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A B S T R A C T

In the current study, we planned to predict the optimal gene functions for osteosarcoma (OS) by integrating
network-based method with guilt by association (GBA) principle (called as network-based gene function
inference approach) based on gene ontology (GO) data and gene expression profile. To begin with, differentially
expressed genes (DEGs) were extracted using linear models for microarray data (LIMMA) package. Then,
construction of differential co-expression network (DCN) relying on DEGs was implemented, and sub-DCN was
identified using Spearman correlation coefficient (SCC). Subsequently, GO annotations for OS were collected
according to known confirmed database and DEGs. Ultimately, gene functions were predicted by means of GBA
principle based on the area under the curve (AUC) for GO terms, and we determined GO terms with AUC>0.7
as the optimal gene functions for OS. Totally, 123 DEGs and 137 GO terms were obtained for further analysis. A
DCN was constructed, which included 123 DEGs and 7503 interactions. A total of 105 GO terms were identified
when the threshold was set as AUC>0.5, which had a good classification performance. Among these 105 GO
terms, 2 functions had the AUC>0.7 and were determined as the optimal gene functions including angiogenesis
(AUC =0.767) and regulation of immune system process (AUC =0.710). These gene functions appear to have
potential for early detection and clinical treatment of OS in the future.

1. Introduction

Osteosarcoma (OS) is the most commonly diagnosed histological
form of primary bone tumor with high morbidity, and it is mainly
prevalent in teenagers and young people [1]. Pain is the most common
early symptom of OS and can cause fracture of the affected bone.
Currently, multiple therapeutic strategies for OS, for example, surgical
resection, chemotherapy and radiotherapy, have significantly improved
the prognosis of patients with OS [2]. However, the overall survival
rates rarely exceed 60–65% [3]. Moreover, a significant portion of OS
patients develop metastasis even after curative resection of the primary
tumor. There is still a long way to go for the management of OS [4].
Therefore, with an attempt to continue to make progress in the
diagnosis and management of OS, identification of sensitive and
specific minimally invasive signatures is one of the most important
challenges.

Genetic aberration has been demonstrated as an important factor
that may play significant roles in OS pathogenesis. For instance, Zhu
and colleagues [5] have reported that SOX9 is over-expressed in OS
tissues compared with controls. Moreover, it is indicated that FOXM1 is
up-regulated, which suggests FOXM1 might be an valuable bio-signa-
ture for OS [6]. Nevertheless, these genes do not treat the OS efficiently

or selectively, because molecules frequently don’t work individually,
yet co-operate with the other genes. Additionally, genetic factors can
disturb the protein levels, thereby in turn perturb the molecule
interactions. Network is characterized by the complicated interactions
and the complex interwoven relationships that control cellular func-
tions [7]. Hence, understanding the networks will be beneficial to
provide new insights to explore the molecular pathogenesis of OS. The
concept of differential co-expression network (DCN) has been employed
to the studies of OS, due to statistical confidence of single connections,
overlap with protein interaction, and mathematical convenience [8]. In
addition, improving our knowledge of gene function in uncharacterized
genes is a major task [9]. Remarkably, gene interactions can be applied
to deduce functional relationships based on a principle known as “guilt
by association” (GBA) [10]. GBA has been indicated to predict gene
function in various types of biological networks, for example, gene co-
expression network [11].

Thus, in our work, we integrated network-based method with GBA
principle (called as network-based gene function inference approach) to
further identify the optimal gene functions for OS using gene ontology
(GO) data and gene expression profile. To begin with, differentially
expressed genes (DEGs) were extracted using linear models for micro-
array data (LIMMA) package. Then, construction of DCN based on DEGs
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was implemented, and sub-DCN was identified using Spearman correla-
tion coefficient (SCC). Subsequently, GO annotations for OS were
collected according to known confirmed database and DEGs.
Ultimately, gene functions were predicted by means of GBA principle
based on the area under the curve (AUC) for GO terms, and we
determined GO terms with AUC>0.7 as the optimal gene functions
for OS. These gene functions appear to have potential for early
detection and clinical treatment of OS in the future.

2. Materials and methods

2.1. Gene expression profile and data pre-treatment

OS-related microarray data (accession number E-GEOD-36001) [12]
were downloaded from ArrayExpress database based on the platform of
A-MEXP-930-Illumina Human-6 v2 Expression BeadChip. There were
19 OS samples and 6 normal samples in E-GEOD-36001. Prior to
analysis, we firstly pre-processed the microarray profile of E-GEOD-
36001. Specifically, robust multi-array average (RMA) was used to
perform background correction [13]. Quartile algorithm was utilized to
implement quartile normalization [14], following by perfect match
(PM)/mismatch (MM) correction using microarray suite (MAS) 5.0
package [15]. Ultimately, the data on probe levels were converted into
gene symbols relying on annotate package [16]. Overall, 19,027 genes
were reserved for further exploitation.

2.2. Identification of DEGs

The LIMMA package [17] in R language and an empirical Bayes
framework were applied in our analysis to achieve DEGs between OS
and normal samples. A t-test was conducted, and the multiple test was
applied to correct the raw P values using the Benjamini & Hochberg
[18] method based on false discovery rate (FDR). DEGs were extracted
on the basis of FDR<0.05 and |log fold change (FC)| ≥2.

2.3. Generation of DCN

Cytoscape (http://cytoscape.org/) is an open source software which
integrates bio-molecular interactions with high-throughput expression
data as well as other molecular states into a unified conceptual network
[19]. Therefore, we inputted DEGs into the Cytoscape software to
visualize the DCN. Furthermore, with the goal of assessing the co-
expressed strength of each interaction in the DCN, SCC was used in our
study. As we all know, SCC is used to measure the co-expression
probability of two variables by assessing the strength of association of
two co-expressed variables and it ranges from −1 to 1 inclusive
[20,21]. The SCC absolute value of one interaction was determined as
the weight value of the corresponding edge, and the higher the weight
value was, the more relevant the interaction was related to the disease.
Thus, we selected the edges with weight values higher than 0.8 to
construct the sub-DCN. In order to display the sub-DCN more vividly,
Cytoscape software was applied.

2.4. GO annotation for DEGs

GO annotation has been broadly utilized as functional enrichment
studies for large-scale genes [22]. In our study, human GO annotations
comprised of 19,003 GO terms covering 18,402 genes were retrieved
from the GO consortium (http://geneontology.org/). In an attempt to
obtain stable performance, we filtered for the GO annotations on gene
size such that each remaining GO term had associated genes> 20, and
a total of 1313 GO terms were left to be used in our analysis. Next, DEGs
identified above were mapped to the 1313 GO annotations. Finally, the
GO slim set was obtained, consisting of 123 DEGs and 137 GO terms.

2.5. Identifying gene functions based on “GBA” prediction

Gene networks have been widely used in gene function prediction
algorithms, many based on complex extensions of the “GBA” principle.
As demonstrated here, GBA prediction approach was utilized to predict
significant gene functions in OS progression. For GBA method, we used
three-fold cross-validation to extract a ranked list scoring genes in DCN
as to how they belonged in the known GO terms. The sum of co-
expression values between the training set (co-expression) and the
candidate gene was divided by the sum of co-expression values between
the genes outside the training set and the candidate gene to analyze
degree of candidacy. In detail, for each gene i in the DCN, all other
neighbored genes of gene i were mapped to each GO category K, and
the multifunctionality (MF) score for each gene i within the K-GO term
based on the following equation:

∑MF gene 1 N N( ) = / *i
i gene GO

in out
∈A K

K K

In this formula, Nini
stood for the number of genes in GO term i, and

Nouti
denoted the count of genes outside GO category i.

Then, based on support vector machine (SVM), AUC for each GO
group K was calculated, and the mean AUC across all GO terms was
determined. Thus, the AUC scores were ordered from the highest to the
lowest, the ranks of GO terms were ordered oppositely. The AUC of 0.5
stands for classification at chance levels, while the AUC of 1.0 denotes a
perfect classification. In the literature about the gene function predic-
tion, the AUC greater than 0.7 are regarded good [23]. In our study, GO
terms with AUC>0.7 were identified and regarded as the optimal gene
functions.

3. Results

3.1. DCN construction

Before DCN generation, we firstly identified DEGs between OS and
normal samples using t-test. Based on FDR<0.05 and |log FC=≥ 2, a
total of 123 DEGs were identified. The top 20 DEGs were shown in
Table 1. The most significant DEGs were HOXB7, RHPN2, SRGN,
FOXF2, and PLVAP.

In order to further explore the biological activities of DEGs, we
constructed a DCN using the above-identified 123 DEGs. In this DCN,
there were 123 nodes and 7503 interactions. Under the DCN, node
degree was more than just an statistic about a gene, and significantly,

Table 1
List of the top 20 differentially expressed genes (DEGs).

Genes |log (fold change)| False discovery rate (FDR)

HOXB7 2.085898 1.33E−07
RHPN2 2.147406 6.32E−07
SRGN 5.174341 3.34E−06
FOXF2 2.318869 4.51E−06
PLVAP 3.404251 1.98E−05
COX7A1 2.988735 5.41E−05
APOE 3.399852 6.21E−05
SPINT2 2.301193 6.65E−05
LXN 2.523381 8.93E−05
TNFRSF1B 2.427194 1.10E−04
VAMP8 3.494650 1.61E−04
CBS 2.868625 1.76E−04
HCLS1 2.686705 1.81E−04
PHGDH 2.362045 2.15E−04
GIMAP7 2.258177 2.74E−04
C1QC 2.885076 2.76E−04
HBB 5.191561 2.86E−04
C1QA 3.521570 2.93E−04
TYROBP 3.511873 3.17E−04
C1QB 3.184835 3.17E−04
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degree could explain the structures of the network. Then, topological
degree for each node was computed through summing up the nodes it
linked directly, and the degree distribution for each node was shown in
Fig. 1A. We found that the ranges of degrees for a large number of DEGs
(about 79%) was from 59 to 74, and genes (TNFRSF1B and HLA-E) had
the highest degrees of 78. In addition to degree, the interacted strength
was an index to estimate the interactions in the DCN. Thus, we used
SCC to assign a weight value to each edge, and the specific information
were demonstrated in Fig. 1B where a square stood for an edge in the
DCN. The deeper the color was, the larger the weight value was.
Significantly, among the interactions, there was a good liner correlation
which indicated that the DCN had a good network scale property. Then,
we selected the interactions with weight values> 0.8 to establish the
sub-DCN which was revealed in Fig. 2. In the sub-DCN, there were 46
nodes and 438 interactions. The degree distribution was shown in

Table 2. Interestingly, in this sub-DCN, TNFRSF1B also had the highest
degree (degree=33).

3.2. Identifying gene functions using GBA prediction

In our study, the MF score was first calculated for each gene in a GO
term, which influenced the counting membership in a given GO term by
how much the gene contributed to the corresponding GO function. The
higher the MF score of a gene was, the greater extent to which it should
be a good candidate for owing any biological process. Consequently, a
single ranked list of genes that best captured candidacy across all
functions was equivalent to a list of genes sorted by MF score.
Intuitively, if one was forced to choose a single ranking, the gene with
the most GO annotations could be predicted as being in all GO
categories. This was because if one gene was enriched in 100 GO terms

Fig. 1. Differentially co-expressed network (DCN) construction for osteosarcoma (OS) based on differentially expressed genes (DEGs). A. Degree distribution of genes in the DCN. B.
Weights distribution of edges in the DCN. Heatmap clarified weight distribution for each interaction.

Fig. 2. Sub-DCN using the cut-off threshold of weight value> 0.8. In the sub-DCN, there
were 46 nodes and 438 interactions.

Table 2
Degree distribution of 46 genes in the sub-differential co-expression network (DCN).

Genes Degree Genes Degree

TNFRSF1B 33 HBD 20
ZFP36 32 STOM 19
HLA-E 31 DOCK2 18
ARHGDIB 28 HLA-DMA 17
HLA-DPA1 28 APOE 17
VAMP8 26 LAPTM5 17
FABP4 24 ICAM2 17
GIMAP7 24 FCGRT 16
CD74 24 ACP5 15
PLEK 23 APOD 15
COMP 23 COX7A1 15
HCLS1 23 HLA-DMB 15
PLAC9 23 CD93 14
JCHAIN 23 ATP8B4 14
SERPINA3 23 FAM46C 14
C2orf40 22 CD14 14
SRGN 22 SPP1 13
CTSK 21 HLA-DRA 12
CSF1R 21 FCER1G 12
CAT 21 ALOX5AP 12
ADIRF 21 CKM 8
HCST 21 VWF 4
C1QC 21
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(high MF score), and another was in only one (low MF score), by
placing the former gene ahead of the latter gene in a fixed ranking, we
made a correct prediction more often across all GO categories. Thus,
with the goal of classifying OS patients and normal controls, 3-fold
cross-validation was utilized to compute the AUC for GO functions
based on MF scores.

The AUC distribution for GO terms was shown in Fig. 3. The AUC for
the majority of functional terms ranged from 0.4 to 0.7, especially from
0.5 to 0.65. AUC was used as a predictor to select significant GO terms,
so, a total of 105 GO terms were identified based on AUC>0.5.
Moreover, among these 105 GO terms, 2 GO terms had the AUC>0.7
and were determined as the optimal gene functions including angiogen-
esis (AUC =0.767) and regulation of immune system process (AUC
=0.710).

4. Discussion

Compared to gene focused researches, gene set and gene signature
focused functional investigations appear much rewarding in under-
standing functional insights [24], and integrative functional genomic
analysis of tumors promotes the understanding of the molecular
mechanisms of cancers [25]. Network modeling on the basis of co-
expression pattern analysis has been widely applied in a variety of
cancers to understand the biology processes of cancers, and to obtain
clinical insights [26]. Recently, a large amount of techniques have been
created to extend GBA to indirect connections to predict gene functions
[27,28]. Gene interactions can be applied to deduce functional relation-
ships based on a principle known as GBA [10]. The GBA principle forms
the basis for most gene function prediction methods, which typically
use relational information (e.g. interactions) to predict new gene
membership in gene function categories [29]. However, combination
of gene function prediction and network analysis are sparse. Generally
speaking, network based-GBA analysis method can make exhaustively
examining issues faster and easier than the simple GBA approach. Thus,
in this work, we combined GBA principle with DCN-based analysis to
further explore both direct and indirect optimal gene functions for OS
on the basis of GO information as well as gene expression data. Finally,
a total of 105 GO terms were identified based on AUC>0.5, which had
a good classification ability. Moreover, 2 out of 105 GO terms had the
AUC>0.7 and were determined as the optimal gene functions includ-
ing angiogenesis and regulation of immune system process.

The ability of tumors to progress to more malignant phenotypes
depends on tumor microenvironment. Blood capillaries, made up of

endothelial cells, are usually static under physiological conditions but
are induced to proliferate by direct exposure to angiogenic factors, for
instance, vascular endothelial growth factor (VEGF) [30]. The prolif-
eration and migration of endothelial cells play an important role in
tumor angiogenesis [31]. As we all know, angiogenesis, development of
new blood vessels from preexisting vascular bed, plays important roles
during tumor growth and metastasis [32]. Significantly, the concept
that malignant neoplasm onset, growth, and invasion rely on angiogen-
esis is broadly recognized and accepted [33,34]. Theoretically, cancer
cells, like normal cells, also need the delivery of oxygen as well as
nutrients through blood vessels to survive and grow. In situ carcinoma,
there seems to be a prolonged dormant period during which the cancer
is not angiogenic, and is restrained in growth [35]. When sufficient
cancer cells have transformed to the angiogenic phenotype from the
quiescent phenotype, neovascularization may initiate, and thus rapid
tumor growth can proceed. Through the literatures, we found that gene
function of ‘angiogenesis’ has already been established to be important
for OS. For example, previous studies have implicated that high
recurrence rate and metastatic potential of OS are connected with high
levels of angiogenesis [36,37]. Moreover, Wang et al. [38] have used
differential co-expression network to find that angiogenesis is closely
related to OS progression and metastasis. Most importantly, suppression
of cancer angiogenesis has been regarded as an attractive strategy for
tumor therapy [39]. Thus, anti-angiogenic therapy might be a con-
sideration for OS patients, with the majority of OS showing high
vascularization [40].

During the tumor occurrence and metastasis, cancer cells can
modulate the immune system of the host to find strategies that enable
them to survive from the immune surveillance [41]. Cancer immunoe-
diting is one of the two major strategies to get away from immune
surveillance [42]. Innate and adaptive immunity appear to contribute
to cancer immunoediting [43]. Previously, lymphocytes and IFNγ have
indicated to prevent tumor immunoediting, thereby preventing the
selection of less immunogenic tumor cells [44]. Indeed, immune cells
(for example, macrophages cells) release soluble agents like chemo-
kines and cytokines promoting the migration and infiltration of
leukocytes that exert important functions in tumor development [45].
OS is frequently infiltrated by immune cells including macrophages and
T cells [46]. Moreover, macrophage migration inhibitory factor is an
proinflammatory cytokine which exerts an crucial function in the
immune system [47]. Macrophage migration inhibitory factor contri-
butes to cell proliferation, survival, and tumor-related angiogenesis
[48,49]. Moreover, Han et al. [50] have suggested that macrophage
migration inhibitory factor can serve as a prognostic marker and a
potential therapeutic target for OS. Interestingly, a link between p53
and IFN system was recently discovered in regulating tumor suppres-
sion and immunity [51]. Abnormalities of p53 gene in OS occur with a
high incidences approaching 50% of all cases [52]. Currently, growing
evidence implicates that the immune system is a fundamental player in
cancer and a key determinant of prognosis and response to therapy
[53,54]. While, understanding the crosstalk between OS cells and the
immune system, and how they drive tumorigenesis is still in its infancy.
Hence, it is urgently needed to develop novel drugs that would
potentiate the immune system in OS patients to act against this disease
by means of immunomodulatory methods.

The current study had several limitations. First, there were limited
clinical samples which might lead to biased estimates. Second, our
analysis was conducted using bioinformatics methods but the conclu-
sions have not been verified by means of any lab technique. Last but not
least, we did not compare the obtained findings using other approaches.
Despite these limitations, our findings had important implications for
the molecular mechanisms underlying OS, yet further experimental
study is still needed to validate our study.

In a nutshell, using network-based method with GBA based on GO
and microarray profile of OS, we extracted 2 optimal gene functions
during OS progression including angiogenesis and regulation of im-

Fig. 3. Gene function prediction performance using guilt by association (GBA). The
histogram of AUCs across all GO terms which can be obtained using a single list
constructed from number of coexpression partners.
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mune system process which might contribute to the successful identi-
fication of therapeutic targets for OS. Further studies might shed novel
insights into the role of the gene functions in the pathophysiology of
OS.
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