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Abstract: The aim was to investigate the effect of two own mother’s milk (OMM) fortification
protocols on (a) IGF-I and ghrelin plasma levels at 35 post-conceptional weeks (PCW, T2) and whether
this effect is maintained after elimination of the differences in OMM fortification, and (b) growth until
12 months corrected age. Forty-eight OMM-fed preterm infants (GA 24–32 weeks) were randomly
allocated to the fixed-fortification (FF) group (n = 23) and the protein-targeting fortification (PTF)
group (n = 25) targeting the recommended daily protein intake (PI). Plasma IGF-I and ghrelin were
assessed at 35 (T2) and 40 (T3) PCW while growth was longitudinally assessed until 12 months
corrected age. PTF group had lower IGF-I and higher ghrelin than FF group at T2, while receiving
lower daily protein and energy amounts. PI correlated positively to T2-IGF-I and inversely to
T3-ghrelin while energy intake (EI) correlated inversely to T2- and T3-ghrelin. Group and PI were
independent predictors of adjusted T2-IGF-I, while group and EI were predictors of adjusted and
T2-ghrelin. Growth parameter z-scores were comparable between groups up to 12 months corrected
age. Modifications of OMM fortification have a transient effect on early plasma IGF-I and ghrelin
levels in preterm infants in a way consistent with the previously recognized protein-energy/endocrine
balance, indicating a potential programming effect.

Keywords: BMI; ex-preterm children; feeding preterm infants; growth; human milk fortification;
nutrition; programming; protein intake

1. Introduction

Feeding preterm infants own mother’s milk (OMM) has major advantages for its health, including
reduced neonatal mortality and morbidity, better neurodevelopment, and potentially lower risk of
developing metabolic syndrome in adulthood [1–3]. However, preterm infants have increased macro-
and micro-nutrient requirements, which are difficult to be met by OMM or donor human milk [4,5].
Therefore, fortification of OMM with proteins and other macro- and micro-nutrients is recommended
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in order to support the infant’s growth [6,7]. So far, three methods of human milk fortification have
been used; the standard or fixed fortification (FF), in which a fixed amount of fortifier is added to OMM
or donor milk; the individualized adjustable fortification, which takes into consideration the blood
urea levels; and the individualized targeted fortification, based on human milk analysis and targeting
the recommended daily macronutrient intake [6,7]. In clinical practice, the multicomponent human
milk fortifier (HMF) formulations are those used primarily, whereas single component formulations
are often unavailable and their use may be more time-consuming.

The rapid growth and development during the fetal and early postnatal phases render them
the most critical periods of metabolic programming [8]. During these vulnerable stages of life,
nutrition presents as a major environmental factor that can promote programming of the metabolic
and endocrine mechanisms regulating the energy balance [9,10]. However, the role of early nutrition
on later development of metabolic syndrome has not been fully elucidated [3]. Recent research
focuses on the potential association of early nutrition modifications with metabolism-related hormones,
including insulin-like growth factor—I (IGF-I) and ghrelin, which play an important role in growth
and development during both fetal and early postnatal life, as well as in energy regulation [11,12].

It has been reported that high protein intake by full-term infants either stimulates [13,14] or
has no effect [15] on IGF-I production. In preterm infants, nutrition and insulin are critical for IGF-I
production, which is also affected by genetic factors [12]. Clinical studies relate IGF-I with both growth
and nutritional status of preterm infants [16,17]. Regarding circulating ghrelin in neonates, existing
data focuses on the association of cord blood and plasma levels during the first eight postnatal weeks
with intrauterine and early postnatal growth reporting conflicting results [15,18–24]. Moreover, ghrelin
levels at pre-pubertal age have been found higher in ex-preterm children than in the full-term ones [19].
So far, there is no published data regarding the effect of human milk fortification protocols on early
IGF-I and ghrelin levels of preterm infants.

Studies on the “early protein” hypothesis have suggested the first 2–4 months of life as a “window
opportunity” for metabolic programming. For this reason, we designed this prospective study at
the most vulnerable to programming period of preterm infants’ extrauterine life, i.e., from birth
to term equivalent age. In the current study, we implemented two OMM fortification protocols; a
modified, partly individualized OMM fortification protocol adjusted to the measured OMM protein
content and targeting the recommended protein intake and a FF protocol, by using a multicomponent
HMF. The primary aims of this study were to compare the effect of the modified, protein-targeting
fortification (PTF) protocol vs. the FF one (a) on IGF-I and ghrelin plasma levels up to the 35th week of
postconceptional age (PCA), and whether this effect is maintained after elimination of the differences
in fortification regimens, and (b) on growth up to 12 months of corrected age (CA), compared to the FF
protocol. The secondary aim was to examine the effectiveness of the two OMM fortification protocols
in attaining the recommended range of macronutrient intake.

2. Materials and Methods

2.1. Study Design and Population

This is a single-center, randomized, double-blind study with parallel design (two treatment
groups), and allocation ratio 1:1. Preterm neonates with a gestational age 25–32 weeks and birth
weight less than 1500 g, admitted within the first 24 h of life to a tertiary neonatal intensive care unit
between March 2013 and March 2016 were assessed for eligibility. Eligible for enrollment were all
appropriate-for-gestational-age preterm infants whose mothers intended to provide them with their
own breast milk.

2.2. Exclusion Criteria

Exclusion criteria included evidence of maternal health problems precluding breastfeeding,
congenital infections, metabolic/genetic syndromes, early death, intra-peri-ventricular hemorrhage of
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grade III-IV, sepsis and/or necrotizing enterocolitis, and consent refusal. Post-randomization exclusion
criteria included death prior to the 40th week of PCA, interruption of enteral or exclusive OMM feeding
for more than 3 days for various reasons (i.e., inadequate OMM supply, feeding intolerance, sepsis
and/or necrotizing enterocolitis), moderate/severe bronchopulmonary dysplasia, and withdrawal of
parental consent.

2.3. Ethics

All parents gave their written informed consent for inclusion before joining in the study. The
study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Ethics Committee of the Faculty of Medicine of Aristotle University of Thessaloniki and the
Scientific Committee of the Hospital. The study was registered with the US National Institute of Health
at www.ClinicalTrials.gov (number: NCT01947972).

2.4. Intervention and Randomization

Immediately after birth (time-point 0, T0) all study infants were commenced on total parenteral
nutrition according to the standard protocol of the neonatal unit. Minimal feedings with OMM was
initiated as soon as maternal colostrum was available. In both groups, fortification started as soon
as enteral nutrition reached 100 mL·kg−1

·d−1 (T1). All infants in both intervention groups were fed
exclusively OMM fortified with a cow’s milk-based, multi-nutrient HMF (PreNAN FM 85, Nestlé)
containing 0.20 g of protein, 0.66 g of carbohydrates, 0.004 g of fat, and 3.48 kcal per 1 g of fortifier.

During the week preceding OMM fortification initiation, eligible neonates were randomly allocated
into two groups; the fixed fortification (FF) group, which received FF with 5 g of HMF per 100 mL of
OMM providing 1 g of protein per 100 mL OMM, and the protein-targeting fortification (PTF) group,
in which fortification was adjusted to protein content of OMM, birth weight, and daily amount of milk
intake in order to attain the recommended daily protein intake (4–4.5 g·kg−1 for infants with a birth
weight <1200 g and 3.5–4.0 g·kg−1 for infants with a birth weight of 1200–1500 g) [6]. Lactose, fat, and
energy content of OMM and HMF were not taken into account when calculating the amount of HMF
given to the PTF group. Allocation was performed through a computer-generated randomization list.
Cluster randomization was performed based on birth weight below and equal/over 1200 g. Only a
member of the nursing staff that was not involved in the infants’ care and clinical/ laboratory assessment
was aware of the group assignment. The same person was also responsible for the precise measurement
of the quantity of HMF and the distribution of the proper portion (divided into eight feeds) for each
participant. The daily feeding volume was at the discretion of the attending neonatologist according
to the neonatal unit’s protocol and ranged between 140 and 180 mL·kg−1

·d−1, depending on infant’s
weekly weight gain.

In the PTF group, adjustment of fortification to OMM protein content and daily volume of milk
intake continued until the 35th week PCA (T2) and then fortification was switched to the FF protocol in
order to assess the potential of maintaining the differences in hormone levels between the two groups
after elimination of the protocol-associated differences in nutrient intake. Thereby, milk fortification
continued beyond T2 and up to the 40th week PCA (T3) using the FF regimen in both groups. The
period T1 to T2 corresponds to the intervention period and the period T1 to T3 to the study period.

2.5. Breast Milk Collection Protocol and Analysis

Soon after delivery, all mothers eligible for enrollment received written and verbal instructions
on breast milk collection and storage, using standard procedures. Analysis of OMM was performed
in both groups starting on the day prior to T1 and repeated at weekly intervals, on the same day
every week, as in previous studies [25–28]. Milk analysis was performed by applying mid-infrared
spectrometry, using the Milkoscan TM Minor (FOSS Analytical A/S, Hillerod, Denmark). The analyzer
was calibrated, according to ISO 9622-IDF (International Dairy Federation) 141-2013, against chemical
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reference methods for the quantification of macronutrient content (i.e., fat, protein, and carbohydrates)
in breast milk (see Supplementary Material for details).

2.6. Data Collection

Recorded data included family medical history, antenatal, perinatal, and neonatal data, growth
assessment, feeding volumes, and signs of feeding intolerance (abdominal distension, bilious or
increased gastric residuals, and emesis). Mean daily energy (kcal·kg−1

·d−1), protein (g·kg−1
·d−1),

carbohydrate (g·kg−1
·d−1), and lipid (g·kg−1

·d−1) intake were calculated including milk content and
the amount of HMF as well as the parenterally administered macronutrients. Lactose intake was
calculated from the total carbohydrates measured in OMM assuming a 20% of total carbohydrates
as non-metabolized oligosaccharides [29–35]. Energy intake was calculated from the macronutrient
concentrations by using the Atwater factors: 9 kcal/g for fat and 4 kcal/g for protein and estimated lactose.

2.7. Growth Assessment

The weight was measured daily whereas head circumference (HC) and length were measured
weekly up to the 40th week PCA using standard procedures. Specifically, nude weight was determined
using an electronic balance with an accuracy of ±5 g. Crown-heal length was measured in the supine
position to the nearest 0.1 cm using a Holtain neonatometer. Occipitofrontal head circumference
was determined as the largest measurement taken across the occiput and forehead using a paper
tape. Early growth data was recorded at birth (T0), T1, T2, and T3. Growth was followed up
until the 12th month CA as part of routine protocol, and growth data at 3, 6, and 12 months of CA
(T4, T5, and T6, respectively) was recorded. Growth parameters were transformed into z-scores
using the Fenton 2013 research bulk calculator (available at https://www.ucalgary.ca/fenton/2013
chart) up to the 40th week PCA and then the WHO growth curves and z-scores (available at
https://www.who.int/childgrowth/standards/chart_catalogue/en/). Mean changes (∆) in z-scores of
weight, length, HC, and BMI during intervention (T1 to T2) and study periods (T1 to T3) were calculated.

2.8. Hormone Assessment

IGF-I and ghrelin levels were assessed at T2 and T3 in plasma samples (1 mL) that were collected
40–60 min before the morning feeding, concomitantly with blood sampling for routine tests, and
stored at −80 ◦C until analysis. IGF-I was measured using IGF-I ELISA (Mediagnost Inc., Reutlingen,
Germany) with a sensitivity of 0.09 ng/mL. Total ghrelin was assessed using an Enzyme Immunoassay
(Phoenix Pharmaceuticals Inc., Karlsruhe, Germany) with a sensitivity of 130 pg/mL. All measurements
were performed twice and the mean values were calculated.

2.9. Statistical Analysis

Continuous variables were presented as means and standard deviations while hormone levels
as medians and min-max to facilitate comparisons with previous studies. Categorical variables were
expressed as counts, proportions, and odds ratios with 95% confidence intervals. Significance of the
difference between groups was evaluated using the Mann–Whitney U test, and Fisher’s exact test,
for continuous and categorical variables, respectively. Bivariate correlations were performed using
the Spearman Correlation Coefficient. Regression analyses were performed using the Generalized
Linear Models with dependent variables the natural logarithms of IGF-I and ghrelin levels at T2 and
T3, in separate models, and predictors the allocation group, protein, and energy intake. Statistical
significance level was set at p < 0.05. Analyses were performed with the SPSS version 23 (IBM SPSS
Statistics corporation, Chicago, IL, USA).

https://www.ucalgary.ca/fenton/2013
https://www.who.int/childgrowth/standards/chart_catalogue/en/
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2.10. Sample Size Calculation

Based on preliminary results, we estimated that a sample size of 40 infants (20 in each group)
would detect a difference equal to half standard deviation of IGF-I and ghrelin levels at the end
of intervention with a power of 80% at 5% two-sided level of significance for both the IGF-I and
ghrelin. Assuming a post-randomization drop off of about 40% we estimated that 66 neonates should
be enrolled.

3. Results

3.1. Study Population Characteristics

During the study period, 120 infants were eligible for the study, as shown in the cohort flow
chart (Figure 1). Forty-three infants met the pre-randomization exclusion criteria (early death in two,
inadequate milk supply in 33, suspected congenital infection in one, IVH of grade III/IV in three, sepsis
and/or necrotizing enterocolitis in two, family history of allergy in two) and the remaining 77 were
randomized, 39 and 38 in the FF and PTF groups, respectively. Twenty-nine infants were excluded
following randomization, 16 from the FF group (moderate/severe bronchopulmonary dysplasia in
four, sepsis/necrotizing enterocolitis in two, sepsis-related death in one, feeding intolerance in three,
inadequate milk supply in six) and 13 from the PTF group (moderate/severe bronchopulmonary
dysplasia in 3, sepsis/necrotizing enterocolitis in 1, feeding intolerance in 2, inadequate milk supply
in 7). Forty-eight (48) neonates—23 and 25 in the FF and PTF groups, respectively—comprised the
study population. The two groups were comparable as regards to the perinatal characteristics and
neonatal problems, age at fortification initiation (T1), as well as the duration of intervention and
hospitalization (Table 1).
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Table 1. Clinical data of the two groups.

FF Group PTF Group p * Odds Ratio
(5–95% CI)

N 23 25
Gestational age (wks) 28.6 ± 1.9 28.3 ± 1.6 0.433 N.A.
Birth weight (g) 1156 ± 208 1149 ± 185 0.794 N.A.
Birth weight z-score −0.14 ± 0.68 −0.07 ± 0.69 0.260 N.A.
Birth weight < 1200 g, n (%) 15 (65.2) 13 (52.0) 0.394 1.731 (0.541–5.54)
Ponderal index 22.7 ± 2.2 23.6 ± 3.0 0.421 N.A.
Cesarean section, n (%) 19 (83) 17 (68) 0.324 0.447 (0.114–1.76)
Male sex, n (%) 8 (35) 11 (44) 0.566 0.68 (0.211–2.18)
Prenatal steroids, n (%) 17 (74) 20 (77) 0.736 0.708 (0.183–7.74)
Respiratory distress syndrome, n (%) 21 (91) 24 (96) 0.601 0.438 (0.037–5.18)
Intraventricular hemorrhage I-II, n (%) 1 (4.3) 3 (1205) 0.610 0.333 (0.032–3.46)
Bronchopulmonary dysplasia (mild), n (%) 7 (30) 6 (24) 0.748 1.385 (0.886–4.95)
Patent ductus arteriosus, n (%) 5 (22) 5 (20) 1.0 1.111 (0.276–2.04)
ROP requiring intervention, n (%) 1 (4) 0 (0) 1.0 N.A.
Postnatal age at T1 (d) 10.1 ± 3.6 11.4 ± 5.7 0.574 N.A.
Postnatal age at T2 (d) 40.8 ± 11.9 41.9 ± 12.0 0.794 N.A.
Postnatal age at T3 (d) 77.5 ± 13.1 80.4 ± 11.6 0.451 N.A.
Days on intervention 30.7 ± 10.9 30.5 ± 11.8 0.996 N.A.
Days in Hospital 68.9 ± 24.0 70.6 ± 25.7 0.947 N.A.

FF, fixed fortification; PTF, protein-targeting fortification; T1, start of intervention; T2, end of intervention; T3, 40th
postconceptional week; d, days; wks, weeks; ROP, retinopathy of prematurity; N.A, not applicable. Continuous
variables are expressed as means ±SD. * Mann–Whitney test, or Fisher’s exact test, as appropriate.

3.2. Nutrient Intake and Growth

During the intervention period, the two groups received comparable mean daily feeding volumes
while the PTF group received significantly lower daily amounts of HMF, and protein, and lower
energy of marginal significance compared to the FF group. The estimated amount of lactose intake
was significantly lower in the PTF group (p < 0.001). After the end of intervention and up to T3, the
amount of milk, nutrient, and energy intake did not differ between the two groups. Changes in the
z-scores of growth parameters during the intervention period and up to T3 were comparable in the
two groups (Table 2). Moreover, z-scores of weight, length, HC, and BMI at each time point up to the
12th month of corrected age did not differ significantly between the two study groups (Figure 2).

Table 2. Mean daily macronutrient and energy intake during the intervention period and changes in
z-scores of growth parameters during the study period.

FF Group (n = 23) PTF Group (n = 25) p (Mann-Whitney)

Protein (g/kg/d) 4.2 ± 0.4 4.0 ± 0.3 0.028
Energy (kcal/kg/d) * 130 ± 9 124 ± 9 0.060

Protein/energy ratio * 3.2 ± 0.3 3.3 ± 0.3 0.931
Fat (g/kg/d) 6.1 ± 1.0 6.0 ± 0.7 0.980

Carbohydrates (g/kg/d) 16.1 ± 0.9 14.8 ± 1.0 <0.001
Estimated lactose (g/kg/d) * 14.2 ± 0.7 12.8 ± 1.1 <0.001

Milk (mL/kg/d) 160 ± 8 162 ± 10 0.265
Mean HMF (g/kg/d) 7.4 ± 1.4 5.4 ± 1.2 <0.001

∆Weight z-score T1 to T2 −0.02 ± 0.58 −0.13 ± 0.44 0.172
∆Weight z-score T1 to T3 0.28 ± 0.85 0.19 ± 0.84 0.483
∆Length z-score T1 to T2 −0.33 ± 0.59 −0.50 ± 0.58 0.521
∆Length z-score T1 to T3 −0.45 ± 0.67 −0.42 ± 0.97 0.746

∆HC z-score T1 to T2 0.30 ± 0.72 0.24 ± 0.78 0.786
∆HC z-score T1 to T3 0.63 ± 0.98 0.68 ± 0.84 0.980
∆BMI z-score T1 to T2 0.85 ± 1.05 0.29 ± 1.75 0.343
∆BMI z-score T1 to T3 1.01 ± 1.14 0.57 ± 2.13 0.516

* Lactose and energy intake were calculated assuming a 20% of total carbohydrates as non-metabolized
oligosaccharides. FF, fixed fortification; PTF, protein-targeting fortification; HMF, human milk fortifier; HC,
head circumference; ∆, difference; d, days; Values are expressed as means ±SD.
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Figure 2. Longitudinal changes in the z-scores of weight, length, head circumference, and BMI, from
birth to the 12th month corrected age (CA). FF, fixed fortification; PTF, protein-targeting fortification; T0,
birth; T1, start of intervention; T2, end of intervention; T3, 40th postconceptional week; T4, 3 months
CA; T5, 6 months CA; T6, 12 months CA. There were no significant differences between the two
study groups.

3.3. Plasma Levels of IGF-1 and Ghrelin in the Two Groups and Correlation with Nutrient Intake and Growth

Compared to the FF group, the PTF group had significantly lower IGF-1 and higher ghrelin levels
at T2 but comparable levels at T3 (Table 3). Bivariate correlations of the entire population at T2 showed
that the IGF-I positively correlated to the mean daily protein intake while ghrelin inversely correlated
to energy intake. At T3, ghrelin negatively correlated to protein and energy intake (Table 4).

Hormone levels at T2 and T3 were not associated with GA and birth weight. IGF-I at T2 positively
correlated to ∆ z-scores of length during the intervention and up to the 40th week of PCA, while IGF-I
at T3 positively correlated to ∆ z-scores of weight during intervention and BMI up to the 40th week
of PCA. Ghrelin levels at T2 and T3 inversely correlated to the ∆ z-score of BMI during intervention
(Table 4).

Table 3. Plasma levels [median (min-max)] of IGF-I and ghrelin at T2 and T3 in the two intervention groups.

FF Group (n = 23) PTF Group (n = 25) p (Mann–Whitney U)

IGF-I T2 (ng/mL) 31.0 (20–93) 19.2 (10.9–89.1) 0.025
IGF-I T3 (ng/mL) 36.1 (10.6–112.3) 46.2 (10.7–86.6) 0.458

Ghrelin T2 (pg/mL) 396 (163–674) 483 (232–966) 0.045
Ghrelin T3 (pg/mL) 364 (163–1140) 411 (187–1210) 0.248
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Table 4. Correlations of IGF I and ghrelin at T2 and T3 with nutrient intake, energy intake, and changes
in z-scores of growth parameters during intervention (T1 to T2) and up to the term equivalent age
(T1 to T3) using the Spearman’s correlation coefficient.

IGF-I T2 Ghrelin T2 IGF T3 Ghrelin T3

p (r) p (r) p (r) p (r)

Mean daily protein intake 0.039 (0.299) 0.873 (−0.024) 0.273 (0.161) 0.018 (−0.341)
Mean daily energy intake 0.277 (0.160) 0.031 (−0.312) 0.675 (0.062) 0.033 (−0.309)
Mean protein/energy ratio 0.060 (0.273) 0.176 (0.199) 0.420 (0.119) 0.996 (−0.001)
∆ z-score of weight T1–T2 0.604 (0.077) 0.052 (−0.282) 0.043 (0.298) 0.112 (−0.232)
∆ z-score of weight T1–T3 0.659 (−0.065) 0.657 (−0.066) 0.403 (0.121) 0.992 (−0.002)
∆ z-score of length T1–T2 0.001 (0.446) 0.751 (0.047) 0.714 (0.054) 0.497 (0.100)
∆ z-score of length T1–T3 0.044 (0.292) 0.647 (0.068) 0.068 (−0.265) 0.412 (0.121)

∆ z-score of HC T1–T2 0.169 (0.234) 0.093 (−0.245) 0.563 (0.086) 0.621 (0.073)
∆ z-score HC of T1–T3 0.910 (−0.017) 0.337 (−0.141) 0.690 (−0.059) 0.294 (0.155)
∆ z-score of BMI T1–T2 0.095 (−0.245) 0.002 (−0.432) 0.185 (0.194) 0.037 (−0.302)
∆ z-score of BMI T1–T3 0.357(−0.136) 0.182 (−0.196) 0.040 (0.297) 0.181 (−0.196)

HC, head circumference; ∆, changes.

3.4. Multivariate Linear Regression

In order to investigate the possible independent effect of group allocation, protein, and energy
intake on IGF-I and ghrelin levels at T2 and T3, we constructed separate linear multivariate regression
analysis models for each hormone at T2 and T3, as shown in Table 5.

Table 5. Multiple regression analysis (generalized linear model) with dependent variables the natural
logarithms of IGF-I and ghrelin levels at T2 and T3, in separate models.

Independent
Variables

Dependent Variables

B 95% Wald CI
(Lower/Upper) p Exp (B) B 95% Wald CI

(Lower/Upper) p Exp (B)

IGF I LOG at T2 IGF I LOG at T3

MODEL 1
Intervention group 0.329 0.001/0.658 0.049 1.390 0.051 −0.419/0.521 0.832 1.052

Protein intake 0.506 0.010/1.001 0.045 1.658 0.250 −0.460/0.960 0.490 1.284
Energy intake −0.009 −0.197/0.011 0.360 0.991 −0.004 −0.033/0.024 0.760 0.996

MODEL 2
Protein intake 0.572 0.062/1.083 0.028 1.772 0.260 −0.444/0.964 0.461 1.297
Energy intake −0.005 −0.025/0.015 0.650 0.995 −0.004 −0.031/0.024 0.792 0.996

GHRELIN LOG at T2 GHRELIN LOG at T3

MODEL 1
Intervention group −0.302 −0.567/−0.037 0.025 0.739 −0.023 −0.329/0.283 0.883 0.977

Protein intake 0.162 −0.238/0.562 0.425 1.176 −0.358 −0.820/−0.104 0.129 0.699
Energy intake −0.014 −0.030/0.002 0.096 0.986 −0.012 −0.030/0.007 0.208 0.988

MODEL 2
Protein intake 0.101 −0.315/0.518 0.633 1.107 −0.363 −0.821/−0.095 0.121 0.696
Energy intake −0.018 −0.034/0.001 0.033 0.982 −0.012 −0.030/0.006 0.184 0.988

CI, confidence intervals.

The allocation group and protein intake were significant independent predictors of the adjusted
IGF-I at T2. The allocation group and energy were significant independent predictors of the adjusted
ghrelin at T2. No factor had any significant association with the adjusted IGF-I and ghrelin levels at T3.

3.5. Effect of Fortification Protocols on Nutrient and Energy Intake

With the PTF protocol, the proportion of infants receiving protein, energy, and fat within the
recommended range was high (88%, 96%, and 92%, respectively). The respective figures for the FF
group were lower than in the PTF group, but the difference between the two groups was significant
only for the protein intake. A high proportion of infants in the FF group received daily protein amounts
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higher than the recommended range. The estimated amount of lactose intake was higher than the
upper recommended levels in 60% and 80% of the infants in the FF and PTF groups, respectively
(Table S1).

4. Discussion

The risk of cardiovascular and metabolic disease and its relationship to the early nutrition and
growth of preterm infants has gained considerable attention [3]. The “early protein” hypothesis
suggests a programming effect of protein intake during the early postnatal life on neuro-endocrine
and metabolic mechanisms of term infants [13]. Our plan was to investigate if the time-interval
between the birth of a premature infant and the term equivalent age represents an additional “window
of opportunity” by studying the relevant hormone changes following carefully planned nutrition
intervention based on OMM. In the current study, the modified fortification protocol targeting the
recommended daily protein intake (PTF) after adjustment to OMM protein content, gestational age
and amount of daily milk intake resulted in significantly lower plasma IGF-I and higher ghrelin at the
end of the intervention period compared to the FF, using the same multicomponent HMF formulation.
IGF-1 positively correlated to protein intake and changes in z-score of weight, length, and BMI during
the study period while ghrelin negatively correlated to protein and energy intake and changes in
the z-score of BMI. Multivariate regression analysis revealed that the allocation group and protein
intake were significant independent predictors of the adjusted IGF-I whereas the allocation group and
energy were independent predictors of ghrelin levels at the end of intervention period. There were no
significant differences in hormone levels at term equivalent age between the two groups.

Implementation of the modified, partly individualized, OMM fortification protocol achieved
the recommended daily protein intake, while the fixed fortification protocol resulted in significantly
higher daily protein intake using the same multicomponent HMF formulation. Moreover, the daily
energy and fat intake was within the recommended range in a higher proportion of the neonates in the
PTF group.

The “early protein intake” theory suggests that high protein intake during early life promotes
growth in infants by stimulating IGF-I production through the inducing effect of branched-chain
amino acids on insulin and IGF-I secretion [14,36–38]. Several studies in term infants, including
two systematic reviews, showed that formula-fed infants have higher plasma IGF-I levels compared
to the human milk-fed ones, which was attributed mainly to the higher protein content in infant
formulas [12–14,39,40]. Studies in preterm infants showed that protein and/or energy intake have either
a significant positive association [28] or no association [41,42] with IGF-I levels. The two fortification
protocols used in the current study resulted in significantly different plasma IGF-I levels between the
two study groups at the end of intervention period. The difference in IGF-I levels can be attributed
to the different protein intake, which was found to be a significant independent predictor of the
unadjusted and adjusted IGF-I values at the end of the intervention. In contrast, energy intake did not
correlate with the unadjusted and adjusted IGF-I at any time-point. The later finding is in agreement
with previous results in preterm infants, which did not demonstrate any significant association between
IGF-I and energy intake during the first eight postnatal weeks [41], during the growth retardation
phase [28], and up to six months of age [42].

In adults, plasma ghrelin is closely associated with food intake with levels rising during fasting
and decreasing postprandially. For this reason, ghrelin fasting levels were obtained in all infants. In
preterm infants, a study showed a significant positive association of energy intake on the second day
of life with the respective ghrelin levels but no association on the third and sixth month after birth [43].
In contrast, another study did not demonstrate any significant effect of food intake on plasma ghrelin
on the fourth day of life [44]. Results of the current study showed that the allocation group and energy
intake were significant independent predictors of ghrelin at the end of intervention. However, the
significant association between energy intake and ghrelin was eliminated after adjustment for the
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group allocation, indicating that this parameter, which reflects the difference in the total nutrient and
energy intake, has a higher impact on ghrelin levels than the energy alone.

Several studies in preterm infants showed that IGF-I is associated positively with growth at various
time points during the first 36 month of life [22,28,42,45–47]. Our findings support a positive effect of
IGF-I on growth, as indicated by the positive correlation of IGF-I at either the end of intervention or at
term equivalent age with changes in the z-scores of weight, length, and BMI during the study period.
A positive correlation of IFG-I with weight and BMI z-scores was also reported in healthy term infants
fed either breast milk or formula at the age of five months [46] as well as in preterm infants during the
first eight weeks of life and at the age of nine and 36 months [22,28,47].

Regarding the association between ghrelin and growth parameters, increased levels have been
reported in small for gestational age neonates [48], while most previous studies could not find any
significant association in appropriate for gestational age infants [15,22,43]. However, a study in term
and preterm neonates showed an inverse association between ghrelin and growth parameters, which
however was limited to term neonates [24]. In the preterm population included in our study, ghrelin
levels were not associated with the changes in z-scores of weight, length, and HC, but were inversely
associated with the changes in z-score of BMI during intervention.

Regarding the effects of the fortification protocol on growth, we did not find any significant
difference between the two groups up to the 12th month CA. Our findings are in agreement with
previous studies in preterm infants fed fortified human milk with variable protein content [49–51].
However, a higher rate of weight gain in preterm infants receiving increased amounts of protein
was reported by other authors [25,52–56]. Two meta-analyses exploring the effect of high protein or
multi-component fortification of human milk, respectively, concluded that the protein supplemented
human milk was associated with increased short-term growth in preterm infants, while the benefit
of using multi-component supplementation was a slightly higher rate of weight gain during
hospitalization [57,58].

Several FF protocols, with protein supplementation ranging between 0.8 g and 1.5 g per 100
mL of human milk, have been utilized in previous studies. However, the FF protocols do not take
into consideration either the OMM nutrient content, which varies widely [5,59], or the daily amount
of milk intake. The daily amount of milk intake by preterm infants ranges between 140 mL/kg/day
and 200 mL/kg/day, depending on the estimated infant’s nutritional requirements according to the
daily/weekly weight gain [6]. Consequently, protein intake following FF of human milk may range
between being inadequate [60,61] to even being excessive [62]. In our study, the high daily volumes of
OMM prescribed by the attending neonatologist (up to 180 mL per kg per day), combined with the
lack of adjustment in the amount of fortifier in the FF group according to the volume of milk intake,
may have attributed to the higher protein intake by this group. Our findings are in line with studies by
de Halleux and Rigo, who found that, compared to the individualized fortification group, the FF group
received higher protein amounts, which were greater than the recommended levels in about 40% of
the preterm infants [62]. In contrast, other authors reported a lower protein intake by the FF group,
with only 64% of them attaining the lower recommended protein levels [63,64]. The conflicting results
could be attributed to the use of different methodologies. Specifically, in most studies, a proportion or
all included infants were fed exclusively or partly banked donor milk [50–55], which contains lower
protein than the preterm OMM [4,65], thereby requiring a higher fortification level. In other studies, a
protein content of about 0.8–1.4 g/dL in human milk was assumed [49–51,54] or the protein intake was
adjusted to blood urea levels [50,51,54,55].

Targeting the daily intake of an individual nutrient by using a multi-component HMF is challenging
because the intake of other nutrients may be unpredictable. Therefore, we further analyzed the effect of
the two fortification protocols on the intakes of all macronutrients. We found that the protein-targeting
fortification protocol resulted in energy and fat intake within the recommended range in a higher
proportion of infants compared to the FF protocol. Beyond any doubt individualized fortification of
human or maternal milk is the preferred mode of feeding for preterm infants. However, when only
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multi-component HMFs are available, then a fortification protocol targeting the recommended protein
intake can be an acceptable alternative to using multiple human milk supplements.

Changes in IGF-I and ghrelin levels during intrauterine life and early infancy have been implicated
as potential factors predisposing to long-term metabolic and cardiovascular disturbances [66]. Our
results suggest a transient effect of nutrient intake on IGF-I and ghrelin levels. However, in theory,
even temporary changes of these hormones during vulnerable periods of life, such as intrauterine and
early postnatal period, especially in the fast-developing preterm infants, may exert a programming
effect on the neuroendocrine and metabolic pathways which could lead to long-term metabolic
disturbances [9,37]. In this context, the results of the current study raise concerns about the potential
long-term metabolic effects of modifications of mother’s milk fortification. Of note, the different IGF-I
and ghrelin levels found in the two intervention groups should be interpreted with caution, because
safety levels of these two hormones, i.e., levels not inducing metabolic/endocrine dysregulation, have
not yet been established in preterm infants.

The main limitation of this study is the weekly assessment of OMM composition. Ideally, analysis
of human milk should be performed at least twice a week [67]. However, for practical reasons,
especially because mothers considered that expressing breast milk for this reason twice a week was
very cumbersome, we opted for weekly analysis of OMM likewise several previous authors did [26–28].
Further research may clarify the potential clinical impact of the once and twice a week analysis of
maternal milk. Another limitation is the fact that the mid-infrared milk analyzers cannot discriminate
lactose from other non-digestible oligosaccharides. Previous studies reported a wide range of human
milk oligosaccharide concentrations (12% to 30%), depending on gestational age, duration of breast
feeding, ethnicity, maternal BMI, and other factors [29,32–35]. For this reason, we calculated lactose
concentration, referred to as estimated lactose, and the lactose-derived energy of OMM assuming that
oligosaccharides constitute 20% of total carbohydrates in human milk. The main strength of our study
derives from the fact that it is the first to evaluate the effect of different HMF protocols on early IGF-I
and ghrelin levels. Moreover, the single center design ensures that treatment and evaluation of all
infants was uniformly based on the same department protocols.

5. Conclusions

Results of the present study showed that implementation of different OMM fortification protocols
providing different amounts of protein is associated with changes in early IGF-I and ghrelin levels,
which may have a programming effect on the neuroendocrine and metabolic mechanisms of preterm
infants. These data suggests that the time interval between birth and 40th postconceptional week
does represent a window of opportunity during which nutrition intervention carefully planned has
the potential to influence the metabolism-related hormones. Although the influence on the relevant
hormones seems temporary, the long-term effect on growth remains to be elucidated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/12/3056/s1,
Supplementary Method text: Breast milk collection protocol and analysis; Table S1: Numbers (%) of infants
receiving daily nutrient and energy intake within or out of the recommended range.
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