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Purpose: To evaluate the performance of a federated learning framework for deep neural network-based
retinal microvasculature segmentation and referable diabetic retinopathy (RDR) classification using OCT and
OCT angiography (OCTA).

Design: Retrospective analysis of clinical OCT and OCTA scans of control participants and patients with
diabetes.

Participants: The 153 OCTA en face images used for microvasculature segmentation were acquired from 4
OCT instruments with fields of view ranging from 2 x 2-mm to 6 x 6-mm. The 700 eyes used for RDR classi-
fication consisted of OCTA en face images and structural OCT projections acquired from 2 commercial OCT
systems.

Methods: OCT angiography images used for microvasculature segmentation were delineated manually and
verified by retina experts. Diabetic retinopathy (DR) severity was evaluated by retinal specialists and was
condensed into 2 classes: non-RDR and RDR. The federated learning configuration was demonstrated via
simulation using 4 clients for microvasculature segmentation and was compared with other collaborative training
methods. Subsequently, federated learning was applied over multiple institutions for RDR classification and was
compared with models trained and tested on data from the same institution (internal models) and different
institutions (external models).

Main Outcome Measures: For microvasculature segmentation, we measured the accuracy and Dice simi-
larity coefficient (DSC). For severity classification, we measured accuracy, area under the receiver operating
characteristic curve (AUROC), area under the precision-recall curve, balanced accuracy, F1 score, sensitivity, and
specificity.

Results: For both applications, federated learning achieved similar performance as internal models. Spe-
cifically, for microvasculature segmentation, the federated learning model achieved similar performance (mean
DSC across all test sets, 0.793) as models trained on a fully centralized dataset (mean DSC, 0.807). For RDR
classification, federated learning achieved a mean AUROC of 0.954 and 0.960; the internal models attained a
mean AUROC of 0.956 and 0.973. Similar results are reflected in the other calculated evaluation metrics.

Conclusions: Federated learning showed similar results to traditional deep learning in both applications of
segmentation and classification, while maintaining data privacy. Evaluation metrics highlight the potential of
collaborative learning for increasing domain diversity and the generalizability of models used for the classification
of OCT data. Ophthalmology Science 2021;1:100069 © 2021 by the American Academy of Ophthalmology. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
[

Diabetic retinopathy (DR) is a complication of diabetes
mellitus, the most common cause of vision loss among
people with diabetes, which affects 749 800 people in
Canada' and is expected to affect 191.0 million people
worldwide by 2030.” Diabetic retinopathy damages the
structure of the blood vessels of the retina,’ a light-
sensitive tissue in the eye, leadin§_t0 widespread areas of
ischemia and loss of visual acuity.™ Diabetic retinopathy is
diagnosed and the severity is graded based on clinical
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(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.

examination findings, retinal funduscopic photography
results, and fluorescein angiography results.® Direct,
noninvasive, and quantitative analysis of the retinal
microvasculature has significant potential to improve the
clinical management of DR. One of the most promising
methods for diagnostic imaging of the retinal
microvasculature is OCT angiography (OCTA), which
allows for volumetric imaging of the retinal vasculature
with resolution down to the level of retinal capillaries.”*
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Ophthalmology Science

The use of artificial intelligence has been extended to
numerous problems in the medical industry and is
advancing rapidly in ophthalmic applications. Reviews of
deep learning and artificial intelligence in medicine discuss
the research and future directions,” including applications in
glaucoma'” and DR.'' ™" In this study, we expanded on
previously published frameworks for microvasculature
segmentation'’ and quantification,’” as well as DR
classification.'®™'” As deep learning applications increase
in complexity, the amount of data required to train a
robust and accurate deep neural network model increases
significantly. However, for medical applications, data are
often guarded behind privacy regulations regarding
sensitive patient information. This presents a nearly
insurmountable hurdle for collaborative data sharing
between institutions. Additionally, a possibility exists that
a model trained solely on medical data available in its
own so-called data island is significantly overfitted, espe-
cially if all the data originate from 1 source.'® This is the
case for image processing algorithms, where images
originating from 1 source may have distinct features that
may lead to overfitting as training progresses.

Federated learning is a distributed machine learning
approach that enables model training on a large corpus of
decentralized data originating from different sources without
directly accessing the sensitive data.'” Cross-device feder-
ated learning, as originally described by Google,”’ consists
of a framework in which a central server could distribute
copies of a machine learning model to a set of clients for
training. Each client locally could perform 1 or multiple
steps of gradient descent (“learning”) on local data and
subsequently return its results to the central server to be
averaged with the rest of the client base. Frameworks for
developing federated learning algorithms such as
Tensorflow Federated, NVIDIA Clara,21 and PySyft22
exist; however, for medical applications with a small
number of participating (collaborating) institutions, this
approach can be simplified. This is termed cross-silo
federated learning.”> Compared with cross-device feder-
ated learning, the small number of collaborative participants
in a cross-silo setting simplifies execution by allowing for
the training to be synchronous. The cross-silo setting also
assumes that the participants are trusted and do not present
an adversarial risk toward federated training, which can
include white-box and black-box inference attacks™ or
exploiting the gradients to reconstruct the training data.”
This approach has been explored by various groups in
medical research, most notably for the coronavirus disease
2019 (COVID-19) pandemic. A collaborative federated
learning platform for computed tomography scan-based
COVID-19 diagnosis using a 3-dimensional dense con-
volutional neural network also was developed recently,”
with additional work conducted for COVID-19 region seg-
mentation in computed tomography scans.”’ In addition, a
federated approach to both L1 regularization and
multilayer perceptron models was applied to electronic
health records to predict COVID-19 mortality, showing
improvement over models trained locally.”® A federated
learning framework was also developed for functional
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magnetic resonance imaging analysis using domain
adaptation.”” In the field of OCT for ophthalmic imaging,
to the best of our knowledge, no previous report has
examined the use of federated learning. A related model-
to-data approach was apg)lied to intraretinal fluid segmen-
tation in OCT volumes™’ with significant success. This
report represents the next step in the progression of model
to data to federated learning for ophthalmic applications.

Federated learning may have a large impact on niche
research topics and rare diseases where datasets are locked
within each institution and open-sourced datasets are
limited. Clinical applications with large and open-sourced
datasets contain many edge cases and may have reduced
benefit from collaboration through federated learning. Using
federated learning to improve the generalizability of the
neural networks through the collaboration of multiple in-
stitutions with access to large datasets is important and
should be investigated for the effects on neural network
robustness. However, the focus of this study is toward
facilitating collaboration between institutions investigating
problems with small datasets. In this study, we investigated
the federated learning approach to apply microvasculature
OCTA segmentation to multiple datasets in a simulated
cross-silo environment. The performance of the federated
model was compared with that of models trained solely on
local data, models trained on a fully centralized dataset, as
well as alternative methods of collaborative deep learning.
The framework subsequently was extended to a true
collaboration between multiple institutions for referable
DR (RDR)—eyes diagnosed with moderate DR or higher—
classification using OCT and OCTA imaging. The perfor-
mance of the federated RDR classification model was
compared with that of models trained solely on local data
across the institutions participating in this study.

Methods

Ethics Statement

Institutional review board (IRB) or ethics committee approval
was obtained before implementation, and the experiments were
conducted in accordance with the tenets of the Declaration of
Helsinki independently at both Simon Fraser University (SFU)
and Oregon Health & Science University (OHSU). A separate
IRB approval was required for each institution for neural network
model sharing, but the approval process was more efficient than
the process required to share sensitive patient information and
data. The requirement for informed consent was waived because
of the retrospective nature of the study.

Framework Implementation

The main components of the federated learning framework
involved the central server and the individual clients from which
the private data were sourced. The central server served as the
hub of the framework, coordinating training and defining
hyperparameters for each client. The central server also aggre-
gated each client’s updates and performed averaging to compute
a new global model for redistribution. Model updates from each
client, as well as each iteration of the aggregated global model,
were saved locally, and thus were not accessed by any
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Figure 1. Diagram showing federated learning schematic.
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participating client. Each client’s training data remained on its
own servers, preventing access by any outside party. Secure
model transfer between each client and the central server was
handled through the use of cloud-based drop-off folders imple-
mented using the self-hosted open-source file synchronization
and share server ownCloud (ownCloud GmbH) software, as
shown in Figure 1. Each client was designated its own folder that
was inaccessible by other clients. OwnCloud allows the model
distribution to be under the control of a participating
institution. In this study, we hosted the ownCloud folder on
SFU servers, but this folder could be hosted at any site
designated as the aggregator using their own ownCloud
implementation.

For each training cycle, the central server distributed the
aggregate model, alongside instructions in a configuration file
unique to each client. This configuration file included informa-
tion such as the current epoch, as well as the learning rate at
which that epoch would be trained. The model and configuration
file transfers to and from ownCloud folders were automated
using the client module from the open-sourced ownCloud
application programming interface (API). Using the ownCloud
API, the clients and aggregator accessed the ownCloud folder
using security keys specified in an institution-specific initiali-
zation configuration file. We implemented a robust system of
checks to ensure that interruptions in connection at any stage
between the client or aggregator and the ownCloud folder were
handled adequately by the program. Continuous connection at-
tempts were made if a client was unable to connect with the
ownCloud server.

On receiving the model and configuration file, each client
performed data augmentation and trained for a full epoch on its
training set and then validated on its internal validation set. The
resulting model and comma-separated values file containing the
loss and accuracy for both training and validation were returned
to the central server. As soon as the central server received the
model and comma-separated values file from each client, it
further validated each client model on a small validation set to
isolate models that could disrupt the overall training process.

Drop-off folder
(ownCloud)

Client server

Client server

Consequently, any client model that scored below a specified
tolerance value would be omitted from the aggregated model.
The tolerance value was minimal (0.3 or less) to remove poten-
tially diverged models without inadvertently introducing bias to
the training. The tolerance value of 0.3 that was selected as a
safeguard was determined heuristically based on an SFU pilot
dataset, which was a subset of the SFU training set. The tolerance
was low enough to allow models from different domains that may
perform poorly on the pilot dataset to be included in the aggre-
gated model. It filtered out data contamination as a result of
potential misconfiguration and improperly processed data and
was never reached at any point in our study, as it should not be, if
all participants were diligent. The paths to the saved models and
training data were defined in a configuration file located locally
on each client and not accessed by the aggregator. The open-
source code can be found online on Github (https://github.com/
borg-sfu/federated-learning-oct).

Federated Learning Applications

Microvasculature Segmentation. In the first experiment, we
applied the federated learning framework to the application of
microvasculature segmentation on OCTA en face images,
expanding on a previously published study.'” To examine the
efficacy and clinical usefulness of a federated learning
approach, the resulting model was compared with alternative
collaborative approaches, which include pooling all the data
into a centralized location. To allow for this, the available data
were restricted to OCTA en face images that were locally
acquired and sourced. The resulting 4 individual datasets used
for training are described in detail elsewhere'* and are
summarized in Table 1. The dataset from each image source
was split into training, validation, and testing partitions. The
6 x 6-mm images from the PLEX Elite instrument [Carl Zeiss
Meditec] were divided into quadrants to ensure image size sim-
ilarity. Four simulated clients, each hosting 1 of the 4 datasets,
occupied 4 separate compute nodes on a supercomputer cluster
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Table 1. Datasets Used for Microvasculature Segmentation

Field of Included Capillary
Image Source View (mm) Complexes

SFU prototype swept-source 2x2 SvC
OCTA

RTVue XR Avanti 3x3 SvVC
(OptoVue, Inc.)

Angioplex (Carl Zeiss 3x3 SVC
Meditec)

PLEX Elite 9000 (Carl Zeiss 6% 6 SVC and DVC

Meditec)

No. of Available

Images

Dataset Partitions
(Quadrants)

30 18 training
6 validation
6 testing
26 16 training
5 validation
5 testing
24 14 training
5 validation
5 testing
42 (168) training
15 (60) validation
16 (64) testing

73 (292 quadrants)

DVC = deep vascular complex; SFU = Simon Fraser University; SVC = superficial vascular complex.
Overview of the 4 individual datasets used for the federated learning simulation of microvasculature segmentation. Images in the PLEX Elite 6 x 6-mm

dataset were split after partitioning into training, validation, and test sets.

(Compute Canada). Another local computer was used as the
central server.

Model Architecture and Training Parameters. The architec-
ture used on each client was the residual U-Net,®' which is shown
in Figure S2. Neural network training was performed over a
maximum of 1000 epochs on an NVIDIA Tesla P100 graphics
processing unit, after which the model with the lowest validation
loss was selected for evaluation. All clients were trained using
stochastic gradient descent optimization with a cyclic learning
rate schedule that used warm restarts. The learning rate would
decrease from 0.1 to 0.001 with a decay factor of 0.1, and
repeat. Each client used the same data augmentation steps, which
included random pixel dropout (5% to 10%), linear (0.5 to 3),
and y (0.4 to 1.75) contrast adjustment; rotations (—15° to 15°);
and horizontal and vertical flips using the ImgAug Python library.

Comparison with Other Collaborative Deep Learning Meth-
ods. To investigate the performance of the federated learning
framework, we evaluated several simulated collaborative training
scenarios. First, the model-to-data approach was investigated by
training a model on each dataset individually, but without transfer
learning, as was done previously.”® Second, a combined dataset
with all available images was used for training in the ideal case,
where all data are available. The effects of the dataset sizes (and
the resulting diversity in training examples) were explored by
constructing 2 additional combined datasets with an equal
number of images—1 with 14 images randomly sampled from
each source (the maximum possible, because the Angioplex [Carl
Zeiss Meditec] 3 x 3-mm training set contained 14 images),
and 1 with only 4 images randomly sampled from each image
source—to approximate the size of a smaller dataset. Finally, the
federated model was compared with a model trained on all 4
datasets sequentially in the order shown in Table 1 to simulate a
naive collaborative deep learning approach.

Referable Diabetic Retinopathy Classification

In the second experiment, we applied the federated learning
framework to RDR classification. Data collected from SFU and
OHSU were used to investigate the relative performance of
federated learning for the classification of RDR in OCT en face
images. The image acquisition protocol, severity grading, and en
face OCTA generation algorithm were as described in previous
reports from our groups.'®'” Images with a signal strength of more
than 8 of 10 or with sufficient capillary network visibility through
manual evaluation were included in the SFU dataset.”” Images with
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signal strength index of more than 50 were included in the OHSU
dataset.®® Details of the 2 datasets, including the image acquisition
systems, dataset stratification, and dataset allocation, are as
described in Table 2. The 3-channel input for RDR classification
was generated from a combination of OCTA en face images from
the superficial vascular complex, OCTA en face images from the
deep vascular complex, and a maximum intensity projection
calculated from both of the OCT structural en face superficial
vascular complex and deep vascular complex. The deep and su-
perficial vascular complex boundary extraction algorithms were
specific to the commercial OCT image acquisition system.'®'” As
with the microvasculature segmentation experiment, the federated
learning performance was compared against models trained on 1
specific dataset, but fully collaborative approaches could not be
explored to uphold data privacy.

The preprocessing and data augmentation pipeline were consis-
tent across both institutions. Each dataset was preprocessed to have
DR severity-stratified balance to enforce fairness in 4-fold cross-
validation. Each client randomly allocated its data into 5 folds
with an equal number of institution-specific DR severity eyes in each
fold, i.e., each OHSU fold contained the following (numbers in the
parentheses indicate the number of eyes in each category): normal
(19—20), mild (2—3) moderate (4—5), severe (1—2), proliferative
DR (36—37); each SFU fold contained the following: normal
(31—32), mild (13—14), moderate (5—6), severe (12—13), prolifer-
ative DR (12—13). Oregon Health and Science University and SFU
each allocated 1 fold for testing and used the remaining folds through
4-fold cross-validation to train and validate 4 models. In a post hoc
review of the SFU data, 1 eye in the training dataset was identified as
having been assigned incorrectly to the severe group instead of the
proliferative DR group. A balanced distribution between RDR and
non-RDR (NRDR) was created through random upsampling. The
model training process was further augmented randomly throughout
training. Augmentations included random dropout (5% to 10%),
linear contrast changes (0.9 to 1.1), rotations (—10° to 10°), hori-
zontal and vertical translations (—0.05 to 0.05), and horizontal and
vertical flips using the ImgAug and Keras preprocessing Python li-
braries. Each image was resized to 512 x 512 pixels for cross-
institution consistency. Channel-wise normalization into a range
from O to 1 was performed to harmonize the different sites.

Model Architecture and Training Parameters. Transfer
learning of a VGG19 architecture with ImageNet weights was used
for feature extraction, and the classifier consisted of 2 fully con-
nected layers, shown in Figure S3. The training hyperparameters
were determined through 4-fold cross-validation. Models
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Table 2. Datasets Used for Referable Diabetic Retinopathy Classification

Commercial OCT Systems Binary Stratification (No. of Institution-Specific Stratification Dataset
Institution (Field of View; mm) Images in Each) (No. of Images in Each) Allocation

OHSU" OptoVue, Avanti RTVue-XR Non-RDR (n = 111), Normal (n = 99) 20% testing

SD OCT (3 x 3) RDR (n = 212) Mild (n = 12) 20% validation
Moderate (n = 22) 60% training
Severe (n = 7)
Proliferative (n = 183)
SFU'® Zeiss, PLEX Elite SS OCT Non-RDR (n = 226); Normal (n = 157) 20% testing

3 x 3)

RDR (n = 151)

20% validation
60% training

Mild (n = 69)
Moderate (n = 27)
Severe (n = 61)
Proliferative (n = 63)

OHSU = Oregon Health and Science University; RDR = referable diabetic retinopathy; SD = spectral-domain; SFU = Simon Fraser University;

SS = swept-source.

Overview of the datasets from the collaborating institutions for the task of RDR classification.

that were trained on data from a single institution were trained
for 100 egochs with a learning rate that decayed from 5 x 107 to
5 x 107". The federated approach used a cyclic learning rate, as
described in the segmentation application, decaying from 3 x 10~*
to 1 x 107 twice throughout 100 epochs.

Performance Evaluation. The following evaluation metrics
were calculated for each of the models: accuracy, area under the
receiver operating characteristic curve, area under the precision-
recall curve, balanced accuracy, F1 score, sensitivity, specificity,
and the severity-specific accuracies. Benjamini-Hochberg adjusted
two-tailed 7 tests were performed to calculate a statistically sig-
nificant (P < 0.05) difference in means of the evaluation metrics
between federated learning and models trained on 1 institution’s
dataset. The means and standard deviations are reported for each of
the evaluation metrics. The optimal threshold values for classifi-
cation were calculated from the receiver operating characteristics
curve performance of the respective validation set during model
training.

The effect of thresholding was explored, and the binary clas-
sification of models was further evaluated on datasets stratified into
the 5 stages of DR. The 4 models, 1 from each training fold, were
ensembled using majority soft voting by averaging out the prob-
abilities calculated from each model. The probabilities for the
positive class (i.e., whether a given input image belongs to a patient
with RDR) are graphically displayed through histogram plots for
each training method. The output class of each eye is the ensem-
bled probability thresholded using the average threshold value
calculated during training. To further understand the range of se-
verities most affected by thresholding, the allocated testing data
were stratified further into their original 5 severities. As is the case
with many smaller medical datasets, the class imbalance is an issue
that exists not only between NRDR and RDR, but across all 5
severities. The participating institutions of this study have more
eyes distributed toward the extremes (normal and proliferative
DR).

Results

Microvasculature Segmentation

Table 3 shows the segmentation accuracy when all 9
training methods are evaluated on each dataset’s test set.
In this case, an internal model is a model trained and
tested on data from 1 institution, and an external model is
a model trained and tested on data from different

institutions. The model trained with federated learning
attained accuracy scores comparable with those of the
internal models, except for the PLEX Elite 6 X 6-mm
dataset, which resulted in a minor reduction in accuracy
compared with the internal models. It also achieved similar
performance as the models trained on combined datasets,
suggesting that pooling all datasets into a centralized
location may provide only a marginal benefit over
federated learning. Additionally, the federated model out-
performed the sequentially trained model for the 2 X 2-mm
and 3 x 3-mm datasets, as the sequentially trained model
biased toward the most recently seen PLEX Elite 6 x 6-mm
dataset. A similar trend is seen when calculating the Dice
similarity coefficient (DSC), as detailed in Table 4. The
segmentation performance of the federated learning model
exceeded the dataset-exclusive model for the 2 x 2-mm
dataset, achieved comparable scores for the two 3 x 3-
mm datasets, and resulted in a minor reduction in DSC for
the 6 x 6-mm dataset. The federated learning model also
achieved comparable scores as all combined datasets,
similar to the results in Table 3.

Referable Diabetic Retinopathy Classification

Similar to the microvasculature segmentation experiment,
for each test set (SFU and OHSU), the federated learning
model was compared with both internal and external
models, but, to preserve data privacy, combining datasets
for centralized training was not possible. The corresponding
thresholds for classification were calculated from their
respective validation set during the federated training pro-
cess. First, we evaluated the overall classification perfor-
mance of the 3 experimental setups. Both federated learning
and internal models significantly outperformed external
models, as shown in Table 5. The federated learning
approach was comparable with internal models when
tested on the SFU (Table 5, top panel) and OHSU
(Table 5, bottom panel) datasets. We further investigate
the model performance on each stratified diagnostic group
to gain an in-depth understanding of the relationship be-
tween the model and the diagnostic severity (Table 0).
Figures 4 and 5 demonstrate the effect of thresholding on
model performance because the method of acquiring a
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Table 3. Accuracy of Federated Learning on Microvasculature Segmentation

Model Training Method
(No. of Images)

Federated learning 0.857 + 0.031
Sequential 0.835 + 0.033
Only SFU prototype (n = 18) 0.858 + 0.033*
Only Optovue (n = 16) 0.831 £ 0.049
Only Angioplex (n = 14) 0.818 + 0.045
Only PLEX Elite (n = 168) 0.814 £ 0.034
Combined (all images) 0.855 + 0.029
Combined equally (n = 14 each) 0.861 + 0.033!
Combined equally (n = 4 each) 0.855 + 0.030

Simon Fraser
University

Prototype 2 X 2-mm

OptoVue PLEX Elite

3 X 3-mm Angioplex 3 X 3-mm 6 X 6-mm
0.815 £ 0.006 0.850 + 0.030 0.784 + 0.053
0.789 + 0.006 0.821 + 0.036 0.810 £ 0.039
0.721 £+ 0.017 0.808 + 0.057 0.574 + 0.061
0.829 + 0.015%1 0.801 + 0.059 0.621 £+ 0.073
0.817 £ 0.009 0.858 =+ 0.024* 0.713 £+ 0.075
0.800 £ 0.007 0.828 + 0.024 0.817 + 0.038*1
0.804 + 0.005 0.842 + 0.030 0.806 + 0.036
0.829 + 0.014! 0.857 + 0.029 0.795 + 0.043
0.829 + 0.014 0.853 + 0.026 0.785 + 0.039

SFU = Simon Fraser University.

Data are presented as mean + standard deviation. Accuracy for each training method when evaluated on each dataset’s test set is shown.

*Internal model.
THighest value(s) in each column.

threshold during training is optimized for the participating
institutions. For each of the training approaches, we
portray the classification across all 5 severities of DR
using confusion matrices in Figures 6 and 7.

Discussion

As deep learning applications grow in complexity, the need
for labeled ground-truth data increases significantly. In
many cases, a single institution does not have enough re-
sources to procure the data needed to train a robust model.
Furthermore, medical images are guarded securely behind
various privacy regulations, resulting in a significant barrier
to collaborative data sharing between institutions. Also, a
possibility exists that models trained mainly within 1 data
island are significantly overfitted, which limits their eventual
application on unseen data. Federated learning provides a
path for collaboratively training a model while keeping the
image data secure. The contributions of this study are as

follows: (1) the design of an open-source robust federated
learning framework to enable cross-silo training for
hardware-agnostic applications, (2) a simulated test for
microvasculature segmentation in OCTA en face images
acquired from 4 imaging sources, and (3) collaboration with
a separate institution for RDR classification on OCTA and
OCT structural en face images. The framework involved
individual clients training a model on its local training data
and sending the weights to a central server. The central
server aggregated the weights from all clients and redis-
tributed the new global model. Secure file transfer was
handled through a cloud-based drop-off folder hosted on
SFU servers, eliminating the need for remote secure shell
access between the central server and each participant.
Institutional review board approval was required across
each institution for federated model transfer. However, the
process was more efficient than the approval process for
sharing sensitive patient data. The IRB approval was
required by both the institution hosting the central server
and the participating client(s). However, this may not apply

Table 4. Dice Similarity Coefficient of Federated Learning on Microvasculature Segmentation

Simon Fraser

Model Training Method University PLEX Elite
(No. of Images) Prototype 2 X 2-mm OptoVue 3 X 3-mm Angioplex 3 X 3-mm 6 X 6-mm
Federated learning 0.773 £ 0.060* 0.814 £ 0.011 0.824 + 0.011 0.761 £ 0.078
Sequential 0.752 + 0.060 0.782 + 0.006 0.782 + 0.016 0.798 + 0.045
Only SFU prototype (n = 18) 0.756 + 0.074 0.663 + 0.019 0.746 £ 0.051 0.265 + 0.141
Only Optovue (n = 16) 0.671 £ 0.153 0.836 + 0.020 0.734 £ 0.061 0.439 £ 0.165
Only Angioplex (n = 14) 0.735 £+ 0.079 0.818 &+ 0.011 0.836 =+ 0.009% 0.637 + 0.141
Only PLEX Elite (n = 168) 0.738 £ 0.059 0.801 £ 0.010 0.801 £ 0.011 0.816 + 0.038*1
Combined (all images) 0.755 + 0.059 0.797 + 0.007 0.806 + 0.010 0.797 + 0.039
Combined equally (14 each) 0.772 £ 0.070 0.835 + 0.018 0.835 £+ 0.011 0.784 £+ 0.049
Combined equally (4 each) 0.772 + 0.058 0.838 + 0.018* 0.831 + 0.010 0.782 + 0.042

SFU = Simon Fraser University.

Data are presented as mean =+ standard deviation. Dice similarity coefficients for each training method, evaluated on each dataset’s test set, are shown.

*Internal model.
THighest value(s) in each column.



Specificity
0.864 + 0.127
0.973 £ 0.041
0.870 £ 0.059
0.913 + 0.071
0.620 + 0.349
0.924 + 0.042

T

Sensitivity

0.875 £+ 0.102
0.250 £+ 0.235
0.883 + 0.103
0.869 + 0.050
0.568 + 0.378
0.869 £ 0.011

F1 Score
0.847 £ 0.041
0.341 & 0.293*7
0.851 4+ 0.043
0.908 + 0.014
0.585 4+ 0.252
0.911 £ 0.015

0.611 & 0.104*"
0.876 + 0.037
0.891 + 0.016
0.594 + 0.032!
0.897 + 0.024

Balanced Accuracy
0.870 £ 0.035

Area under the
Precision-Recall
Curve

0.927 + 0.015
0.814 + 0.031%,
0.936 4+ 0.017
0.986 =+ 0.004'
0.864 + 0.087
0.972 + 0.002*

Area under the
Receiver Operating
Characteristic Curve

0.956 + 0.011
0.852 + 0.036%"
0.960 + 0.011
0.973 + 0.008
0.766 + 0.137
0.954 + 0.004*

0.676 & 0.081*"
0.875 + 0.003

Table 5. Performance of Federated Learning for Referable Diabetic Retinopathy Classification
0.884 + 0.014

Accuracy
0.869 + 0.046
0.586 + 0.131%!
0.888 + 0.019

Training Model
Internal (SFU)
External (OHSU)
Federated learning
Internal (OHSU)
External (SFU)
Federated learning

Set
SFU
OHSU

Testing
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to all potential future institutions, and further clarification
regarding the criteria for IRB approval is needed for each
participant institution. Because federated learning is rela-
tively new, no precedent exists, and we expect that when
federated learning frameworks become standardized, the
IRB approval process will be more streamlined.

Our study explored the application of federated learning
to increase the effective dataset size that often comes with
the relatively niche explorations in emerging techniques like
vessel segmentation or disease classification on OCTA and
OCT structural en face images. Federated learning could
facilitate collaboration between groups investigating rare
diseases where open-sourced publicly available datasets are
limited, and images are locked within each institution.
Although value exists in using federated learning to improve
the generalizability of tasks with widely available datasets
such as fundus photography, we focused on the use-case of
federated learning that facilitates multi-institutional collab-
orative studies toward more niche research topics.

To evaluate the performance of this framework for
microvasculature segmentation, we simulated its perfor-
mance on 4 datasets from 4 separate imaging devices,
consisting of fields of view ranging from 2 x 2 to 6 x 6-
mm. The resulting federated model achieved minor de-
creases in accuracy and DSC compared with an internal
model (a model trained and tested on data from 1 source),
showing that a model can converge despite training in a
decentralized manner, although a tradeoff exists between
accuracy and generalizability, as shown in Tables 3 and 4.
The federated model also achieved similar performance as
models trained on centralized datasets, where multiple
configurations were tested: combining all training images
naively and randomly sampling an equal number of
images from each dataset. The federated model was also
compared with the sequential training method, providing
better performance on the first 3 individual datasets in the
sequence because of its bias toward the most recently seen
fourth dataset. It was also observed that the difference in
DSC (in Table 4) for both models trained on randomly
sampled combined datasets varied by a maximum of 0.4%
for each test set. This suggests that increasing the
diversity of examples by adding images from additional
imaging sources (through combining the datasets or
federated learning) benefits the overall model more than
simply expanding a pre-existing dataset.

The federated learning framework was subsequently
investigated for the application of RDR classification using
OCTA and OCT data from different institutions, using
different instruments. Federated learning performance was
comparable with an internal model, with both obtaining
significantly higher performance compared with external
models when evaluated on the test sets from SFU and
OHSU. Further analysis on eyes stratified into the original 5
severities was conducted to provide more transparency and
insight into the true performance of the model tested on a
small dataset. Notably, Table 6 suggests that the
classification performance near the decision boundary is
lower than the classification performance of eyes on the
extreme ends of the DR severity spectrum. Figures 6 and
7 graphically show that in an ensembled method of

Simon Fraser University.

Oregon Health and Science University; SFU =

Comparing federated learning with internal and external models for the calculated evaluation metrics: mean values are calculated with 1 standard deviation in parentheses.

*Benjamini-Hochberg—adjusted statistically significant (P < 0.05) difference in means when compared with internal learning models.
"Benjamini-Hochberg—adjusted statistically significant (P < 0.05) difference in means when compared with federated learning models.

OHSU
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Table 6. Performance of Federated Learning on Stratified Diabetic Retinopathy Severities

Testing Set Training Model Normal Mild Moderate Severe Proliferative

SFU Internal (SFU) 0.914 £ 0.090 0.750 + 0.222 0.542 £+ 0.315 0.942 + 0.074 0.962 + 0.077
External (OHSU) 1.000 + 0.000 0911 +£0.135 0.083 £ 0.096' 0.250 £ 0.202% 0.327 + 0.335
Federated learning 0.922 + 0.054 0.750 £+ 0.071 0.750 £+ 0.215 0.846 £ 0.126 0.981 + 0.038

OHSU Internal (OHSU) 0.900 = 0.082 1.000 4 0.000 0.600 =+ 0.365 0.500 = 0.000 0.926 + 0.014
External (SFU) 0.625 + 0.328 0.583 £ 0.500 0.700 + 0.383 0.375 £+ 0.479 0.561 £+ 0.376
Federated learning 0.913 £ 0.048 1.000 £ 0.000 0.400 + 0.000 0.500 + 0.408 0.953 £ 0.014

OHSU = Oregon Health and Science University; SFU = Simon Fraser University.
Comparing federated learning to external and internal model accuracies at the institution-specific diabetic retinopathy severity stages: mean values are

calculated with 1 standard deviation in parentheses.

*Benjamini-Hochberg—adjusted statistically significant (P < 0.05) difference in means when compared with federated learning models.
"Benjamini-Hochberg—adjusted statistically significant (P < 0.05) difference in means when compared with internal learning models.

aggregating the cross-validation folds, the federated learning
model was able to correctly classify 2 additional eyes with
moderate DR and 1 eye with mild DR in the SFU dataset
when compared with a model trained with SFU data.
However, the federated learning model misclassified 1 more
eye with moderate DR in the OHSU dataset when compared
with a model trained on OHSU data.

An interesting observation from this study is that the
threshold for classification may retain biases of participating
institutions and is an important hyperparameter to consider.
Our methods allow us to obtain a threshold during training,
but when testing on an external dataset from an institution
unaffiliated with our training process, the optimal threshold
becomes an unknown factor. Optimal thresholds of the
federated learning model for the OHSU data ranged from
0.80 to 0.85, whereas classification on SFU data was opti-
mized using thresholds ranging from 0.18 to 0.26. The
optimal thresholds seemingly diverge, and the histograms in
Figures 4 and 5 suggest that thresholding has a greater
impact on eyes with mild and moderate DR that lie near
the decision boundary. As shown in Figures 4 and 5, a
portion of eyes would be misclassified if the threshold
value was set to 0.5. This suggests that the federated
learning model still retains the domain differences of the
data from each institution. Threshold tuning from the
receiver operating characteristic curve is effective when
calculated during the training of data from a homogeneous
domain; however, this is not possible in a scenario such
as federated learning. Therefore, when considering future
deployment of federated learning models, domain trends
should be discussed, with site harmonization (the
adaptation of domain information across participating
institutions) potentially allowing for the calculation of a
single optimized threshold value. In future work, the effect
of site harmonization should be investigated to determine
whether the increase in generalization of federated
learning models is comparable with models trained on 1
large dataset in disease severity classification.

The results outlined for the segmentation and classifica-
tion problems suggest that all participants benefit from
federated learning when evaluated on data from the other
domain and resulted in a model superior to those trained and
tested at different institutions. We speculate that the largest

benefit is to the participating institutions with fewer data
(assuming that the data are similar). As demonstrated by the
results of the microvasculature segmentation experiment
shown in Tables 3 and 4, the performance of the models
trained through the federated learning framework was
relatively comparable with the internal models of the silos
with fewer data (SFU prototype, Optovue, Angioplex).
Conversely, on the 6 x 6-mm PLEX Elite dataset, which
has a larger number of images compared with other silos,
the federated learning models performed worse than the
internal models. This warrants further investigations toward
the effect that data distribution and imbalanced datasets
have on federated learning. In both experiments, with the
exception of microvasculature segmentation for the 6 x 6-
mm PLEX Elite dataset, the federated learning framework
facilitated the training of a model that is capable of gener-
alizing to multiple datasets with performance comparable
with that of internal models. We speculate that the federated
models trained on a more diverse pool of data will result in
better performance on images from an unseen source.
However, one area that merits further exploration is how
robust each model would perform on data acquired by in-
struments from the same manufacturer as in Tables 1 and 2,
but at different institutions with different imaging protocols.
If resources are available, this can be used in conjunction
with a filter bank implementation, where individual deep
neural network models are specifically trained to analyze
images from only 1 image source and are shared among
collaborators using this brand of instrument. This seems to
be the most appropriate solution for a set of clients with a
large variance in their respective datasets; however, we
expect this approach to achieve lower performance on
new and unseen data when compared with federated
learning. An alternative approach is to use the federated
learning model as a starting point for transfer learning,
allowing each institution to tailor the model to their data,
extending on the methods presented previously.””
Federated learning can be used to improve generaliz-
ability through the inclusion of diverse data from different
institutions. We anticipate that a predetermined threshold
could be used for an unseen dataset that is similar to one of
the participating institutions. However, if the domain dif-
ference is large between the external data and the data in the
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Figure 4. Histograms showing representations of model output probability distributions on Simon Fraser University (SFU) data showing the number of images
(y-axes) with the corresponding probability score for referable diabetic retinopathy (RDR; x-axes): non-RDR images (left column) and RDR images (right
column). Further 5-stage severity stratification is distinguished by the different shades within each subgroup. PDR = proliferative diabetic retinopathy.

federation, the issue becomes more challenging to address.
Inference on a completely unseen dataset is challenging for
any deep learning framework, and domain adaptation
methods should be explored to improve the generalizability.

Similar to traditional deep learning, a limitation of
federated learning is the quantity and diversity of the
training data. For the microvasculature segmentation
experiment, the PLEX Elite dataset (shown in Table [)
contained significantly more images than the other 3
datasets, resulting in 1 client iterating over more steps per
epoch during training. However, when aggregating the
client models, each was weighted equally during

averaging. This was done to ensure that the federated
model does not bias toward a single data source, despite
the data imbalance. A potential solution to this is to
perform additional augmentation on the smaller datasets;
however, because each client model is aggregated into a
global model, the benefits may be minimal. Similarly, for
the RDR classification application, the overall class
distributions in the data corpus directly correlate to model
generalizability and should be discussed by all
participants before beginning training. Upsampling classes
with fewer images through additional augmentations
provides a suitable solution; however, acquiring more
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Figure 5. Histograms showing representations of model output probability distributions on Oregon Health and Science University (OHSU) data showing
the number of images (y-axes) with the corresponding probability of referable diabetic retinopathy (RDR; x-axes): non-RDR images (left column) and RDR
images (right images). Further 5-stage severity stratification is distinguished by the different shades within each subgroup. PDR = proliferative diabetic

retinopathy.

training examples through labeled data would be
significantly more beneficial. The collaborative and
synchronous approach of cross-silo federated learning
created issues throughout the training process. Errors
resulting from network connection and other technical dif-
ficulties in connecting with the drop-off folder or training
the model delays training until resolved. For example, 4-
fold cross-validated training from an individual institution
was completed in approximately 12 hours, whereas the
same training using the federated learning framework
required upward of 90 hours. As the number of

10

participating institutions increase, these effects are magni-
fied. The collaboration resulting from federated learning
allows for the pooling of expertise and clinician knowledge,
which is especially important in cases where data are
especially limited, which include rare diseases or newest-
generation technologies, including adaptive optics.

As with any attempts of deep learning, several risks exist
if one has an adversarial motive. Specifically, with federated
learning, a malicious “collaborator” may provide poor-
quality images or may alter the processing pipeline to
attack the training process. This study is grounded in
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collaboration and the attainment of a common goal within
our federation. We believe that selecting quality collabora-
tors is fundamental toward any use of frameworks where the
training and testing data are not shared. Even under the
assumption of no malintent, corrupted data have the po-
tential to affect the federated learning model being trained
negatively, which we mitigate through a framework-wide
validation step before averaging. Ongoing research is
addressing attackers with access to model parameters (white
box) and with no access to models or parameters (black
box),”* where adversaries are motivated to disrupt the
training process through white-box and black-box attacks.
Aside from federated learning, attacks exist that attempt to
gain insight on private training data where so-called dummy
gradients can be introduced from a client to leak private
training data.”> Presently, this applies only to image
classification problems with low batch sizes and low-
resolution images (up to 64 x 64), which is unsuitable for
the high-resolution images seen in medical data and the
substantially higher number of parameters seen in image
segmentation architectures. Whereas federated learning
holds great potential for collaboration, the onus is still on the
participants to ensure good-spirited collaboration and data
quality. However, developing sophisticated safeguards
against these attacks is not a part of the collaborative in-
tentions of our research and is beyond the scope of this
study.

Although many options exist for distributed training
over multiple graphics processing units, those options

provide only a method to speed up neural network
convergence, without providing measures for preserving
data grivacy. At the time of writing this report, NVIDIA
Clara®’ had presented another viable option for
implementing federated learning that was developed
concurrently with our framework. Additional frameworks
were considered for our applications such as Tensorflow
Federated, as well as PySyft.”> However, the simplicity
of our cross-silo federated learning framework allowed
for independent development. Our federated learning
framework was intended to facilitate collaboration and
exploration of approaches for federated learning, but may
differ from other open-sourced frameworks in areas such
as scalability. Examples of potential further development
of our federated learning framework include the automa-
tion of the folder creation through the ownCloud API and
improving the efficiency of the aggregator by incorpo-
rating multithreading to allow the aggregator to upload and
download to and from the ownCloud folders more
efficiently.

In conclusion, we designed and developed a framework
for multiple participants to conduct federated learning on a
decentralized data corpus. The framework is implemented
over an ownCloud instance; however, adaptation to other
APIs can be added easily. Through our results, we showed
that models trained with federated learning perform at a
comparable level as internal models, presenting a viable
method for increasing available data while maintaining pa-
tient privacy.
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