the screen yet carried no 
additional information for the user. A schematic image of a 

Fig. 3   Differences in desyn-
chronization of β bands 
(13–30 Hz), related to the effect 
of HAND × GROUP × MEAS-
UREMENT, for the imagery 
hands movements. The vertical 
bars show 0.95 confidence 
intervals. Significant differences 
in post hoc comparisons with 
the Bonferroni correction are 
marked with brackets: *p = 0.04; 
**p = 0.003; ***p < 0.001
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human face flashing at a low frequency is applied in P300-
BCI to decrease fatigue and improve the mental condition 
in subjects using this kind of interfaces (Chen et al. 2015). 
Introducing the same elements into SMR-BCI training tested 
in the present study may have produced a similar, positive 
effect.

All the significant differences in offline analyses were 
related to the upper band of sensorimotor rhythms (β), 
which may be evidence of participants’ increased control 
over imagery movement. Decreased activity in β oscil-
lations during motor tasks is observed in subjects with 
reduced motor control, e.g. in neurological disorders 
(Leocani and Comi 2006). The upper SMR band is also 
linked to more difficult tasks or those requiring greater 
engagement (Nakagawa et al. 2011). Changes in this range 
of frequencies may suggest that the training also led to 

improved accuracy with which the participants simulated 
the imagery movement.

The evidence obtained is limited to electrophysiologi-
cal measurements and tasks involving right-hand motor 
imagery, yet it is consistent with the findings of other 
experiments (Leeb et al. 2007; Jin et al. 2012; Kober et al. 
2013). Moreover, the imagined movement of the dominant 
hand is used in some experiments during the initial SMR-
BCI sessions (McFarland et al. 2010) or in assessing the 
vividness of the imagery (Neuper et al. 2005). In the case 
of right-handed individuals, who accounted for > 97% of 
the participants, left-hand motor imagery may be a more 
challenging task, which may explain the lack of effects 
following a singiel training session.

Lateralisation of the task was also important for accu-
racy in online mode. It was observed that when the target 

Fig. 4   Maps of SMR distribution on the skull (8–30  Hz) during 
imagined movement of the right and left hand. Electrodes shown on 
the right registered statistically significant differences in the strength 

of signal between the experimental groups (marked with grey dots). 
There is a visible lack of differences before the training procedure 
was applied
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was on the right side of the screen, the subjects hit it with 
the ball more frequently than if the left-side platform was 
displayed. The participants in the study who, regardless 
of the type of training, achieved the lowest improvement 
in SMR control between sessions, were also found with 
the greatest differences in rightward and leftward con-
trol accuracy in online mode. Although differences in the 
topography of sensorimotor waves between the imagined 
right-hand and left-hand movement have already been 
reported (Stancák and Pfurtscheller 1996; McFarland et al. 
2000), the direct effects of topography in online BCI con-
trol require further investigation.

It should be emphasised that although the experiment 
was conducted in two stages (offline and online), there was 

significant correlation found beetween the results obtained 
that were subjected to the same signal processing proce-
dure. This is consistent with earlier studies which suggest 
that measurement of sensorimotor waves during imagined 
movement permits the prediction of the effectiveness of BCI 
performance in real time (Blankertz et al. 2010).

Conclusion

In summary, the present study has demonstrated that it is 
possible to influence SMR-BCI control by manipulating 
the visual elements used in the procedure of neurofeedback 
training. The findings related to the improved control of 
SMR desynchronization in Group 3 to justify investigating 
a possible level of complexity of the neurofeedback proce-
dure, in terms of the applied visual elements, which would 
effectively improve an individual’s capacity to learn BCI 
control. Trials using complex graphical environments, such 
as three dimensional stimuli (Leeb et al. 2007; Scherer et al. 
2008), or those acting on a several senses of the user at the 
same time (Sollfrank et al. 2016), justify the assumption 
that one training procedure may incorporate a number of 
elements which affect various mental processes involved in 
learning. Complex neurofeedback training based on multiple 
media, and designed to simultaneously reinforce a number 
of mechanisms involved in the process of motor imagery 
control, may prove to be another step towards overcoming 
the phenomenon of BCI illiteracy.

The observed difference in the accuracy of performance 
between tasks involving rightward and leftward movement 

Fig. 5   Sample maps showing the distribution of SMR on the skull 
(8–30 Hz) during imagined right and left-hand movement: a a sub-
ject with a small difference in accuracy of performing both training 
tasks during the first and second EEG measurement was found with 
desynchronization on the appropriate side, contralateral in relation 
to the cue displayed; b a subject who at the training stage tended to 
correctly hit the basket if the target was situated on the right side, in 
EEG measurement “Before” and “After” was found with desynchro-
nization exclusively on the left side, regardless of the task

Fig. 6   Percent of correct reactions presented by users per type of 
TASK
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based on real-time BCI experiments has not previously been 
reported. Therefore, there seem to be good reasons for fur-
ther studies to investigate whether lateral dominance may 
have an impact on the effectiveness in using brain–computer 
interfaces based on imagery involving lateralised movement.
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