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Multidimensional machine learning 
algorithms to learn liquid velocity 
inside a cylindrical bubble column 
reactor
Meisam Babanezhad1,2, Azam Marjani3,4* & Saeed Shirazian5

For understanding the complex behavior of fluids in a multiphase chemical bubble column reactor, 
a combination of the computational fluid dynamic (CFD) method and the adaptive network-based 
fuzzy inference system (ANFIS) method is used to predict bubble flow inside a reactor based on the 
function of column height. In this study, the Euler–Euler model is employed as a CFD method. In the 
Eulerian method, continuity and momentum governing equations are mathematically computed for 
each phase, while the equations are connected together by source terms. After calculating the flow 
pattern and turbulence flow in the reactor, all data sets are used to prepare a fully artificial method for 
further prediction. This algorithm contains different learning dimensions such as learning in different 
directions of reactor or large amount of input parameters and data set representing “big data”. The 
ANFIS method was evaluated in three steps by using one, two, and three inputs in each one to predict 
the liquid velocity in the x-direction (Ux). The x, y, and z coordinates of the location of the node of 
the liquid were considered as the inputs. Different percentages of data and various iterations and 
membership functions were used for training in the ANFIS method. The ANFIS method showed the 
best prediction using three inputs. This combination also shows the ability of computer science and 
computational methods in learning physical and chemical phenomena.

Abbreviations
CD	� Coefficient of drag force for dispersed phase [–]
CTD	� Turbulent dispersion coefficient for dispersed phase [–]
Cε1	� Turbulent dissipation energy equation [–]
Cε2	� Turbulent dissipation energy equation [–]
Cµ	� Constant in turbulence modelling of dispersed phase [–]
Cµ,BI	� Constant in bubble induced turbulence modelling of dispersed phase [–]
dB	� Dispersed phase size [m]
D	� Size of reactor [m]
DS	� Ring sparger size [m]
g	� Gravitational force in modelling [m s–2]
H	� Height of reactor in modelling [m]
k	� Turbulent kinetic energy [m2 s–2]
MI	� Interfacial force [N m–3]
MD	� Drag force for modelling of dispersed phase [N m–3]
P	� Pressure in the reactor [N m–2]
U 	� Fluid velocity [m s–1]
w	� Weight fraction [–]
CC	� Correlation coefficient [–]
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MF	� Membership function for ANFIS
RMSE	� Root mean square error for ANFIS

Greek symbols
ε	� Turbulent energy dissipation rate per unit mass [m2 s–3]
∈	� Phase hold-up (–) [–]
−
∈	� Average phase hold-up (–) [–]
µ	� Molecular viscosity [Pa s–1]
µBI	� Bubble induced viscosity [Pa s–1]
µeff 	� Effective viscosity [Pa s–1]
ρ	� Density of phases [kg m–3]
µT	� Turbulent viscosity [Pa s–1]
τk	� Shear stress of phase k [Pa]
ǫg	� Volume of dispersed phase [–]

Subscripts
G	� Dispersed phase
L	� Continuous phase

In general, the usage of bubble column reactors (BCRs) in multiphase mode for mixing solid, liquid, and gas 
phases can produce a variety of products in many industries. In particular, the mixing of gas and liquid creates 
physical and chemical reactions that are used in the wastewater, pharmaceutical, and biotechnology industries1–5. 
BCRs are more prevalent in industry owing to proper functioning, structure simplicity, fast performance, low cost 
during computational fluid dynamic design, and artificial intelligence design6. These novel types of reactors can 
increase gas and liquid contact area or interfacial area. This provides phase mixing and high mass transfer rates. 
Besides, various catalysts can be used at any time to enhance chemical reactions. The scale of bubble column 
reactors and their optimization depends on the complex behavior of gas flow in the liquid phase and the sparger 
specifications7–13. In addition to bubble column specifications, the size of bubbles and the interaction between 
bubbles affects the overall scale-up and optimization of the reactor5,14–18.

Simulation of bubble column reactor makes such data as pressure, temperature, velocity, and the measure 
of gas content. These data provide a detailed understanding of the bubble column design and the two-phase 
fluid flow complexity19–25. Although several numerical and experimental methods estimate the multiphase flow 
pattern in BCRs1–3,13,24–27, there are still some obstacles to simulate the gas flow through a constant liquid fully. 
Probe sensors also disrupt the bubbles inside the bubble column reactor by creating vortex. Measuring fluid flow 
by microscopic and high-speed cameras is expensive and is also limited to substantial frames. Computational 
time is another limitation to predict large BCRs at different times and operating conditions6. According to the 
above limitations, artificial intelligence algorithms generally show the ability to cooperate with the experimental 
and CFD methods by accurately understanding fluid flow and the reduction of computational time20,28–32. Soft 
computing methods such as neural networks33–35, support vector machines, evolutionary algorithms, simulated 
annealing, and the adaptive neuro-fuzzy inference system (ANFIS) have been suggested in the literature for 
simulation of real-life applications36–39. Moreover, it is worth mentioning that ANFIS can be used as an assistant 
tool besides CFD. The high capability of ANFIS for training the CFD data helps not to rerun the CFD simulations, 
and it can find the middle points and optimization can speed up. Also, ANFIS has high capability in the train-
ing of the large datasets and big data; it can find data in local nodes. Furthermore, each of x, y, and z computing 
nodes in the BCR can predict characteristics of the fluid and turbulence properties, and it can create an artificial 
BCR. Moreover, the method fully depends on the domain of the particular data that is trained in CFD. Also, the 
ANFIS can have the capability based on the trained inputs, and it can find the effect of the inputs on the output. 
This method can find the effective parameter in process engineering; however, one cannot find this effect when 
the number of inputs increases.

ANFIS method with the ability to learn many physical models can be advantageous in this context, and 
main processes of chemical and biochemical engineering40–42. The presence of humans in places where chemical 
reactions happen is hazardous regarding health. The use of robots instead of humans is expanding. The ANFIS 
method is also developing to predict complex engineering mechanisms for controlling the movement of robots40. 
The ANFIS method has complex algorithms and can provide a very smart way to make decisions and correct its 
accuracy when it comes to very difficult choices43–47. There are several methods for teaching ANFIS algorithms in 
literature6,48. The learning in this method depends entirely on the simulation data or empirical output40. Recently, 
an ANFIS method was used to simulate the flow pattern in a BCR. They mainly used a new combination of soft-
computing with the CFD method that was suggested in Pourtousi’s researches49–51 to generate a new domain of 
data through big data. They used the multiphase reactor hydrodynamics information for the training phase. They 
found that the CFD method plus the ANFIS method is a significant overview to simulate BCRs properties9,26,52.

The method of ANFIS was frequency used for the prediction of gas hold-up and turbulence characteristics, 
such as turbulence kinetic energy in the bubble column reactor50,53,54. This method was examined in prior 
research to explore the gas distribution in the reactor for different input parameters, such as x, y, and z comput-
ing nodes and sparger specifications (such as ring sparger diameter). However, in previous work, each input 
parameter was not examined individually with flow distribution with regards to model’s accuracy and prediction 
capability.
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It was reported that the ANFIS method could be used for the simulation of the bubble flow in the BCR instead 
of CFD methods when the flow regime is uniform, and most of the bubbles have the same velocity and spherical 
shape55,56. In this study, the ANFIS simulation was tested in three steps by using one, two, and three inputs in each 
one to predict the liquid velocity in the x-direction (Ux). The x, y, and z coordinates of the liquid were considered 
as the inputs. The ability of the ANFIS method is examined by different types of data from low to extensive.

The computational fluid dynamics is used to calculate liquid flow distribution in the reactor. For this purpose, 
the Euler–Euler CFD method is used to simulate gas–liquid interaction in the reactor and compute liquid flow 
pattern and gas hold-up in the bubble column reactor. As the Euler–Euler CFD method, which is a numerical 
method, provides data in several local nodes in the reactor. The data are selected for the training of AI method. 
The AI method can understand the process at local nodes and provide a mapping framework for the prediction of 
the flow in the whole of the column. In this study, this intelligent algorithm’s strength is confirmed by comparing 
the outputs of the ANFIS model with those of Euler–Euler (E–E) one.

Methodology
Geometrical structure.  In this research, an industrial BCR was used at room temperature of 23 °C and 
atmospheric pressure. At the end of this reactor, the ring sparger has 20 orifices with a diameter of 0.7 mm. The 
ring of sparger orifices is arranged neatly at regular intervals at the end of the bubble column reactor. The shape 
of bubbles is supposed to be spherical. Besides, the least collision and the smallest break up are considered to 
happen for the bubbles. The orifices also generate a superficial gas velocity of 0.005 m/s at the bubble column 
reactor (BCR).

Moreover, the height of the 3D cylindrical BCR is 2.6 m, and its diameter is 0.288 m, and it is filled with 
stationary water. Twenty similar holes are at the bottom of the BCR with a diameter of 0.007 m. The superficial 
gas velocity for the simulation cases is 0.005 m/s, leading to a homogenous regime in which the bubbles sizes, 
velocities, and shapes are the same.

CFD modeling.  For the CFD simulation of the study, ANSYS CFX software is used. Moreover, the ANIFS 
method is run in the MATLAB framework. Also, the Euler–Euler method uses a general understanding of the gas 
movement inside the bubble column reactor. In this method, continuity and momentum transfer equations6,20,27 
are defined as follows:

where εk expresses the fraction, and uk represents the average velocity of the discrete and continuous phases7.
The finite volume method is used for the discretization of computational non-structure nodes. This generation 

of nodes enables us for easy implementation and generation of nodes in the domain. After the discretization of 
each node, gas bubble characteristics are resolved, and then they are coupled with matrix phase calculation. For 
the movement of gas bubbles, the constant drag force is used throughout the domain, which represents spherical 
bubble dynamics in the experimental study.

The momentum transfer equation describes stress, gradient pressure, gravity, and the exchange of the range 
of motion between a dispersed and continuous phase during phase interaction. The term stress for a dispersed 
phase can be described as follows6:

where μeff, L represents the effective viscosity as a function of the molecular viscosity μL, the turbulent viscosity 
μT,L and turbulence viscosity induced by the bubbles motion μBI,L.

The effective dispersive phase viscosity μeff,G based on the effective viscosity μeff,L can be written as follows: 

Sato and Sekoguchi model is applied in the calculation of the two-phase flow. It is used for the purpose of 
simulation of the turbulence by the movement and interactions of bubbles.

The total interfacial force for the interaction between a dispersed and continuous phase can be defined as 
follows51:

Since bubbles do not collide and do not stick together, uniform shapes are created. Therefore, the simplest 
drag model with the uniform spherical bubble shape is considered. The drag model coefficient can represent the 
motion of a spherical bubble. The drag model is the main force of modeling the bubble column reactor, especially 
when the bubble column reactor is homogeneous7,57.

(1)
∂

∂t
(ρkǫk)+∇(ρkǫkuk) = 0

(2)
∂
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The following formula shows the calculation of drag force MD,L, where CD is the drag coefficient, and dB is 
the diameter of the bubble51.

The turbulent dispersion force between a scattered and continuous phase can be calculated from the follow-
ing formula58:

An acceptable selection of the turbulence model is necessary for predicting the hydrodynamics of the BCR. A 
zero-equation turbulence model is applied for the disperse bubbly phase; nevertheless, the standard k–ε model is 
used for the continuous phase. Using the k–ε model is advantageous because of various reasons. First, it includes 
low computational times. Second, it is simple, and third, it can obtain average results.

In the above formula, k represents liquid turbulent kinetic energy (TKE), and CTD represents the turbulent 
dispersion coefficient. Our use of turbulent modeling to better observe gas motion, which is turbulent behavior, 
results in accurate modeling of bubble flow13.

The kinetic turbulent (k) energy equation is defined as follows:

The energy dissipation rate (ε) is defined as follows:

Various constant values are selected in the k–ε turbulence model for calculation of turbulence behavior of 
liquid (continuous phase) in the bubble column reactor. These values are defined as:

Cµ = 0.09 , σk = 1 , σε = 1 , Cε1 = 1.44 , and Cε2 = 1.92.

Grid.  In this study, grids were used to create a three-dimensional gas–liquid motion similar to Laborde-Boutet 
et al.28 as a non-uniform grid method, and a cylindrical amplitude was used to calculate the E–E method. The 
reactor section is also classified non-uniformly to 60 levels and is meshed to calculate the E–E method. Unstruc-
tured meshes are used in the study, and they are non-uniform hexahedral grid meshes, which are repeated in 
each cross-section. This type of element is used through the reactor’s domain, and in different levels of the reac-
tor, a similar mesh pattern is designed. A non-uniform pattern is used through the domain and the specification 
of meshes for skewness ≈ 0.6, aspect ratio ≈ 3, and orthogonal quality ≈ 0.6. For the best quality of mesh, mesh 
sensitivity assessment is considered in this study. The number of elements more than 40,000 grids is in good 
agreement with existing numerical and experimental results in the literature.

Specifications of the boundary conditions and interfacial force models.  A ring sparger is applied in BCR, and 
for modeling it, the source point at the end of the BCR is used. On the top of the BCR, a degassing boundary 
condition is used for modeling the gas outlet. For the gas phase, a free slip boundary condition is applied. Fur-
thermore, on solid walls, a no-slip boundary condition is utilized for the liquid. The drag coefficient is applied 
as the drag model, which helps to model spherical bubble movements with uniform shapes, and without any 
interactions inside the BCR, including coalescence and breakup. Therefore, no interaction is considered for the 
bubbles in the BCR. Also, the drag coefficient is equal to 0.44. The bubble diameter is 4 mm that is based on the 
industrial BCRs suggested by Pfleger and becker’s research59. A lift model for modeling the bubble movements 
is not needed due to the homogeneity of the flow. The drag model can be 100 times more dominant rather than 
other interfacial force scheme models. The CFD results are time-averaged for 1400 s CFD simulation time. The 
time-averaged calculations are applied for turbulent properties and gas–liquid flow patterns inside the BCR. The 
sensitivity of time steps is studied among values, which are ranged 0.1–0.01. The time step is 0.1 that is a suitable 
value in order to track both gas and liquid interaction in the BCR with Courant–Friedrichs–Levy (CFL) number 
less than one.

The schematic shape of the bubble column reactor is shown in Fig. 1. As the figure shows, the inlet boundary 
conditions or ring sparger properties, such as sparger holes and superficial gas velocity, are defined as twenty 
source points at the reactor’s bottom. However, to determine gas outlet, the degassing boundary condition is 
used at the reactor’s top surface. Near solid walls, a no-slip boundary condition is used for the liquid/continuous 
phase. As a result of the reactor’s homogeneous flow regime, bubbles are spherical formed through the bubble 
column reactor’s bulk region with low bubble interaction, coalescence, and break-up rate.

Adaptive‑network‑based fuzzy inference system (ANFIS).  To simulate the mathematical relation 
of complex physical and chemical behavior, a fuzzy inference structure is used, called ANFIS, and uses neural 
networks to learn the physical or chemical process, and fuzzy logic is used for decision making. Many studies 
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use Takagi and Sugeno to recommend the if–then ANFIS method60. In the first step of the learning process, all 
learning data is categorized at various levels of membership formations (MFs). Membership formulations cre-
ate conditions that can be fixed with the physical process to create the best description of that physical process. 
According to Fig. 2, the first feedback from the learning step is modified based on the AND rule. The function 
ith rule is expressed as:

In the above function, wi expresses the feedback outcoming from learning μAi, μBi, and μCi show the incoming 
from learning feedback. In the learning process in the first mode, the x coordinate of nodes locations is consid-
ered as one input. The output is the fluid velocity in the x-direction (Ux). In the second step, learning is done by 
two inputs in the x and y coordinate of nodes locations. In the third mode, the learning is done by three inputs 
of x, y, and z coordinates of nodes locations6.

In training data, a three-dimensional CFD mesh is captured radially and introduced into a new matrix. By 
using this new matrix, we can simulate different bubble column positions in the prediction process. These new 
bubble columns can generate data to be employed for training and learning in ANFIS. Once the model has been 
learnt, it can re-invoke the prediction process to predict new data in a bubble column. First, the learning step is 
performed with 40% data, and learning is compared with the CFD data, and the test data, which is 60% of the 

(12)wi = µAi(X)µBi(Y)µci(Z)

Figure 1.   Schematic picture of the bubble column reactor with numerical boundary conditions.

Figure 2.   Adaptive neuro-fuzzy inference system pattern for the simulation of liquid velocity at different 
neural nodes. Input parameters are x, y, and z computing nodes in the bubble column reactor. Two membership 
functions are considered in each input parameter in the schematic figure.
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total amount of data not used in the learning process, is added to 40% of the training data, and a total of 100% 
data are compared. In the end, the prediction process is the nodes that ANFIS proposes for these nodes and has 
not previously learned, so these nodes are called neural network nodes. At the third level of learning, the rela-
tive firing strengths of each rule are formulated which is equal to the weight fraction of each layer on the total 
amount of all rules’ firing strengths6,51:

In this formula, −wi normalized firing strengths are called. In the fourth level of learning implemented the 
if–then rule function obtained by Takagi and Sugeno60. The mesh formula in ANFIS can be written as follows:

In this formula pi, qi, ri, and si are the parameters of ’if–then rules’ and are called consequent parameters. To 
get the output of the method that shows the forecast data, all input feedback is integrated from the fourth level.

Membership function (MF) evaluation.  The root mean square error (RMSE) equation, in which N is the num-
ber of test levels, can be defined as:

The correlation coefficient (CC) formula, shows the connection strength between CFD and ANFIS, in this 
formula yCFD(i) and yCFD(m) are the Euler–Euler method and ypre(i) and ypre(m) prediction results from the algorithm 
at different levels of the reactor. It is expressed in the following:

The correlation coefficient R is also considered in the analysis. The expiration of the R is written such as the 
following:

To better understand the model implementation, the model of ANFIS is implemented in the MATLAB soft-
ware. To run the algorithm’s main core first inputs and outputs are defined in the form of a matrix in the MAT-
LAB. In this prediction study, x, y, and z computing points, corresponding to the physical geometry specification 
are used as input parameters of training, while the liquid velocity distribution in the domain is defined as an 
output parameter in the data-driven model. To design and generate the primary FIS structure the grid partition 
clustering is used in the algorithm as a flexible model to specify membership specifications. In the next phase of 
the model parameters description, several tuning parameters are selected, such as percentage of training data, 
number of iteration or epoch number, and number of data for the training process. In addition to that, mem-
bership properties are defined in the model. In this section of the model, the number and type of membership 
functions, and the type of output membership functions are selected. After this stage, the initial FIS is defined 
in the model based on grid partition clustering. After all definitions of model parameters, the ANFIS method 
trains the FIS structure. However, the model is examined in several iterations to reach a high accuracy or a low 
number of errors. To improve the level of accuracy the number of inputs is changed in the model. Then, in the 
prediction process, the model predicts velocity distribution in the bubble column reactor (Fig. 3). The details of 
the MATLAB script is shown in Fig. 4. The data selection and definition of model parameters are illustrated. At 
the end of the scrip, the prediction part is activated.

Results and discussion
In this study, the locations of nodes in the x, y, and z directions are selected as input variables, and the liquid 
velocity was selected as the critical output variable. The liquid velocity is a crucial parameter in the bubble column 
reactor in detecting the hydrodynamic bubble column reactor, and this parameter can significantly affect the 
design and scale-up of the bubble column reactor. Liquid velocity is also one of the most important characteristics 
in determining the flow pattern in the bubble column reactor, and this parameter indicates whether the flow is 
homogeneous or heterogeneous.

Figure 5 shows the validation of the current numerical method with an existing mathematical correlation61. 
The amount of average gas fraction (gas hold-up) in the bubble column reactor, at low superficial gas velocity 
has a linear behavior and correlation with superficial gas velocity due to existing spherical bubbles with less 
turbulence interaction and coalescence or break-up phenomena. After validation of current numerical results, 
all datasets are trained in the machine learning method.
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In the present study, there are 40,000 data referring to the entire bubble column reactor. 10% of the total data 
(i.e., 4000 data) corresponding to 10% of the upper bubble column reactor are selected to use in the ANFIS. 
After the simulation, the CFD results of 60% of local nodes participate in the training process. The remaining 
data are used for testing and evaluation of the predicted results. During the prediction process, the gradient 
descent method is used for better prediction of the data. The validation process is done by a comparison between 
the local CFD results and the AI results. Different evaluation criteria such as RMSE, are used for the validation 
process. In the learning process, 40% and 60% of the data are used for training and testing, respectively. At first, 
training and then after testing is done. Finally, the prediction is performed based on artificial intelligence nodes.

In the first step, the ANFIS prediction process is done by one input (i.e., x locations of nodes), and the output 
is the liquid velocity in the x-direction (Ux). Figures 6 and 7 show R values for the training and testing process, 
respectively. According to the Figs. 6 and 7, the method does not show a high ability. The R2 value, in this case, 
is 65%, which indicates that there is not a good agreement between ANFIS and CFD results. It seems that if the 
number of the rules changes or another membership formulation is used, or the amount of the available data 
in the training period increases, the accuracy of the method increases. However, rising the rules and increasing 
the learning data for the ANFIS method will increase the computational time.

Since one input learning was not good enough, in the next step, two inputs are used (i.e., x and y locations 
of nodes). As shown in Figs. 8 and 9, increasing the number of inputs, the ANFIS method still does not show 
an accurate prediction.

Finally, the ANFIS method with three inputs (i.e., x, y, and z locations of nodes) is considered. For evaluating 
the training and testing processes for new conditions, the ANFIS method suddenly reaches the most accurate 
prediction. The R2 for training (Fig. 10) and testing (Fig. 11) exceeds 99%. This suggests the ANFIS algorithms 
can be a tremendous smart tool to predict fluid flow characteristics in the BCR.

As the model of ANFIS is a data-driven base framework, this model can predict the flow distribution in the 
bubble column reactor in the range of training datasets (input parameters). More neural cells are generated in 
the main core of model training by considering a high number of input parameters up to three input parameters. 
Therefore, the model can easily connect the input and output dataset and predict the liquid flow distribution with 
a high model’s accuracy (R = 0.99). The generation of a model with a low number of input parameters (input = 1) 
can make the model unstable in prediction capability. In this case, the model cannot find the connection between 
input and output parameters, and the effective input parameters can be hidden during analysis.

At this point, the ANFIS method has reached a high level of learning ability. It means that the ANFIS method 
can propose all nodes itself and perform the prediction based on the proposed nodes. In this case, no CFD data 

Figure 3.   Flow chart for the model of ANFIS in predicting fluid characteristics in the bubble column reactor.
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is used for prediction, and this is a refinement process40. For example, the results of Fig. 12 have been predicted 
in this way. At first, the CFD results of some initial nodes were received and learned by the ANFIS method for 
Ux calculation. Then 10,000 nodes were selected for the Ux prediction without using the CFD data.

According to Fig. 12, the velocity in the middle of the BCR is significantly increased. This is a good ability 
in the BCR because when the bubbles rise up, the liquid velocity increases in the middle of the BCR, while the 
velocity on the side of BCR is very low. The liquid flow pattern in the column is based on maximum velocity in 
the middle of the column and minimum velocity near the wall. This minimum local point provides a recirculation 
area in the column, which provides better mixing of the liquid. The CFD method can specifically calculate all 

Figure 4.   Sample MATLAB script in the training and prediction process.

Figure 5.   validation of current numerical method (single size Eulerian method) with existing mathematical 
correlations (  superficial gas velocity

0.3+2(superficial gas velocity) ), Joshi & Sharma61.
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local points with information on the recirculation area. For better optimization and understanding of the local 
point, AI can provide better information after training, and this method can map all input and output parameters.

Increasing the resolution, the more data of the fluid can be found. This needs more mesh density, smaller 
time steps, and consequently more computational effort in the CFD method. However, this is not the case by 
using the ANFIS method.

Figure 6.   Training validation of liquid velocity for the ANFIS model with one input. The ANFIS model’s output 
is the liquid velocity distribution, and it is validated against the velocity component (x-direction) in the CFD 
calculation (target value).

Figure 7.   Testing validation of liquid velocity for the ANFIS model with one input. The ANFIS model’s output 
is the liquid velocity distribution, and it is validated against the velocity component (x-direction) in the CFD 
calculation (target value).
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Conclusions
The multiphase flow in a three-dimensional bubble column reactor (BCR) was studied using a three-dimensional 
CFD model and the ANFIS method. The Euler–Euler CFD model was used to simulate the flow pattern and 
general behavior in a cylindrical three-dimensional bubble column reactor. The CFD simulation results were 
used in the ANFIS training process. In the ANFIS method, the x, y, and z coordinates of the locations of the 
nodes were selected as inputs, and the liquid velocity was selected as the output variables. Inputs were evaluated 
in three modes, including one-dimensional (one input), two-dimensional (two inputs), and three-dimensional 
(three inputs). Using one-dimensional and two-dimensional inputs, the ANFIS method did not show the proper 

Figure 8.   Training validation of liquid velocity for the ANFIS model with two inputs (x and Y computing 
nodes, the position of numerical elements). The ANFIS model’s output is the liquid velocity distribution, and it 
is validated against the velocity component (x-direction) in the CFD calculation (target value).

Figure 9.   Testing validation of fluid velocity for ANFIS model with two inputs (x and Y computing node, the 
position of numerical elements). The ANFIS model’s output is the liquid velocity distribution, and it is validated 
against the velocity component (x-direction) in the CFD calculation (target value).
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predictive capability. However, with three-dimensional inputs, the ANFIS method showed a perfect prediction. It 
also concludes that computational time can be reduced again when using three-dimensional inputs because the 
technique can be less intelligent with fewer data and rules and fewer iterations. The test data show an excellent 
agreement between the test and the ANFIS outcomes. This indicates the ability of the ANFIS method to predict 
the amount of fluid speed inside the reactor. Hence, the ANFIS technique shows that computational time effort 
can be significantly reduced, and this can significantly help speed up design, scale-up, and optimization. The 
ANFIS technique can also simulate hydrodynamics with the cheap computational cost.

Flow characteristics in the domain can be visualized by AI framework. However, the correct selection 
of AI parameters, as well as a suitable number of input parameters and data set can significantly change the 

Figure 10.   Training validation of fluid velocity for ANFIS model with three inputs (X, Y, and Z computing 
nodes, the position of numerical elements). The ANFIS model’s output is the liquid velocity distribution, and it 
is validated against the velocity component (x-direction) in the CFD calculation (target value).

Figure 11.   Testing the validation of liquid velocity for the ANFIS model with three inputs (X, Y, and Z 
computing nodes, the position of numerical elements). The ANFIS model’s output is the liquid velocity 
distribution, and it is validated against the velocity component (x-direction) in the CFD calculation (target 
value).
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computational time. The main limitation of the AI method is near the non-resolved part of the domain. In other 
words, new phenomena cannot particularly capture with AI and this method can only optimize the process. 
Besides the AI method, more online recording data through mechanical or chemical devices enables us to modify 
the prediction process. The AI calculation and analysis show with a greater number of input parameters the 
accuracy and stability of method rise significantly. As the AI method needs to get enough accuracy for prediction, 
small number of input parameters and data set can significantly increase computational time. Additionally, by 
increasing the number of inputs in AI framework, the stability of the method rises in terms of accuracy.
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