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Abstract: Osseointegration is the direct contact between living bone and a dental implant,
with supporting evidence confirming the direct connection between bone and titanium,
found using an electron microscope. However, the fundamental mechanisms and in-
terconnections between the bone and titanium are not clearly understood. At present,
osteoimmunology explores the interaction between bone and immune cells not only in the
medical field but also in dentistry. Immunology in bone cell formation has long been a
research topic; however, interest in these effects has recently surged. Through subsequent
studies, osteoimmune reaction occurs in response to dental implant insertion into the bone
and this mechanism portrays more accurate tissue response compared to the traditional
term osseointegration. Additionally, osseointegration is a foreign body defense mecha-
nism to protect the implant when bone forms at the contact surface between the dental
implant and the alveolar bone. The term “osteoimmunology” refers to the relationship
between the immune system and bone tissues. Understanding osteoimmunologic concepts
may enable the development of immunomodulatory strategies to improve, maintain, and
ultimately restore osseointegration. In order for biocompatible materials such as dental
implants to settle and be maintained in the body, it is necessary to understand the complex
interrelationships of the bone immune environment, which will enable the development of
biomaterials that are more favorable to osteoimmune environments. Therefore, this review
presents previous insights into cellular and molecular interactions between bone and the
immune system, specifies the roles of T-regulatory cells (Tregs) and macrophages, and
demonstrates their potential for translational applications worldwide.

Keywords: T-regulatory cell; adenosine; macrophage; osseointegration; osteoimmunology;
osteoimmunologic integration

1. Introduction
Osteoimmunology—Fundamentals of Immunity and Immune Cells

Immunity is a natural defense mechanism that immediately protects the body by
distinguishing between self and non-self cells and eliminates the non-self cells. This
biological defense system includes immune cells that respond to external pathogens such
as viruses and bacteria, as well as to the body’s self components, which typically leads to
autoimmune disease. Therefore, it is critical to understand that proper immune regulation
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must encompass both defense mechanisms against external pathogens and the modulation
of responses to the body’s self components. The human body strictly recognizes self and
non-self components and maintains its establishment through the elimination of external
particles. The body tries to remove antigens and return to its original state by proliferating
immune cells that specifically respond to antigens. As an example, bacteria that are
recognized as non-self are often removed. In addition, the immune system continues to
monitor itself and tolerate such cells as part of the body. However, when cells undergo slight
variations in their components, they are immediately targeted for apoptosis. Ultimately, the
immune system operates invariably to maintain a body’s stable internal state, also known
as homeostasis [1–5].

The human body contains two defense mechanisms against various pathogens: innate
immunity and adaptive immunity [6]. Innate immunity serves as the first line of defense
which is activated immediately upon pathogen invasion and is also referred to as natural
immunity or primary immunity. This immune system is composed of cells such as neu-
trophils, macrophages, dendritic cells, eosinophils, basophils, mast cells, and natural killer
(NK) cells. When the primary immune system is penetrated, the second line of defense is
activated. This is known as adaptive or acquired immunity, and can also be referred to
as secondary immunity. This system is primarily represented by T cells and B cells, and
produces a definite and long-lasting immune response [7].

The immune cells responsible for immunity originate from hematopoietic stem
cells (HSCs) which are stem cells that generate blood cells. This process is known as
hematopoiesis, which primarily occurs in the red bone marrow, located in the spongy,
cancellous tissue within the bone, as shown in Figure 1. HSCs produce various types of
blood cells through two major lineages: the myeloid lineage and the lymphoid lineage. The
myeloid lineage includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils,
basophils, mast cells, erythrocytes (red blood cells), and megakaryocytes, which are a pre-
cursor to platelets. The lymphoid lineage is composed of T cells, B cells, and natural killer
(NK) cells. Among these, T cells play a central role in adaptive immunity. There exist
various types of T cells, such as cytotoxic T lymphocytes (CTLs), CD8+ T cells, and killer T
cells, which target tumor and infected cells. There are also T helper cells—also known as
Th cells or CD4+ Tcells—that act as a commander by attracting innate immune cells and
regulate immune response by coordinating both innate and adaptive immune cells [8].

 

Figure 1. Schematic illustration depicting signaling cascades of cells caused by hematopoietic stem
cells released from bone marrow (created in BioRender. Jong Il Yun. (2025) https://BioRender.com).

https://BioRender.com
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2. T-Regulatory Cell (Tregs) Interactions with Other Immune Cells
2.1. T-Helper17 (Th17)/Treg

Th cells are mature T-cells that trigger the surface protein cluster of differentiation
4 (CD4) and release cytokines to regulate other immune cell activities. These are often
classified into various subtypes such as T-helper 1 (Th1), Th2, Th17, and Treg cells [9].
Previously, Th1 cytokines were associated with inflammatory bone destruction while Th2
cytokines, also known as classical antagonists, were thought to minimize bone resorp-
tion [10,11]. However, subsequent studies have questioned the roles of Th1 and Th2, and
have proven the presence of Th1 and Th2 cytokines in human periodontitis lesions [12,13].
Therefore, the cause of the pathogenesis of periodontitis cannot be fully supported through
the imbalance of Th1/Th2. More recently, the significance of Th17 and Tregs has been high-
lighted. Th17 are cytokine-producing cells associated with inflammatory and numerous
autoimmune diseases [14]. They induce the expression of receptor activator of NF-κB lig-
and (RANKL) in osteoblasts and fibroblasts, release the key cytokine interleukin-17 (IL-17)
to enhance local inflammation, and increase the production of inflammatory cytokines such
as IL-21, tumor necrosis factor-α (TNF-α), IL-1β, and IL-6, which triggers faster RANKL
expression. As a result, Th17 are the major contributors of bone loss in periodontitis and
peri-implantitis [15,16].

Tregs play an extensive role in stimulation and suppression of immune cells to main-
tain the cell homeostasis [17]. Tregs inhibit the activation of T conventional (Tconv) by
elevating the expression of CD25, the α chain of the IL-2 receptor, and binding it to IL-2 [18].
To date, several categories of Tregs have been identified, with the two main types being
thymus-derived forkhead box P3+ (Foxp3+) Tregs and inducible Tregs [19]. However, the
over-expression of Th17 is a major cause of periodontitis and peri-implantitis, accompanied
by alveolar bone resorption. To minimize this effect, the anti-inflammatory functions of
Tregs can be utilized [20].

In cases of periodontitis and peri-implantitis, appropriate regulation of immune re-
sponse prevents the spread of pathogenic microorganisms and simultaneously avoids
additional collateral tissue damage. Therefore, Tregs are primarily drawn to the infected
tissue to control the immune response [21,22]. Tregs regulate bone metabolism by secret-
ing transforming growth factor-β (TGF-β), interleukin-10 (IL-10), IL-4, and cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) and directly inhibiting osteoclast production.
When peri-implantitis progresses, the proportion of Th17 increases. It is known that in the
early stages, Tregs maintain a balance with Th17, but in the later stages, as the proportion
of Tregs decreases, there is an immune imbalance, leading to bone resorption. Hence,
Foxp3+Tregs play a crucial role in regulating periodontitis and peri-implantitis [23,24].

2.2. Tregs and Adenosine

Adenosine is a stable purine nucleoside that is typically found at low levels during
regular physiological conditions, with a biological half-life lasting less than 10 s [25]. Under
metabolic stress conditions, the adenosine levels in plasma increase. Blood adenosine
triphosphate (ATP) is dephosphorylated to adenosine by ectonucleoside triphosphate
diphosphohydrolase-1 (CD39) and ecto-5′-nucleotidase (CD73). Equilibrative nucleoside
transporter 1 (ENT1) releases intracellular adenosine to the extracellular space [26]. It is
commonly understood that adenosine or its analogs block inflammation in various organs
such as the liver, lungs, kidneys, heart, and gastrointestinal tracts [27]. In the extracellular
environment, adenosine binds to a type of G protein-coupled receptor (GPCR) known as
adenosine receptors, which are subdivided into four different categories: A1, A2A, A2B,
and A3. Here, A1 and A2A adenosine receptors (A2AAR) are high-affinity receptors, while
A2B and A3 adenosine receptors (A3AR) are low-affinity receptors. All of these receptors
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are regulated through adenylyl cyclase (AC) activity, which controls intracellular cyclic
adenosine monophosphate (cAMP) levels. A2AAR and A2BAR stimulate AC, whereas
A1AR and A3AR inhibit AC [28]. A2AAR is commonly noticed in various tissue cells,
but it is mainly identified in leukocytes, platelets, and vascular tissues. It mediates anti-
inflammatory responses and proliferates vasodilation [29]. The binding of adenosine and
A2AAR is the most rapid binding mechanism to protect tissues from external damages and
dramatically reduces the production of inflammatory cytokines [30]. Additionally, A2BAR
is widely expressed peripherally and found in various cells which regulate inflammatory
and immune response under pathological conditions [29].

Tregs can produce massive amounts of extracellular adenosine via coupling the A2A
adenosine receptor (A2AAR) while inhibiting the T effector cells. They express CD39 and
CD73, which enables the production of adenosine from ATP. Adenosine production then
controls Th17 responses [31]. Moreover, adenosine can optimize the immunomodulatory
activity of Tregs through A2AAR. The increased activity of A2AAR then significantly
enhances the expression of co-inhibitory molecule programmed cell death protein-1 (PD-
1) [32]. These immune regulations caused by A2AAR are mediated by an increase in
intracellular cyclic adenosine monophosphate (cAMP) levels [33]. Therefore, under inflam-
matory conditions, Tregs increase the production of adenosine, which in return enhances
the immunosuppressive activity of Tregs. Ultimately, the resulting feedforward mechanism
successfully suppresses immune responses [34].

2.3. Tregs and Neutrophils

Neutrophils are the frontline soldiers in the injury sites which are actively recruited in
the healing process. However, when there is an overabundance of neutrophils, this could
possibly harm unwanted cells. Along with monocytes (immature cells) and macrophages
(mature cells), neutrophils remove necrotic tissues and cellular debris, and release cytokines
to regulate chemotaxis for acute inflammation. Not only do they contribute to various
chronic inflammatory diseases, but neutrophils also exacerbate these conditions through
the release of proteases and the formation of neutrophil extracellular traps (NETs) [35–38].
Here, Tregs can reduce the neutrophils and modulate T helper cells to indirectly regulate the
inflammation and tissue regeneration. To do so, Tregs induce anti-inflammatory molecules
such as IL-10, TGF-β, heme oxygenase-1 (HO-1), and indoleamine 2,3-dioxygenase (IDO)
secreted inside the neutrophils [39,40]. Also, Tregs promote the apoptosis of neutrophils
and adjust their infiltration [41,42]. Tregs affect neutrophil activities, inflammation, and
tissue healing.

2.4. Tregs and Dendritic Cells (DCs)

Dendritic cells (DCs) are antigen-presenting cells that capture oral microorganisms,
migrate to the lymph nodes, and regulate T helper cell (CD4+) differentiation; they are
thus essential for the progression of periodontitis and peri-implantitis [43]. The inhibitory
receptor CTLA-4 on regulatory Tregs binds to co-stimulatory molecules (CD80 and CD86)
on dendritic cells, which inhibits their antigen-presenting function and induces IDO gener-
ation. This escalates T-cell apoptosis [44]. When Tregs increase adenosine, they act on A2A
adenosine receptors (A2AAR) to inhibit pro-inflammatory activation and on A2B adenosine
receptors (A2BAR) to induce tolerogenic conditions in antigen-presenting cells like DC [45].
Tregs also secrete IL-10 and TGF-β to inhibit the expression of HLA-DR (Human Leukocyte
Antigen—DR isotype), CD80/86, and CD40 on the DC surface and the production of
inflammatory cytokines such as TNF-α and IL-12 [46]. IL-35 induces tolerogenic DCs by
increasing the expression of CD11b and IL-10 and decreasing major histocompatibility
complex-II (MHC-II) [47]. Tregs can make additional contact through extracellular vesicles
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(EVs) that contain miR-150-5p and miR-142-3p to mediate the non-contact regulation of
DCs. This would lead to an increase in IL-10 and a decrease in IL-6 production in DCs,
which promotes a tolerogenic DC state [48].

2.5. Tregs and Mesenchymal Stem Cells (MSCs)

MSCs, progenitor cells of many tissue cells such as osteoblasts and adipocytes, have
immunosuppressive mechanisms very similar to Tregs and interact with them [49]. MSCs
heavily depend on the Jagged-1 gene to increase Foxp3+Tregs or convert Foxp3-Tconv
to Foxp3+Tregs [50]. Tregs and MSCs cooperate and follow the CD39-CD73-adenosine
production pathway to increase adenosine [51,52]. Undifferentiated bone marrow-derived
MSCs primarily express A2BAR, which is vital for differentiating MSCs into osteoblasts
(OBs). The presence of adenosine reacts to A2BAR derived from MSCs and enhances OB
classification [53]. It can also excite A2AAR derived from OBs to increase the secretion
of IDO and HO-1 for immunosuppression and tissue regeneration [54]. Ultimately, Tregs
regulate RANKL and osteoprotegerin (OPG) production from OBs to further influence os-
teoclast formation. Therefore, Tregs’ role is crucial in identifying the precise RANKL/OPG
ratio that signals OB differentiation and bone formation [55].

2.6. Tregs and Macrophages

Tregs can interact with other major innate immune cells such as macrophages for
inflammatory responses. Macrophages have a key role in autophagy, which removes
apoptotic neutrophils and other cells. Additionally, they contribute to tissue repair and
regeneration [56]. Monocyte-derived macrophages exist in two subsets: M1 and M2. M1
are pro-inflammatory macrophages induced by interferon-γ (IFN-γ) or TNF-α, while M2
are anti-inflammatory macrophages induced by IL-4/IL-13 or IL-10. Here, Tregs are an
important regulator for expressing the macrophage phenotypes. They alleviate tissue
damage, regulate macrophage activity, and escalate tissue survival to maintain tissue repair
and homeostasis [57]. Tregs utilize various types of cytokine secretion or cell interactions
to induce monocytes’ phagocytic capacity and markers such as CD206, CD163, and HO-1
while differentiating monocytes into the anti-inflammatory M2 phenotype. This reveals the
low expression of CD40, CD80/86, and Class II MHC. Tregs can also increase the secretion
of anti-inflammatory cytokines such as IL-4, IL-10, IL-13, and TGF-β and suppress the
secretion of pro-inflammatory cytokines like TNF-α, nitrogen oxide (NO), and reactive
oxygen species (ROS) [58,59]. In the Treg-mediated immune suppression, there exist vari-
ous cell-contact regulators. For example, CTLA-4 interacts with co-stimulatory receptors
CD80/86, PD-1 binds to PD-L1, lymphocyte antigen gene-3 (LAG-3) binds to MHC-II,
T cell immunoreceptor with Ig and ITIM domains (TIGIT) binds with CD155/122, FasL
induces Fas+ cell apoptosis, and neuropilin 1 (Nrp1) monitors Tregs’ Foxp3 activation and
deactivation [60]. However, for the Treg-mediated macrophage inflammation suppression
to occur, a signaling pathway via Krüpel-like factor 10 (KLF10) and mammalian target
of rapamycin complex 1 (mTORC1) is required [61,62]. Tregs are responsible for directly
producing EVs on the cell surface, which leads to the emergence of CD73 in EVs. This
triggers the conversion of the extracellular AMP into adenosine and regulates immune
responses by inhibiting M1 macrophages and promoting M2 macrophages [63] (Figure 2).
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Figure 2. Schematic illustration depicting immunosuppressive methods of Tregs on immune cells
(created in BioRender. Jong Il Yun. (2025) https://BioRender.com). ↑, increase; ↓,decrease; red X
represents inhibition.

3. M1/M2 Polarization in Dental Implants
Macrophages are monocyte-derived mature immune cells that exhibit high plasticity.

Macrophage polarization is the process in which macrophages acquire distinct functional
characteristics in response to specific stimuli from the extracellular microenvironment. This
typically results in two phenotypic changes: classically activated M1 (pro-inflammatory)
macrophages and alternatively activated M2 (anti-inflammatory) macrophages [64]. At
present, the function and phenotypic polarization of macrophages is a key research area
to understand inflammatory conditions that lead to diseases like atherosclerosis, type 2
diabetes, obesity, and periodontitis. Due to their phagocytic activity and high cellular
plasticity, macrophages are necessary for establishing homeostasis and identifying diseases.
When there are various environmental signals, macrophages regulate different phenotypes
to incite or alleviate the inflammation. For an example, when macrophages are activated by
lipopolysaccharide (LPS) or IFN-γ, they exhibit the M1 phenotype which is associated with
inflammatory responses, phagocytosis, tissue destruction, and the production of IL-6 and
IL-1β. Alternatively activated macrophages with the M2 phenotype are associated with
anti-inflammatory responses, which include the production of IL-10 and TGF-β, inducing
tissue repair and angiogenesis [65].

Numerous studies have revealed that the increased expression of inflammation by M1
macrophages is associated with the pathogenesis of periodontal and peri-implant diseases.
Periodontitis and peri-implantitis are related to the changes in M1 and M2 phenotypes,
where the phenotype shift from M2 to M1 causes critical damage to the periodontal tis-
sue, including the alveolar bone [66,67]. M1 macrophages are responsible for secreting
inflammatory mediators such as TNF to increase the number of osteoclast precursors and
promote their differentiation to directly regulate osteoclastogenesis. M1 macrophages can

https://BioRender.com
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indirectly up-regulate RANKL production through osteoblasts and other stromal cells,
which stimulate osteoclast formation and activation via the RANKL/OPG/RANK signal-
ing pathway [68]. Meanwhile, local actions of IL-4 and IL-13 increase M2 macrophages and
augment bone volume to enhance bone healing effects [69]. M2 macrophages can produce
the potent anti-inflammatory cytokine IL-10, which inhibits early osteoclast development
and prevents continuous pre-osteoclast (preOC) development [70]. If M1 polarization is
prolonged, it can lead to increased release patterns of M2 macrophage fibrotic-promoting
cytokines while resulting in the formation of fibrous capsules [71]. Therefore, for optimal
bone remodeling during bone healing, the inflammatory microenvironment must be timely
adjusted to an anti-inflammatory stage and M1 macrophages need to be converted to M2
macrophages around the implant site [72].

Osteoimmunology in bone metabolism has recently gained attention in the field of
dentistry, and the osseointegration of implants is understood as a state of foreign body
equilibrium (FBE). This process heavily depends on the complex cellular heterogeneity and
dynamic changes in the implant-mediated osteoimmune microenvironment. Therefore, the
balanced plasticity of macrophages surrounding the implant, known as innate immune
cells, is related to long-term FBE. On the other hand, the increased proportion of M1/M2
near the implant will affect bone resorption and is likely to indicate an early or ongoing
clinical manifestation of foreign body reaction (FBR) [73].

In osteoimmunology, there is an increasing trend in the development of drugs and ad-
vances in implant surfaces utilizing M1/M2 polarization [74,75]. Polydeoxyribonucleotide
(PDRN), a DNA fragment extracted from salmon sperm and testes, is a drug that responds
to adenosine receptors on the cell surfaces to regulate inflammation and escalate tissue
regeneration [76]. PDRN promotes the secretion of IL-10 and VEGF derived from M2
macrophages and converts M1 macrophages into M2 macrophages phenotypically [77]. In
a study using bone graft composites containing PDRN, the inclusion of PDRN attenuated
osteoclast differentiation induced by RANKL [78]. Moreover, when M2 macrophage polar-
ization was increased, this activated angiogenesis and tissue remodeling, which further
signaled the secretion of cytokines, chemokines, and growth factors. Simultaneously, M1
polarization was stopped to reduce inflammatory cytokines, which indicated improved
tissue regeneration in the inflammatory environment [79] (Figure 3).

 

Figure 3. Schematic illustration depicting differences in bone response around the implant ac-
cording to the phenotype change in M1 and M2 (created in BioRender. Jong Il Yun. (2025)
https://BioRender.com).

https://BioRender.com
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4. Immunologic Understanding of Osseointegration (Osteoimmunologic
Integration: OII)

In 1981, T. Albrektsson defined osseointegration as the direct contact between living
bone and an implant, with supporting evidence confirming the direct connection between
bone and titanium found using an electron microscope. However, the fundamental mecha-
nisms and interconnections between the bone and titanium were not clearly understood [80].
Following his subsequent studies, Albrektsson stated that osteoimmune reaction occurs in
response to implant insertion into the bone and this mechanism portrays more accurate tis-
sue response compared to the traditional term osseointegration. Additionally, Albrektsson
described osseointegration as a foreign body defense mechanism to protect the implant
when bone forms at the contact surface between the implant and the alveolar bone [73].

Clinical and animal studies indicate that many immune cell types, including T cells,
macrophages, and neutrophils, are involved in fracture healing by coordinating a chain
of events that regulate bone formation and remodeling. Immune cells, including T cells,
are involved in fracture healing, regulating the microenvironment and preparing MSCs
in the inflammatory phase, and coordinating bone formation and resorption in the bone
remodeling phase [81].

In 2023, Waad Kheder showed that the infiltration of immune cells in the tissues
surrounding dental implants plays an important role. There is an increase in lymphocyte
and macrophage infiltration in the tissues around the failed implant. In particular, it is
associated with T-cell-mediated immunity and M1/M2 macrophage polarization. These
results show evidence that titanium particles regulate the polarization of lymphocytes and
macrophages in the gingival tissue around the implant, which may help to understand the
imbalance in osteoblast and osteoclast activity and the failure of osseointegration of dental
implants [82].

The success of the osseointegration of dental implants directly into the alveolar bone
in vivo greatly depends on the local immune microenvironment controlled by various
immune cells and appropriate osteoimmune regulation [83]. New bone formation after
dental implants typically occurs in three stages: the initial inflammation stage, the bone
formation stage, and the remodeling stage. Here, macrophages are involved in all three
stages to participate in bone healing and formation. More specifically, macrophages that
reside in the bone endosteum participate in bone recovery [84,85]. When the implant is
inserted into the soft and hard tissues, the surface absorbs blood proteins and triggers an
inflammatory cascade operated by the innate immune system [86]. If the inflammation is
not properly healed or reactivated, the implant is most likely going to fail [87]. According to
recent studies, immature monocytes are known to directly convert into mature macrophages
after biomaterial is implanted [88]. Circulating monocytes can infiltrate the inflammatory
tissue and act as precursors of wound-healing macrophages. When monocytes enter the
implantation site, cytokines and chemokines like IL-1, IL-8, monocyte chemoattractant
protein-1 (MCP-1), CXCL13, and macrophage inflammatory protein (MIP) are released
and stimulate further monocyte infiltration and macrophage activation [89]. During the
early stage of development, the majority of macrophages express the M1 phenotype, but
they are gradually converted to the M2 phenotype after interacting with multiple cells,
cytokines, and extracellular matrix components. This increases osteoblast activity, which
further leads to new bone tissue formation [90]. It takes approximately a month after
surgery for osteoclasts to absorb the remnants of the bone tissue and for mesenchymal
stem cells (MSCs) and osteoblasts to migrate to the bone formation area near the implant
surface and begin mineralization. After 3 months post-implantation, the implant surface is
surrounded by osteoblasts and osteocytes, which gradually mature and lead to progressive
osseointegration [91].
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In conclusion, osseointegration—which denotes the well-known combination of dental
implant and alveolar bone—is the result of a recently identified osteoimmunologic response
and, so, it is reasonable to understand osseointegration as “osteoimmunologic integration”.
This may offer more valuable insights to potentially expand the field of dentistry (Figure 4).

 

Figure 4. Schematic illustration depicting changes in the surrounding bone’s immune system
over time after implantation in the living bone (created in BioRender. Jong Il Yun. (2025) https:
//BioRender.com).

5. Conclusions
In recent years, osteoimmunology has become fundamental to understanding the

complex immunologic interactions among bone and implants, bone regeneration, and
various diseases. Therefore, the interpretation of osseointegration is understood as an
osteoimmune response. From this point of view, the immune system separates biomaterials
(e.g., implants) from the living body, which effectively protects them from the bone tissue.
This osseointegration is a continuous and dynamic biological reaction and is a concept
that achieves equilibrium with foreign substances [73]. While several immune cells are
involved in this process, macrophages play an important role in osseointegration dynamics.
Macrophages derived from circulating monocytes and resident macrophages contribute to
achieving an environment for promoting bone regeneration around the implant in the early
stages of implant placement [92]. At this time, phenotypic transition from M1 macrophages
to M2 macrophages appears to be very important in regulating bone formation. In ad-
dition, the efficient and timely transition from the M1 macrophage phenotype to the M2
macrophage phenotype releases osteogenesis cytokines and enables the formation of bone
tissue around the implanted implant, which is the basis of the concept of osteoimmunologic
regulation. Therefore, biomaterials with immunomodulatory abilities can create an im-
mune environment that enhances osteogenesis and regulates proper osteoclast formation
during bone remodeling processes. These properties are important for the development
of immunomodulatory biomaterials. Biomaterials that lack immunomodulatory capacity
can cause excessive inflammation and lead to an imbalance in osteoclast formation with
respect to bone formation [93].

Understanding osteoimmunologic concepts may enable the development of im-
munomodulatory strategies to improve, maintain, and ultimately restore osseointegration.

https://BioRender.com
https://BioRender.com
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A number of studies have recently emerged based on this concept [75,90]. Topics included
altering implant surface properties to convert macrophage phenotypes around implants
from M1 to M2, reducing the secretion of inflammatory cytokines using implants ionized
with LiCl or Mg, modulating macrophage phenotypes using polarizing cytokines such
as IL-4, and promoting the innate immunomodulatory capacity of MSCs by mechanistic
stimulation to the outside of the tissues surrounding the implant [92]. Recent in vivo
studies show biodegradable Mg implants elicit a pronounced, transient M1 surge before
any M2 shift [94,95].

In addition, studies that have explored complex material–cell interactions using ma-
chine learning to understand immune modulation by macrophage polarization have been
presented [75]. PDRN is known as a DNA drug that regulates excess inflammation and
aids tissue regeneration [76]. It has also been reported that PDRN polarizes M1 to M2 in
the inflammatory environment [77]. Although many studies are still needed to support the
usage of PDRN in the field of dentistry, it is considered a strong candidate drug that may
be helpful in the early and ongoing maintenance of implant osseointegration in the future.

At present, it is accepted that an understanding of osteoimmunology is essential to
understand bone metabolism accurately. In order for biocompatible materials such as
implants to settle and be maintained in the body, it is necessary to understand the complex
interrelationships of the bone immune environment, which will enable the development of
biomaterials that are more favorable to osteoimmune environments.
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HSC Hematopoietic Stem Cell
IDO Indoleamine 2,3-Dioxygenase
IFN-γ Interferon-γ
IL-4 Interleukin-4
IL-10 Interleukin-10
IL-17 Interleukin-17
KLF10 Krüpel-like Factor 10
LAG-3 Lymphocyte Antigen Gene-3
LPS Lipopolysaccharide
M1 Pro-Inflammatory Macrophage
M2 Anti-Inflammatory Macrophage
MCP-1 Monocyte Chemoattractant Protein-1
MHC-II Major Histocompatibility Complex-II
MIP Macrophage Inflammatory Protein
MSC Mesenchymal Stem Cell
mTORC1 mammalian Target of Rapamycin Complex 1
NET Neutrophil Extracellular Trap
NK Natural Killer
NO Nitrogen oxide
Nrp Neuropilin
OB Osteoblast
OC Osteoclast
OPG Osteoprotegerin
PD-1 Programmed Cell Death Protein-1
PDRN Polydeoxyribonucleotide
pre-OC pre-Osteoclast
RANKL Receptor Activator of NF-κB Ligand
ROS Reactive oxygen species
Tconv T conventional Cell
TGF-β Transforming Growth Factor-β
Th17 T helper 17 Cell
TIGIT T cell Immunoreceptor with Ig and ITIM Domains
TNF-α Tumor Necrosis Factor-α
Treg T-regulatory Cell
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