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Nonsymmorphic symmetry 
protected node-line semimetal  
in the trigonal YH3
Dexi Shao, Tong Chen, Qinyan Gu, Zhaopeng Guo, Pengchao Lu, Jian Sun   , Li Sheng & 
Dingyu Xing

Using ab initio calculations based on density-functional theory and effective model analysis, we propose 
that the trigonal YH3 (Space Group: P3c1) at ambient pressure is a node-line semimetal when spin-orbit 
coupling (SOC) is ignored. This trigonal YH3 has very clean electronic structure near Fermi level and its 
nodal lines locate very closely to the Fermi energy, which makes it a perfect system for model analysis. 
Symmetry analysis shows that the nodal ring in this compound is protected by the glide-plane 
symmetry, where the band inversion of |Y+, dxz〉 and |H1−, s〉 orbits at Γ point is responsible for the 
formation of the nodal lines. When SOC is included, the line nodes are prohibited by the glide-plane 
symmetry, and a small gap (≈5 meV) appears, which leads YH3 to be a strong topological insulator with 
Z2 indices (1,000). Thus the glide-plane symmetry plays an opposite role in the formation of the nodal 
lines in cases without and with SOC. As the SOC-induced gap is so small that can be neglected, this P3c1 
YH3 may be a good candidate for experimental explorations on the fundamental physics of topological 
node-line semimetals. We find the surface states of this P3c1 phase are somehow unique and may be 
helpful to identify the real ground state of YH3 in the experiment.

Topological semimetals (TSMs) have attracted great attention for both theoretical interests and experimental 
applications in recent years. Different from time-reversal symmetry (TRS) protected Z2 topological insulators 
(TIs)1,2 which are insulating in the bulk, TSMs are materials where the conduction and the valence bands cross 
with each other at certain locations in the Brillouin Zone (BZ). Usually, the band crossing is protected by certain 
symmetries, i.e., perturbations on the Hamiltonian which respect the symmetries can not break the crossing. 
Recently, several types of TSMs have been proposed to investigate the fermion-like excitations, including Dirac 
fermions3–6, Weyl fermions7–10 and nodal lines11–16. These compounds are named as: Dirac semimetals (DSMs), 
Weyl semimetals(WSMs) and node-line semimetals (NLSMs), respectively.

Up to now, there have been a lot of reports about the progress in DSMs and WSMs, for example, 3D Dirac sem-
imetals have recently been identified experimentally in Cd3As2

17–21 and Na3Bi systems22,23. Similarly, TaAs9,24–26,  
NbAs27, TaP28, WTe2

29,30, and MoTe2
31 etc are verified to be WSMs experimentally in recent years. Different from 

DSMs and WSMs, in which the conduction and valence bands touch at discrete points, the crossings of NLSMs 
form a closed loop in the BZ. Although many candidates of NLSMs have been proposed and much efforts has 
been made to investigate them, the corresponding progress in the experiment is slow, because an open surface 
usually breaks the inversion or some mirror symmetries which are important to the formation of nodal lines32.

Materials experimentally confirmed (or partially confirmed) to host nodal line include Be metal16, ZrSiS33, 
PbTaSe2

14 and ZrSiSe/ZrSiTe34. Therefore, theoretical predictions on more candidates of node-line semimetal 
are still in demand. It is well known that symmetries play important roles in identifying various of TIs and top-
ological superconductors (TSCs)35–39. In fact, symmetries are also important in classifying NLSMs, for instance, 
three types of NLSMs protected by different symmetries have been proposed: (a) mirror symmetry protected 
NLSMs8,14,16,40, (b) coexistence of TRS and inversion symmetry (IS) protected NLSMs11–13,32 and (c) nonsymmor-
phic symmetry protected NLSMs15,32.

Hydrides is a large class of materials and has been extensively investigated in many aspects, including energy 
storage41 and superconductivity42–46, etc. Since Ashcroft proposed that high Tc superconductivity can be obtained 
in hydrogen and hydrides under high pressure47,48, many hydrides have been investigated. Yttrium-hydrogen 
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system becomes interesting due to the same reason. For instance, a fcc YH3 has been predicted to be a supercon-
ductor with Tc ~ 40 K at 17.7 GPa49. Later work predicts that two new yttrium hydrides, i.e., YH4 and YH6, are also 
superconductors with Tc ~ 84–95 K and Tc ~ 251–264 K at 120 GPa, respectively50. Very recently, YH10 in the space 
group of both Im m3  and Fm m3  has been predicted to be a room-temperature superconductor under very high 
pressure51,52.

Though many works about superconductivity of yttrium-hydrogen system under pressure have been impli-
cated, very few explorations on the topological electronic properties of hydrides have been reported so far53–55. In 
this work, we predicted that YH3 in the space group of P3c1 at ambient pressure is a node-line semimetal when 
spin-orbit coupling (SOC) is ignored. Especially, the YH3 system we studied has extremely clean electronic struc-
tures near the Fermi level; i.e., there are no other pockets. The energy of the crossing points along the nodal loop 
varies within a very small energy range, from around −5 to 35 meV. Therefore, this nodal loop is very “flat” in the 
energy and momentum space, which makes YH3 a perfect model system for NLSMs. In general, NLSMs without 
SOC will transform into either insulators, DSMs, WSMs or even double NLSMs when SOC is considered, which 
is much related to the symmetries in the corresponding systems56. While in this work, when SOC is included, the 
three nodal lines around Γ point will be gapped out with a small gap (≈5 meV), making YH3 a topological insu-
lator with Z2 = (1,000). Nevertheless, further calculation shows that the gap induced by SOC along the nodal ring 
is very small (about 5 meV), which indicates that the effect of SOC is negligible and the characteristic of the nodal 
ring can be preserved.

Methods
Calculations of the band structures are performed using the full-potential linearized augmented plane-wave 
(FP-LAPW) method57,58 implemented in the WIEN2k59 package. We use 13 × 13 × 11 k-mesh for the BZ sampling 
and −7 for the plane wave cut-off parameter RMTKmax for the electronic structure calculation, where the RMT is the 
minimum muffin-tin radius and Kmax is the plane-wave vector cut-off parameter. SOC is taken into consideration 
by a second-variation method60. The tight-binding models are constructed with the maximally localized Wannier 
functions (MLWFs) method61–63, the corresponding hopping parameters are determined from the projections of 
the bulk Bloch wave functions. The projected surface states are calculated using surface Green’s function in the 
semi-infinite system64,65.

Results and Discussions
The crystal structure of YH3.  Historically, three different phases of YH3 have been reported to be the 
ground state potentially. Two of them are experimentally favoured with trigonal P3c1 and hexagonal P63cm sym-
metry66–71, while the third candidate is in the space group of P63 which was predicted theoretically72. It seems that 
the ground state of YH3 at ambient pressure is still under debate because the three candidates have very tiny total 
energy difference (0.001 eV/f.u.) from theoretical point of view. First, the hexagonal P63 structure is only theoret-
ically proposed and seems to disagree with the neutron-diffraction results73,74. Second, later neutron-diffraction 
experiments71,75 identify that the P3c1 structure is stable from the ambient pressure up to 12 GPa. Thus, in the 
following, we only focus on the phase of YH3 with the P3c1 symmetry.

The crystal structure and corresponding BZ of P3c1 (Space Group No. 165) YH3 is shown in Fig. 1(a,b) respec-
tively. We use the experimental lattice parameters from literature71 in our calculations, which are listed in Table 1.

Band structures without SOC and the corresponding model analysis.  From the band structures of 
P3c1 YH3 without SOC shown in Fig. 2(a), we can find three Dirac crossings composed of the conduction band 
minimum (CBM) and the valence band maximum (VBM) near Γ along the high-symmetry path in the BZ at the 
first sight. Detailed first-principle calculations indicates that Dirac crossings lying in the plane mΓ–M–L–A is 

Figure 1.  (a) Crystal structure of YH3 at the ambient pressure with P3c1 symmetry. H1, H2 and H3 atoms 
occupy the 2a ( )0, 0, 1

4
, 4d .( ), , 0 1811

3
2
3

 and 12 g (0.348, 0.025, 0.093) sites, respectively, while Y atoms lie at 
the 6f .( )0 336, 0, 1

4
 sites. (b) The corresponding BZ and its projection onto the (010) direction. The red ring on 

the shadow plane surrounding the Γ point represents the node-line structure in the BZ.
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protected by the Gx symmetry, while Dirac crossing along K → Γ is not symmetry-protected (both the irreducible 
representations of CBM and VBM are Γ2) i.e., hybridization between the CBM and the VBM will open a gap 
in-between. Further calculations indicates that the CBM and the VBM are contributed mainly by Y-dxz and H1-s 
orbits, respectively, as the fat-band showed in Fig. 2(a). The band inversion (not caused by SOC) of Y-dxz and H1-s 
at Γ point leads to a gap of 0.302 eV.

To give more insights of the nodal lines surrounding the Γ point, we have established an effective Hamiltonian 
by k · p method. Taking the crystal symmetry and TRS into consideration, the effective Hamiltonian can be writ-
ten as follows:

τ τ τ
→

=
→

+
→

+
→

→
= − + −

→
= −

→
= − + − .

H k g k g k g k

g k M B k k C k

g k A k k k

g k M B k k C k

( ) ( ) ( ) ( )

( ) ( )

( ) ( 3 )

( ) ( ) (1)

x x z z

x y z

x x x y

z z z x y z z

0 0

0 0 0
2 2

0
2

3 2

2 2 2

Here, the τx and τz are Pauli matrices, τ0 is a 2 × 2 unit matrix. This system has both TRS and IS, thus, the compo-
nent of τy must be zero11. We can obtain the eigenvalues of the two-level system by diagonalizing the 2 × 2 effec-
tive Hamiltonian and the results are →

=
→

± +E k g k g g( ) ( ) x z0
2 2 . Band crossings of the nodal lines will occur 

when gx = gz = 0. It’s clear that 
→

=g k( ) 0z  gives us MzBz > 0 and MzCz > 0. We find that MzBz > 0 and MzCz > 0 are 
exactly the condition of band inversion. Furthermore, 

→
=g k( ) 0x  confines the band crossings of the node-line in 

the kx = 0, ± k3 y planes, i.e., there are three nodal rings surrounding the Γ point and lying in mirror-invariant 
planes mΓ–M–L–A, as shown with the shadow sector in Fig. 1(b). It’s obvious that these three nodal rings are related 
to each other by R3z symmetry.

Band structures with SOC and the corresponding model analysis.  When SOC is considered, band 
crossings of the three nodal lines will disappear, as the corresponding band structure with SOC shown in 
Fig. 2(b). We will further explain the above-mentioned phenomenon in the following. Taking SOC into account, 
spin and orbital angular momentum are coupled together, which generates a group of new eigenstates with certain 
total angular momentum quantum numbers. Then we can mark these new eigenstates of the CBM and VBM as 

±−H1 ,s
1
2

, and ±+Y ,d
1
2xz

. Here subscripts s and dxz denote corresponding orbits consisting of the new eigen-
states and the superscripts ± represent the parities of corresponding eigenstates, respectively.

According to the analysis of irreducible representations and projected orbits, the CBM and VBM at the Γ point 
(denoted as Γ−

4  and Γ+
4 ) are mainly composed of ±−H1 ,s

1
2

 and ±+Y ,d
1
2xz

 basis, respectively. If we arrange the 4 
basis in the order of −H1 ,s

1
2

, −−H1 ,s
1
2

, +Y ,d
1
2xz

, −+Y ,d
1
2xz

, and then take the time-reversal and D3d 

Phase a = b c α = β γ

P3c1 6.359 (Å) 6.607 (Å) 90° 120°

Table 1.  The experimental lattice parameters of YH3 with P3c1 symmetry71.

Figure 2.  (a) Corresponding fat-band structure of YH3 in the space group of P3c1 without SOC. The bands 
between CBM and VBM is gapped along K → Γ as the irreducible representations have showed. (b) 
Corresponding band structure of YH3 in the space group of P3c1 with SOC.
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point-group symmetries at the Γ point into consideration, we can give the character table of Γ matrices and the 
polynomials of momentum 

→
k  for this system as shown in Table 2.

From Table 2, our model Hamiltonian yields as

∑ε
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which describes the dispersion of the CBM and VBM around the Γ point. Here we use the following Γ matrices:

σ τ σ τ σ τ
σ τ σ τ

Γ = ⊗ Γ = ⊗ Γ = ⊗
Γ = ⊗ Γ = ⊗ , (3)

1 3 0 2 1 3 3 2 0

4 1 1 5 1 2

which satisfy the Clifford algebra {Γa, Γb} = 2δab. While the other ten Γ matrices are given by Γ = Γ Γ[ , ]ab i a b
1
2

. 
Presence of both TRS and IS will forbid the existence of these ten Γab terms in our model Hamiltonian. In 
Equation (2), ε

→
= −k D m k( ) z0 0 0

2 −  +n k k( )x y0
2 2 , 

→
= −M k D m k( ) z1 1
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3 
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2 2  with k− = kx − iky.

From the model Hamiltonian given in Equation (2) together with the band structure shown in Fig. 1(b), we 
can draw some conclusions as the following. First of all, ε

→
k( )0  will break the particle-hole symmetry for the CBM 

and VBM around the Γ point. Secondly, D1 in 
→

M k( ) will lead to a gap at the Γ point. Thirdly, to reproduce band 
inversion, we need that ∩> >D m D n0 01 1 1 1 . More importantly, the dispersions of the model Hamiltonian 
given by Equation (2) are →
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sions are doubly degenerate. As a result, a band crossing of this model requires f1 = f2 = f3 = f4 = f5 = 0. Several 
discrete 

→
k  points near the Γ  point may satisfy the above-mentioned conditions. For example, 
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 stands. It means that we may find some Dirac crossings at 

the first sight. However, on one hand, = −D
m

D
E

1

1

2

2
 is a very rigorous condition and can not be obtained without 

other symmetries. More importantly, on the other hand, we can explain that 
→
k  points lying in the plane mΓ–M–L–A 

must induce a gap in the following. There are three generator operators existing in the nonsymmorphic space 
group P3c1, we sign the three-fold rotation axis around z axis, the glide plane located at x = 0, and the inversion 
symmetry as R3z, Gx and P, respectively. The operation of Gx acts in both the real space (x, y, z) and the spin space 
as

→ − +

→ − − .
( )G x y z x y z

G s s s s s s
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Similar with the analysis in the work by Fang et al.32, we can easily find
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On the mirror invariant plane kx = 0, the bands can be labeled by its Gx eigenvalues. When SOC is considered, 
we have

= − −G e (6)x
ik2 z

the minus sigh is because Gx
2 includes a 2Π rotation in the spin space, which gives a −1 for a spin − 1

2
 system. So 

the eigenvalue of Gx is ± −ie ikz
2 . The existence of both P and T will ensure all bands locally degenerated at every 
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Table 2.  The character table for the P3c1 YH3.
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point in the BZ when SOC is considered, and the degenerated bands are related to each other by P ∗ T. Suppose at 
(0, ky, kz), a Bloch function ψ|

→
〉k( )  is an eigenstate of Gx with eigenvalue −ie ikz

2 , then its degenerate partner 
ψ|

→
〉⁎P T k( )  under Gx,
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It means that the degenerated bands on the kx = 0 plane have opposite Gx eigenvalues, and two sets of such doublet 
bands generally anticross, i.e., the bands with the same Gx eigenvalues hybridize and avoid crossing. In other 
words, nodal lines near the Γ point in the kx = 0 plane (without SOC) will disappear in the whole BZ when SOC 
is considered, and Gx symmetry plays the key role of prohibiting the band crossing between CBM and VBM, even 
though the gap is very small (≈5 meV) as the k · p Hamiltonian in Equation (2) has showed. As a result, this 
node-line semimetal will become an insulator when SOC is considered. With both TRS and IS in this system, we 
can easily calculate the Z2 index by multiplying all the parities of all the occupied bands at all 
time-reversal-invariant momenta (TRIMs) using the method by Fu and Kane76. The results are shown in Table 3, 
which indicates the P3c1 YH3 is a strong TI with Z2 = (1,000) when SOC is taken into consideration. Nevertheless, 
the effect of the SOC is negligible because the H atom is small and the Y atom is also not very heavy; there is only 
one d electron in the Y atom. We have performed calculations with SOC and found that the SOC induced gap 
along the nodal ring is very small (about 5 meV), which indicates that the effect of SOC could be ignored and the 
characteristic of the nodal ring can be preserved.

Surface states with and without SOC.  Exotic topological surface states are an important property to 
identify various topological phases. Based on the tight-binding model constructed with WLWFs and surface 
Green function methods64,65,77, we have calculated the 〈010〉 surface states of the P3c1 YH3 without SOC and the 
〈001〉 surface states with SOC, as shown in Fig. 3(a,b), respectively. In particular, as the nice picture shows in 
Fig. 3(a), topological protected surface states without SOC signed with a bright curve connects the nodal points 
across the boundary of BZ. When SOC is included, the gap along Γ → A is so small (≈5 meV) that we may con-
sider the CBM and VBM are nearly touched in the bulk band structure, this phenomenon can be proved that we 
can find the corresponding 〈001〉 surface states connecting the psudo-touch points from Fig. 3(b). We think these 
topological protected surface states may be helpful to identify the real ground state of YH3 from those three can-
didates. For example, we propose that angle-resolved photoemission spectroscopy (ARPES) technique can be 
used to investigate these surface states of this node-line semimetal candidate. If a bright surface state could be 
found in the 〈010〉 direction, and two parabolic bright curves with negative mass touching at the Γ point could be 
found in the 〈001〉 direction, then the YH3 sample should be in the P3c1 symmetry.

Conculsion
In conclusion, based on first-principles calculations and effective model analysis, we propose that the P3c1 YH3 is 
a nonsymmorphic symmetry protected node-line semimetal when SOC is ignored. This system has very clean 

TRIM Γ 3 M A 3 L; Total

Parity + − − −; −

Table 3.  The parities product of all the occupied bands at the eight TRIMs for the P3c1 phase of YH3.

Figure 3.  (a) The surface states without SOC of P3c1 YH3 terminated with H atoms in the 〈010〉 direction, (b) 
The surface states with SOC of P3c1 YH3 terminated with H atoms in the 〈001〉 direction.
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electronic structures, there are no other pockets except the ones composing the node line near the Fermi level. 
The energy of the crossing points along the nodal loop has a very small energy range, from around −5 to 35 meV. 
Therefore, this nodal loop is very “flat” in the energy and momentum space, which makes YH3 a perfect system 
for model analysis. There are three node-lines related to each other by R3z symmetry locating on three planes 
(signed as mΓ–M–L–A) surrounding the Γ point. While SOC is taken into consideration, the band crossings consist-
ing of these node-lines will be gapped, and the P3c1 YH3 becomes a strong topological insulator with Z2 indices 
(1,000). At last, we have calculated the surface states of this system to verify its topological properties. We think 
our predictions should be helpful to identify the real ground state of YH3 in experiments in the future.

References
	 1.	 Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).
	 2.	 Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).
	 3.	 Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).
	 4.	 Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 

88, 125427 (2013).
	 5.	 Young, S. M. et al. Dirac semimetal in three dimensions. Phys. Rev. Lett. 108, 140405 (2012).
	 6.	 Gibson, Q. D. et al. Three-dimensional Dirac semimetals: Design principles and predictions of new materials. Phys. Rev. B 91, 

205128 (2015).
	 7.	 Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and fermi-arc surface states in the electronic 

structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
	 8.	 Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous hall effect in HgCr2Se4. Phys. Rev. 

Lett. 107, 186806 (2011).
	 9.	 Lv, B. Q. et al. Experimental discovery of weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).
	10.	 Xu, S. Y. et al. Topological Matter. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613 (2015).
	11.	 Weng, H. et al. Topological node-line semimetal in three-dimensional graphene networks. Phys. Rev. B 92, 045108 (2015).
	12.	 Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac Line Nodes in Inversion-Symmetric Crystals. Phys. Rev. Lett. 115, 036806 

(2015).
	13.	 Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu3PdN. 

Phys. Rev. Lett. 115, 036807 (2015).
	14.	 Bian, G. et al. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7, 10556 (2016).
	15.	 Bzdusek, T., Wu, Q., Ruegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75 (2016).
	16.	 Li, R. et al. Dirac Node Lines in Pure Alkali Earth Metals. Phys. Rev. Lett. 117, 096401 (2016).
	17.	 Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677 (2014).
	18.	 Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 

5, 3786 (2014).
	19.	 Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).
	20.	 Yi, H. et al. Evidence of topological surface state in three-dimensional Dirac semimetal Cd3As2. Sci. Rep. 4, 6106 (2013).
	21.	 Jeon, S. et al. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 13, 

851 (2014).
	22.	 Chen, Y. L. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864 (2014).
	23.	 Xu, S. Y. et al. Observation of Fermi arc surface states in a topological metal. Science 347, 294 (2015).
	24.	 Huang, X. et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X 

5, 031023 (2015).
	25.	 Lv, B. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724 (2015).
	26.	 Lv, B. Q. et al. Observation of Fermi-Arc Spin Texture in TaAs. Phys. Rev. Lett. 115, 217601 (2015).
	27.	 Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748 (2015).
	28.	 Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2016).
	29.	 Bruno, F. Y. et al. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 

94, 121112 (2016).
	30.	 Wu, Y. et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 121113 (2016).
	31.	 Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105 (2016).
	32.	 Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 

081201 (2015).
	33.	 Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93, 201104 (2016).
	34.	 Hu, J. et al. Evidence of Topological Nodal-Line Fermions in ZrSiSe and ZrSiTe. Phys. Rev. Lett. 117, 016602 (2016).
	35.	 Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial 

dimensions. Phys. Rev. B 78, 195125 (2008).
	36.	 Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).
	37.	 Slager, R.-J., Mesaros, A., Juricic, V. & Zaanen, J. The space group classification of topological band insulators. Nat. Phys. 9, 98 (2013).
	38.	 Jadaun, P., Xiao, D., Niu, Q. & Banerjee, S. K. Topological classification of crystalline insulators with space group symmetry. Phys. 

Rev. B 88, 085110 (2013).
	39.	 Shiozaki, K. & Sato, M. Topology of crystalline insulators and superconductors. Phys. Rev. B 90, 165114 (2014).
	40.	 Chiu, C.-K. & Schnyder, A. P. Classification of reflection-symmetry-protected topological semimetals and nodal superconductors. 

Phys. Rev. B 90, 205136 (2014).
	41.	 Sakintuna, B., Lamari-Darkrim, F. & Hirscher, M. Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen 

Energy 32, 1121 (2007).
	42.	 Smith, J. S., Desgreniers, S., Tse, J. S. & Klug, D. D. High-pressure phase transition observed in barium hydride. J. Appl. Phys. 102, 

043520 (2007).
	43.	 Tse, J. S., Yao, Y. & Tanaka, K. Novel superconductivity in Metallic SnH4 under High Pressure. Phys. Rev. Lett. 98, 117004 (2007).
	44.	 Jin, X. et al. Superconducting high-pressure phases of disilane. Proc. Natl. Acad. Sci. USA 107, 9969 (2010).
	45.	 Shamp, A. & Zurek, E. Superconducting high-pressure phases composed of hydrogen and iodine. J. Phys. Chem. Lett. 6, 4067 (2015).
	46.	 Duan, D. et al. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev. 4, 121 (2017).
	47.	 Ashcroft, N. W. Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748 (1968).
	48.	 Ashcroft, N. W. Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).
	49.	 Kim, D. Y., Scheicher, R. H. & Ahuja, R. Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-

Metal Hydride YH3 at 40 K and 17.7 GPa. Phys. Rev. Lett. 103, 077002 (2009).
	50.	 Li, Y. et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015).
	51.	 Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-tc superconducting lanthanum and yttrium 

hydrides at high pressure. Proc. Natl. Acad. Sci. USA 114, 6990 (2017).



www.nature.com/scientificreports/

7SCIeNtIfIC REPOrTS |  (2018) 8:1467  | DOI:10.1038/s41598-018-19870-5

	52.	 Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature 
superconductivity. Phys. Rev. Lett. 119, 107001 (2017).

	53.	 Liu, C.-C. et al. Low-energy effective hamiltonian for giant-gap quantum spin hall insulators in honeycomb x-hydride/halide (x = 
NˇBi) monolayers. Phys. Rev. B 90, 085431 (2014).

	54.	 Feng, W., Liu, C.-C., Liu, G.-B., Zhou, J.-J. & Yao, Y. First-principles investigations on the berry phase effect in spin–orbit coupling 
materials. Comput. Mater. Sci. 112, 428 (2016).

	55.	 Yang, B., Zhang, X. & Zhao, M. Dirac node lines in two-dimensional lieb lattices. Nanoscale 9, 8740 (2017).
	56.	 Yang, S. Y. et al. Symmetry demanded topological nodal-line materials. arXiv:1707.04523v2 (2017).
	57.	 Sjöstedt, E., Nordström, L. & Singh, D. J. An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 

114, 15 (2000).
	58.	 Madsen, G. K. H., Blaha, P., Schwarz, K., Sjöstedt, E. & Nordström, L. Efficient linearization of the augmented plane-wave method. 

Phys. Rev. B 64, 195134 (2001).
	59.	 Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D. & Luitz, J. WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for 

Calculating Crystal Properties. (Karlheinz Schwarz, Technische Universitaet Wien, Vienna, 2001).
	60.	 Kuneš, J., Novák, P., Schmid, R., Blaha, P. & Schwarz, K. Electronic structure of fcc th: Spin-orbit calculation with 6p1/2 local orbital 

extension. Phys. Rev. B 64, 153102 (2001).
	61.	 Marzari, N. & Vanderbilt, D. Maximally localized generalized wannier functions for composite energy bands. Phys. Rev. B 56, 12847 

(1997).
	62.	 Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized wannier functions: Theory and applications. 

Rev. Mod. Phys. 84, 1419 (2012).
	63.	 Mostofi, A. A. et al. Wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 178, 685 

(2008).
	64.	 Sancho, M. P. L., Sancho, J. M. L. & Rubio, J. Quick iterative scheme for the calculation of transfer matrices: application to mo (100). 

J. Phys. F: Met. Phys. 14, 1205 (1984).
	65.	 Sancho, M. P. L., Sancho, J. M. L., Sancho, J. M. L. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface green 

functions. J. Phys. F: Met. Phys. 15, 851 (1985).
	66.	 Udovic, T. J., Huang, Q. & Rush, J. J. Characterization of the structure of YD3 by neutron powder diffraction. J. Phys. Chem. Solids 

57, 423 (1996).
	67.	 Udovic, T. J., Huang, Q., Erwin, R. W., Hjörvarsson, B. & Ward, R. C. C. Structural symmetry of YD3 epitaxial thin films. Phys. Rev. 

B 61, 12701 (2000).
	68.	 Wang, Y. & Chou, M. Y. Peierls distortion in hexagonal YH3. Phys. Rev. Lett. 71, 1226 (1993).
	69.	 Pebler, A. & Wallace, W. E. Crystal structures of some lanthanide hydrides. J. Phys. Chem. 66, 148 (1962).
	70.	 Remhof, A. et al. Hydrogen and deuterium in epitaxial Y(0001) films: Structural properties and isotope exchange. Phys. Rev. B 59, 

6689 (1999).
	71.	 Fedotov, V. K., Antonov, V. E., Bashkin, I. O., Hansen, T. & Natkaniec, I. Displacive ordering in the hydrogen sublattice of yttrium 

trihydride. J. Phys.: Condens. Matter 18, 1593 (2006).
	72.	 Kelly, P. J., Dekker, J. P. & Stumpf, R. Theoretical prediction of the structure of insulating YH3. Phys. Rev. Lett. 78, 1315 (1997).
	73.	 Udovic, T. J., Huang, Q. & Rush, J. J. Comment on “Theoretical Prediction of the Structure of Insulating YH3”. Phys. Rev. Lett. 79, 

2920 (1997).
	74.	 Kelly, P. J., Dekker, J. P. & Stumpf, R. Kelly, Dekker, and Stumpf Reply. Phys. Rev. Lett. 79, 2921 (1997).
	75.	 Udovic, T. J., Huang, Q., Santoro, A. & Rush, J. J. The nature of deuterium arrangements in YD3 and other rare-earth trideuterides. 

Z. Kristallogr 223, 697 (2008).
	76.	 Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).
	77.	 Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: An open-source software package for novel topological 

materials. arXiv preprint arXiv:1703.07789v1 (2017).

Acknowledgements
We thank the fruitful discussions with Jiawei Ruan, Huaiqiang Wang, Rui Wang, and Ying Xu. This work is 
supported by the MOST of China (Grant Nos: 2016YFA0300404, 2015CB921202), the National Natural Science 
Foundation of China (Grant Nos: 51372112 and 11574133), NSF Jiangsu province (No. BK20150012), the 
Fundamental Research Funds for the Central Universities, and Special Program for Applied Research on Super 
Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501. Part of the 
calculations were performed on the supercomputer in the HPCC of Nanjing University and “Tianhe-2” at NSCC 
guangzhou.

Author Contributions
J.S. supervised the project. D.S. and T.C. performed the calculations. D.S. and J.S. analysed the results and wrote 
the manuscript. All authors discussed the results, and commented on the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Nonsymmorphic symmetry protected node-line semimetal in the trigonal YH3

	Methods

	Results and Discussions

	The crystal structure of YH3. 
	Band structures without SOC and the corresponding model analysis. 
	Band structures with SOC and the corresponding model analysis. 
	Surface states with and without SOC. 

	Conculsion

	Acknowledgements

	Figure 1 (a) Crystal structure of YH3 at the ambient pressure with Pc1 symmetry.
	Figure 2 (a) Corresponding fat-band structure of YH3 in the space group of Pc1 without SOC.
	Figure 3 (a) The surface states without SOC of Pc1 YH3 terminated with H atoms in the 〈010〉 direction, (b) The surface states with SOC of Pc1 YH3 terminated with H atoms in the 〈001〉 direction.
	Table 1 The experimental lattice parameters of YH3 with Pc1 symmetry71.
	Table 2 The character table for the Pc1 YH3.
	Table 3 The parities product of all the occupied bands at the eight TRIMs for the Pc1 phase of YH3.




