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ABSTRACT The JC and BK human polyomaviruses (JCPyV and BKPyV, respectively) establish lifelong persistent infections in
the kidney. In immunosuppressed individuals, JCPyV causes progressive multifocal leukoencephalopathy (PML), a fatal neuro-
degenerative disease, and BKPyV causes polyomavirus-associated nephropathy (PVN). In this study, we compared JCPyV and
BKPyV infections in primary human renal proximal tubule epithelial (HRPTE) cells. JCPyV established a persistent infection,
but BKPyV killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting
viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We
found that infection with both viruses induced interferon production but that interferon-stimulated genes (ISGs) were only acti-
vated in the JCPyV-infected cells. Phosphorylated STAT1 and IRF9, which are responsible for inducing ISGs, translocated to the
nucleus of JCPyV-infected cells but did not in BKPyV-infected cells. In BKPyV-infected cells, two critical suppressors of cytokine
signaling, SOCS3 and SOCS1, were induced. Infection with BKPyV but not JCPyV caused reorganization of PML bodies that are
associated with inactivating antiviral responses. Blockade of the interferon receptor and neutralization of soluble interferon al-
pha (IFN-�) and IFN-� partially alleviated the block to JCPyV infection, leading to enhanced infectivity. Our results show that a
type I IFN response contributes to the establishment of persistent infection by JCPyV in HRPTE cells.

IMPORTANCE The human polyomaviruses JCPyV and BKPyV both establish lifelong persistent infection in the kidneys. In im-
munosuppressed patients, BKPyV causes significant pathology in the kidney, but JCPyV is only rarely associated with disease in
this organ. The reasons behind this striking difference in kidney pathology are unknown. In this study, we show that infection of
primary human renal tubule epithelial cells with JCPyV and BKPyV results in divergent innate immune responses that control
JCPyV but fail to control BKPyV. This is the first study that directly compares JCPyV and BKPyV infection in vitro in the same
cell type they naturally infect, and the significant differences that have been uncovered could in part explain the distinct disease
outcomes.
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JC and BK polyomaviruses (JCPyV and BKPyV, respectively) are
members of the human Polyomaviridae family. JCPyV and BKPyV

were isolated in 1971, but 11 additional human polyomaviruses
have been discovered in the last decade (1–12). JCPyV is the etiolog-
ical agent of progressive multifocal leukoencephalopathy (PML), a
fatal neurodegenerative disease, and BKPyV causes polyomavirus-
associated nephropathy (PyVAN) and hemorrhagic cystitis (HC) (1,
13). JCPyV and BKPyV are common human pathogens, for which 50
to 60% and 80% of healthy individuals, respectively, are seropositive
(14–16). Primary infection with JCPyV and BKPyV occurs early dur-
ing childhood, and it is most often asymptomatic unless there is a
preexisting, immunosuppressive condition (17, 18). JCPyV and
BKPyV both establish lifelong persistent infections in the kidneys.
JCPyV and BKPyV are shed in the urine of 20% and 7%, respectively,
of healthy subjects, and viral proteins have been found in renal tubule
epithelial cells (14, 19–26).

The mechanism by which JCPyV establishes a persistent infec-
tion in the kidney is poorly understood. Only 20% of healthy
individuals shed the virus in the urine, while seropositivity rates
are 50 to 60% (14). In immunosuppressed adults, JCPyV can traf-
fic from sites of persistence to the central nervous system (CNS),
where it causes the destruction of oligodendrocytes, ultimately
leading to PML (1, 27, 28). The incidence of PML is about 3 to 5%
in individuals with HIV/AIDS (29). Additionally, PML has been
reported in patients undergoing immunomodulatory therapies
for immune-mediated diseases such as multiple sclerosis (30–32).
There are no specific treatments for this rapidly fatal disease.

In contrast, upon immunosuppression BKPyV replicates vig-
orously in the reno-urinary tract, giving rise to PyVAN in kidney
transplant recipients and to hemorrhagic cystitis (HC) in bone
marrow transplant patients (12, 13). PyVAN can cause graft dys-
function and premature graft loss in �50% of cases where BKPyV
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is actively replicating in the organ (33–35). Although JCPyV also
persists in the kidney, few cases of nephropathy have been attrib-
uted to the virus during immunosuppression (18, 24, 36, 37).
Recently, in a cohort of 100 kidney transplant recipients, JCPyV-
associated nephropathy was reported to be as low as 0.9%, and
overall most diagnosed individuals have normal renal function
with no subsequent graft loss (38, 39). Overall, these findings sug-
gest that JCPyV-associated nephropathy is less severe and is asso-
ciated with a better prognosis. The reasons behind the striking
differences between JCPyV- and BKPyV-induced nephropathy
are unknown.

JCPyV and BKPyV exist in nature in different variants that can
be classified by the sequence of the noncoding control region
(NCCR) and by coding region polymorphisms (40–43). Based on
their NCCR sequence, viral variants of JCPyV and BKPyV are
referred to as archetype and rearranged forms (29, 42). The trans-
mitted form of JCPyV and BKPyV is believed to be the archetype
variant because it is the most prevalent form of the virus isolated
from the urine of healthy individuals and from sewage waters (42,
44). Less often, viral variants with different levels of rearrange-
ments of the NCCR have been isolated from urine samples of
healthy individuals: therefore, it cannot be excluded that these
forms are also transmitted (14, 43, 45, 46). It has been hypothe-
sized that the rearranged variants are derived from the archetype
isolate during the lifelong infection of the host at the sites of per-
sistence (29, 47, 48). The rearranged variants have been shown to
have a replicative advantage in vitro over the non-rearranged ar-
chetype, and most in vitro studies have been carried out using
rearranged forms of JCPyV or BKPyV (45, 49, 50). The JCPyV
archetype variant does not replicate in human primary kidney
cells, and archetype BKPyV produces undetectable levels of large T
antigen (TAg) and very little, if any, viral DNA replication in the
same cells (51–53). While JCPyV viral variants isolated from PML
brains have profound rearrangements in the NCCR, data regard-
ing the association between BKPyV rearranged variants and dis-
ease is not as well defined (29). Both archetype and rearranged
forms of BKPyV have been isolated from biopsy specimens of
kidneys with BKPyV-associated nephropathy or HC (43, 54, 55).

Immune surveillance is important for controlling JCPyV or
BKPyV infection in healthy individuals, as immunosuppression
places individuals at risk for PML or PyVAN/HC. However, the
mechanism by which the immune system controls human polyo-
maviruses at their sites of persistence is not well described. The
innate immune system is the primary line of defense against mi-
crobial pathogens, and it is also necessary to prompt an efficient
adaptive immune response. Interferons (IFNs) are the primary
antiviral cytokines, and they play an important role in the control
of RNA and DNA viruses (56–59). IFNs are divided into three
families, types I, II, and III, of which the first two are the most
studied. The type I IFN family includes IFN-� and IFN-�, and
they can be produced by immune and nonimmune cells, while
IFN type II, which consists of IFN-�, is predominantly expressed
by natural killer (NK) cells and T cells (60). IFN-� and IFN-�
production occurs in response to the activation of pattern recog-
nition receptors (PRRs) by microbial products, and when they are
released from cells, they bind to the interferon alpha receptor
(IFNAR) on infected cells or uninfected cells (57). This interaction
activates a signaling cascade leading to the phosphorylation of
signal transducer and activator of transcription (STAT) mole-
cules, which form multimeric complexes and translocate to the

nucleus to induce interferon-stimulated genes (ISGs) (61). ISGs
block the viral life cycle at different stages, including viral entry,
replication, assembly, and egress (59, 62). Previous studies have
shown that mouse embryonic fibroblasts (MEFs) stably express-
ing simian virus 40 (SV40), JCPyV, or BKPyV large T antigens
(TAg) in the absence of viral infection induce ISGs and that the
antiviral state requires STAT1 (63, 64). The antiviral effect of
IFN-� and IFN-� made ISGs likely candidates for controlling the
mechanism of JCPyV persistence and inhibition of JCPyV-
induced nephropathy.

The goal of our study was to directly compare JCPyV and
BKPyV infections in primary human renal epithelial cells and to
investigate specific mechanisms that could favor persistence or
disease. We found that JCPyV infection of primary human renal
epithelial cells remained constant and low over 3 weeks, while
BKPyV spread efficiently, killing the cells by day 15. We used next-
generation sequencing (NGS) to compare biological pathways dif-
ferentially activated in JCPyV- versus BKPyV-infected cells and
found that JCPyV significantly induced ISGs. Phosphorylated
STAT1 (pSTAT1) and interferon regulatory factor 9 (IRF9) were
found in the nucleus of JCPyV-infected cells, and the block of
interferon alpha/beta receptor signaling partially increased JCPyV
infectivity. The marked difference in cell responses between the
two viruses was not due the inability of BKPyV to stimulate IFN
production. In fact, both JCPyV- and BKPyV-infected cells re-
leased IFN-�, but BKPyV-infected cells did not activate the anti-
viral response mediated by the cytokine, as confirmed by the lack
of pSTAT1 in the nucleus of BKPyV-infected cells. It is likely that
BKPyV actively interferes with the signaling cascade mediated by
type I interferon. Our data showing that BKPyV but not JCPyV
causes a fundamental rearrangement of PML nuclear bodies
(NBs) support this hypothesis.

RESULTS
JCPyV establishes a low-level persistent infection in HRPTE
cells. Human renal proximal tubule epithelial (HRPTE) cells were
challenged with JCPyV and BKPyV, and the infection was moni-
tored by immunofluorescence staining of large T antigen (TAg)
and major structural protein VP1. At 2 days postinfection (dpi),
more cells expressed JCPyV TAg than BKPyV TAg, but by 3 dpi,
the numbers of JCPyV and BKPyV VP1-expressing cells were sim-
ilar (Fig. 1A). When expressed as the percentage of TAg-positive
cells that went on to make VP1, almost 100% of the BKPyV-
infected cells also made VP1, while a much smaller percentage of
JCPyV-infected cells progressed to late viral protein production
(Fig. 1B). As infection progressed, we observed that BKPyV killed
all of the cells by day 15, while JCPyV maintained a low-level
persistent infection over the course of the experiment (Fig. 2A).
This was specific to HRPTE cells as JCPyV at the same multiplicity
of infection (MOI) grew vigorously in human glial cells (SVGA)
(Fig. 2A, inset). As expected, the amount of BKPyV released into
the cell supernatant at 12 dpi was significantly larger than the
amount of JCPyV released at 18 dpi (Fig. 2B). Infection of HRPTE
cells with a higher JCPyV MOI did not affect the persistent phe-
notype observed (data not shown).

ISGs are upregulated in JCPyV-infected HRPTE cells com-
pared to BKPyV-infected cells starting at 6 days postinfection.
To begin to understand the host cell factors involved in restricting
JCPyV infection, we profiled the transcriptomes of JCPyV- and
BKPyV-infected HRPTE cells as well as uninfected cells at 3, 6, and
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9 days postinfection. We first compared JCPyV- to BKPyV-
infected samples and identified a total of 108 genes that were dif-
ferentially expressed on day 3 postinfection, 623 genes that were
differentially expressed on day 6, and 8,350 genes that were differ-
entially expressed on day 9. In the JCPyV-infected cells, we re-
corded an exponential increase in the number of interferon-
stimulated genes: 11 genes at 3 dpi, 142 at 6 dpi, and 658 at 9 dpi
(obtained using the Interferome tool). The list of differentially
expressed genes at each time point was further analyzed using a
web-based tool called “Enrichr” that provides visualization sum-
maries of biological functions from the gene lists provided. We
concentrated our analysis on biological pathways detected by the
Reactome tool set. At 6 and 9 dpi, the most significantly enriched
pathways were related to the innate immune system and to an
interferon response (ISGs) (Fig. 3). In JCPyV-infected cells at 6
dpi, 17 genes were assigned to the “interferon alpha/beta signal-

ing” pathway, 23 genes to the “interferon signaling” pathway, and
25 to the “cytokine in the immune system” pathway (Fig. 3A). By
9 dpi, the number of genes assigned to each group was signifi-
cantly increased (Fig. 3D). Enrichr uses the Fisher exact test to
calculate the statistical significance of overlap between the input
list and the gene sets in the Reactome library. We plotted the
�log10 value (P value) calculated for each pathway at 6 and 9 dpi
(Fig. 3B and E). Additionally, we used STRING to visualize known
and predicted protein interactions among the genes included in
the “cytokine signaling in the immune system” group at 6 and 9
dpi (Fig. 3C and F). BKPyV-infected cells showed a significant
overexpression of IFN-� and IFN-� subtypes as well as IFN-� at 9
dpi. SOCS3 and SOCS1 were upregulated at 9 dpi, with SOCS3
being significantly overexpressed also at 6 dpi in the BKPyV-
infected cells. SOCS1 and -3 are well-known suppressors of cyto-
kine signaling, and among other functions, they block the induc-
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FIG 1 JCPyV productively infects HRPTE cells. HRPTE cells were infected with JCPyV or BKPyV, fixed at 2 or 3 days postinfection (dpi), and stained for TAg
or VP1, respectively. Cells were visualized by fluorescence microscopy, and the number of positive nuclei was assessed at �10 magnification (A). The total
number of cells per visual field was determined using DAPI nuclear staining, and the percentage of TAg- or VP1-positive cells is reported on top of each bar in
panel A. TAg-positive nuclei were set to 100%, and the percentage of VP1-positive nuclei was consequently calculated based on the results presented in panel A
(B). Results represent the average of three independent experiments in triplicates, and error bars represent standard errors (SE).
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tion of ISGs (65). ISG overexpression in BKPyV-infected cells
compared to uninfected cells was limited to a single gene (HERC5)
at 9 dpi and to four genes at 6 dpi (IFI6, IRF7, OAS3, and HERC5)
(see Table S1 in the supplemental material). These genes were also
overexpressed in JCPyV-infected cells, but to a much greater ex-
tent. Interestingly, we found IRF4 upregulated at 6 and 9 dpi and
MX2 only at 9 dpi. These two genes were uniquely found in
BKPyV-infected cells. When we analyzed genes downregulated in
BKPyV-infected cells compared to uninfected cells, we detected
IL6, IFI16, and DTX4 both 6 and 9 days postinfection. Addition-
ally, we found STAT1, JAK2, PML, IFITM2 and -3, ADAR, and
IFIT2 to be downregulated at 9 days postinfection. Our results
showed that JCPyV- but not BKPyV-infected cells are robustly
inducing ISGs starting at day 6 postinfection. Importantly BKPyV,
but not JCPyV, induces SOCS3 and SOCS1 and downregulates
genes involved in the IFN signaling cascade and ISGs. Further-
more, genes involved in the regulation of the cell cycle were the
most significantly upregulated set in both JCPyV- and BKPyV-
infected versus uninfected cells (see Fig. S1 in the supplemental
material). These results confirm the known ability of polyomavi-
ruses to induce DNA replication and cell growth to successfully
complete the viral life cycle (66).

JCPyV- and BKPyV-infected cells produce IFN-�, but JCPyV
is more sensitive to the cytokine. To quantify IFN-� production,
we infected HRPTE cells with JCPyV and BKPyV and performed
enzyme-linked immunosorbent assays (ELISAs) on the superna-
tants collected at 3, 6, and 9 dpi (Table 1). In supernatants of
JCPyV-infected cells, significant amounts of cytokine were de-
tected at 6 and 9 dpi but not at the earlier 3-dpi time point. IFN-�
was detected in the media from BKPyV-infected cells at all three
time points. No significant change in expression was detected be-
tween 24 and 48 h postinfection in either BKPyV- or JCPyV-
infected cells when tested by quantitative PCR (qPCR) (data not
shown). To determine whether pretreatment of cells with small
amounts of IFN-� could reduce JCPyV or BKPyV infection,
HRPTE cells were pretreated with decreasing concentrations of
IFN-� for 6 h, infected with JCPyV or BKPyV, and stained for VP1
at 3 dpi (Fig. 4A and B). Both JCPyV and BKPyV were equally
sensitive to concentrations of IFN-� ranging from 10 to 0.1 IU.
JCPyV remained sensitive to lower concentrations of the cytokine,
resulting in a constant ~30% decrease in VP1 expression at 0.01,
0.001, and 0.0001 IU. BKPyV, however, became progressively less
sensitive to the antiviral activity of IFN-�, and at 0.0001 IU, there
was no difference between treated and untreated cells. Our data
show that JCPyV induces IFN-� starting at 6 days postinfection,
while BKPyV induces it starting at 3 days postinfection. Addition-
ally, JCPyV is more sensitive to low physiologically relevant con-
centrations of type I IFN than BKPyV.

pSTAT1 and IRF9 colocalize in JCPyV-infected nuclei. We
infected HRPTE cells with JCPyV and BKPyV and stained for
pSTAT1 and IRF9 to determine the nuclear translocation of the
protein complex, one of the crucial steps in ISG induction (Fig. 5).
JCPyV-infected nuclei showed positive colocalization signal for
pSTAT1 and IRF9. In contrast, BKPyV-infected cells showed low
signal for IRF9 and low to no signal for pSTAT1 in the nucleus.
Furthermore, we quantified PML nuclear bodies (NBs) per nu-
cleus in JCPyV- and BKPyV-infected cells. PML NBs possess in-
terferon (IFN)-mediated antiviral effects, and a link between PML
NB reorganization and BKPyV infection has been described pre-
viously (67) (Fig. 6). JCPyV caused a significant increase in the
total amount of PML NBs per nucleus, consistent with the induc-
tion of the antiviral response. Additionally, we confirmed previ-
ous findings as BKPyV was able to induce significant PML NB
reorganization at 8 dpi.

Blockade of type I IFN-mediated signaling increases JCPyV
infection. To determine whether the restriction of JCPyV infec-
tion was indeed due to IFN stimulation of ISGs, we blocked the
interferon alpha/beta receptor and neutralized IFN-� and IFN-�
released from the infected cells using blocking antibodies. This
block resulted in an increase in JCPyV-infected cells (Fig. 7A). In
control experiments, the same treatment blocked expression of a
known ISG (OAS1) (Fig. 7B).

TABLE 1 JCPyV- and BKPyV-infected HRPTE cells produce IFN-�a

Cells

IFN-� concn in pg/ml (SE) at:

3 dpi 6 dpi 9 dpi

Uninfected �LOD (0) �LOD (0) �LOD (0)
JCPyV infected �LOD (0) 54.94 (0.97) 57.23 (2.39)
BKPyV infected 60.09 (2.22) 53.02 (0.78) 67.87 (4.99)
a HRPTE cells were infected with JCPyV and BKPyV, supernatants were harvested at 3,
6, and 9 dpi, and the IFN-� concentration was determined by ELISA. Results represent
the average from three independent experiments, and the standard error (SE) is
indicated in parentheses. LOD, limit of detection.
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DISCUSSION

JCPyV and BKPyV persist in the kidney of healthy individuals;
however, upon immunosuppression, they cause different diseases
in different organs. BKPyV causes severe disease in the kidney
(PyVAN and HC), while JCPyV causes fatal neurodegeneration in
the brain (PML), with little to no effect on the kidney. The goal of

our study was to investigate JCPyV and BKPyV infection in pri-
mary human renal epithelial cells to begin to understand the mo-
lecular basis of such dissimilar outcomes. Our results showed that
over the course of 21 days, JCPyV established a persistent infection
in primary human renal epithelial cells, while BKPyV lysed all of
the cells by day 15. JCPyV and BKPyV were able to induce IFN-�
production, but ISGs were only detected in JCPyV-infected cells
starting at day 6 post-initial infection. Furthermore, blockade of
the interferon alpha/beta receptor signaling activation partially
enhanced JCPyV infectivity. Our data show that a type I IFN re-
sponse contributes to the establishment of persistent infection by
JCPyV in primary human renal epithelial cells. Our results also
suggest that BKPyV blocks the downstream activation of ISGs
mediated by IFN.

The innate immune system utilizes receptors called pattern
recognition receptors (PRRs) to recognize microbial products.
PRRs can be found on the membranes of cells or intracellular
organelles, as well as in the cytosol or nucleus of immune and
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FIG 5 pSTAT1 and IRF9 colocalize in the nucleus of JCPyV-infected HRPTE
cells. HRPTE cells were infected with JCPyV or BKPyV, fixed at 8 dpi, and
stained for pSTAT1 (red) and IRF9 (green) using indirect immunofluores-
cence. Nuclei were visualized by DAPI staining. Uninfected cells (UI) were
used as a control. Samples were imaged by confocal microscopy at �63 mag-
nification. The panel shows representative images from two independent ex-
periments.
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FIG 6 The number of PML bodies per nucleus is significantly increased in
JCPyV-infected cells. HPRTE cells were infected with JCPyV or BKPyV, fixed
at 8 dpi, and stained for PML (red) and TAg (green) using indirect immuno-
fluorescence. Nuclei were visualized by DAPI staining. Uninfected cells (UI)
were used as a control. Samples were imaged by confocal microscopy, and at
least 120 cells per replicate were recorded for a total of 360 to 450 cells. Images
were processed using Cell Profiler, and the average number of PML bodies per
nucleus was calculated. Error bars represent standard errors (SE). *, P � 0.05.
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FIG 7 Blockade of type I IFN-mediated signaling increases JCPyV infection.
HRPTE cells were infected with JCPyV. At day 4 postinfection, cells were
treated with anti-IFNAR2 blocking antibody for 1 h, and then medium con-
taining neutralizing anti-IFN-� and anti-IFN-� was added on top. The treat-
ment was repeated every 2 days, infection levels were assessed at 11 dpi by VP1
staining, and positive cells were quantified using flow cytometry. Percentages
of positive cells were calculated using FlowJo. The increased percentage of
infection in treated cells was calculated by setting the untreated cells to 100%
(A). The results represent the average of two independent experiments per-
formed in duplicate for a total of 40,000 events per condition. To confirm the
efficacy of our approach, HRPTE cells were treated with anti-IFNAR2 blocking
antibody and with 0.1 IU of IFN-�. Total RNA was harvested, and qPCR was
performed using OAS1 targeting primers (B). The results represent the average
from two independent experiments. *, P � 0.05.
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nonimmune cells (68–71). PRRs have not yet been identified for
polyomaviruses. Interestingly, it has been recently reported that
ectopic expression of SV40 TAg induces a DNA damage response
that activates IRF1, causing IFN-� production and subsequent
ISG expression (72). Many of these sensors are responsible for the
induction of IFN that results in the activation of the classical “an-
tiviral state” and is also crucial to stimulate an optimal adaptive
immune response (71). When type I IFNs are released, they bind
to the IFNAR, which activate janus kinase 1 (JAK1) and tyrosine
kinase 2 (TYK2): in turn, they phosphorylate STAT1 and STAT2
which dimerize, assemble with IRF9, and are translocated in the
nucleus, where they induce ISG expression (61). These effector
molecules are able to block the viral life cycle at different stages to
mount a diverse and redundant antiviral response (59, 62). Fur-
thermore, it has been shown that expression of such genes can also
have additive effects on viral infection (73, 74). The specific activ-
ity of ISGs on the JCPyV life cycle has never been explored. In the
present study, we demonstrated nuclear translocation of pSTAT1
and IRF9 in JCPyV-infected cells and identified multiple ISGs
robustly upregulated, including IRF7, ISG15, MX1, IFI6, RASD2
(viperin), OAS1 to -3, and IFITM2 and -3 (Fig. 3 and 5). IRF7 is a
member of the interferon regulatory factor family, it is strongly
induced by type I IFN-mediated signaling, and it regulates the
transcription of type I IFN genes (75). The other genes mentioned
have a broad activity against different RNA and DNA viruses.
ISG15, for example, has been reported to directly inhibit virus
release and to target viral or host proteins for ISGylation, a process
similar to ubiquitination (59, 76–80). STAT1 is widely expressed
in the cytoplasm of cells and can be phosphorylated to induce ISG
expression. STAT1 is also an interferon-stimulated gene itself, so
the antiviral response can be amplified (61). Additionally, by
blocking IFN-mediated signaling, we partially increased VP1 ex-
pression, confirming that the type I IFN-mediated response in fact
reduced JCPyV infectivity. This response appears to be activated
late in infection as neither IFN-� nor ISGs are detected at 3 dpi
despite JCPyV genome replication (Fig. 1). Interestingly, when we
compared the amounts of JCPyV TAg and VP1 at 2 and 3 dpi, we
noticed that JCPyV VP1 expression did not correlate with the
abundant expression of TAg. This may indicate that the persistent
phenotype we see in HRPTE cells is the result of a cell-intrinsic
restriction acting on JCPyV replication early during infection and
that the IFN-mediated antiviral response is contributing to keep-
ing the level of replication low over time. To support our hypoth-
esis, we blocked IFN-mediated signaling at 4 and 6 dpi and stained
for VP1, respectively, at 6 and 8 dpi, and we did not see an increase
in VP1-positive cells (data not shown). We could not find overex-
pression of relevant transcription factors known to have an inhib-
itory role against JCPyV replication, leaving us unable to deter-
mine how the first round of JCPyV replication is controlled. The
inhibitory activity of IFN-� on JCPyV infection has been previ-
ously reported in primary or immortalized human glial cells (81,
82). However, the lowest concentration that has been used in
those studies was 5 IU (82). In the present study, we tested con-
centrations of IFN-� down to 0.0001 IU because after our ELISA
quantification, we reasoned that the amount of cytokine produced
in HRPTE cells would be more in the range of 10 IU and below.
We demonstrated that even as little as 0.0001 IU of IFN-� was
enough to mount an antiviral response against JCPyV infection,
which was reduced by approximately 30% (Fig. 4B).

On the other hand, we observed that BKPyV is highly cyto-

pathic in HRPTE cells, killing all cells by day 15 despite a low MOI.
The amount of TAg- and VP1-expressing cells correlate: in fact,
roughly 90% of cells expressing TAg went on to make VP1, indi-
cating that HRPTE cells do not restrict BKPyV replication. As
ISGs were significantly upregulated in JCPyV compared to
BKPyV, we further investigated the overexpressed genes in
BKPyV-infected cells compared to uninfected cells. We detected
IFN-� production at 3 dpi, but no ISGs were detected at this time
point. Interestingly, IRF7 was slightly upregulated at 6 dpi (see
Table S1 in the supplemental material). This may indicate that a
small activation of the signaling cascade took place in BKPyV-
infected cells as a consequence of the production of IFN-�. At 6
and 9 dpi, we also detected the upregulation of SOCS3, a suppres-
sor of cytokine signaling. SOCS3 can be stimulated by JAK/STAT
signaling mediating a feedback inhibition or can be induced via
infection by several viruses, including herpes simplex virus 1
(HSV-1), influenza A virus (IAV), and HIV (83–86). Importantly,
SOCS3 induction by the above-mentioned viruses always leads to
inhibition of type I IFN signaling, thus enhancing viral replication
(83–86). Based on our results, we cannot determine exactly
whether SOCS3 is stimulated by JAK/STAT signaling or directly
by BKPyV infection. However, it is reasonable to hypothesize that
SOCS3 inhibited the IFN-mediated signaling activation blocking
the induction of ISGs. This is consistent with the fact that IRF7 was
no longer overexpressed at 9 dpi, that pSTAT1 was not detected in
the nucleus of BKPyV-infected cells, and that several ISGs were
actually downregulated compared to those in uninfected cells.

Promyelocytic leukemia nuclear bodies (PML NBs), also
known as nuclear domain 10 (ND10), are dynamic, small, punc-
tate subnuclear structures with a diverse array of functions, in-
cluding transcription regulation, DNA damage response, and
chromatin remodeling. Interestingly, they possess both intrinsic
and interferon (IFN)-mediated antiviral effects against several
DNA and RNA viruses (87, 88). Previously published data from
our laboratory show that pretreatment of SVGA cells with IFN-�
causes a significant increase in the amount of PML NBs per nu-
cleus, and as a consequence, infection was inhibited (89). Inter-
estingly, when PML bodies were disrupted by arsenite treatment
and the cells subsequently supplemented with IFN-�, PML NBs
did not reform, and infection was no longer inhibited, suggesting
that IFN-� was blocking infection of SVGA cells through the help
of PML NBs (89). In the present study, we found that the number
of PML bodies per nucleus in HRPTE cells infected with JCPyV
was significantly increased at 8 days postinfection, consistent with
the timing of the antiviral response activation (Fig. 6). One in-
triguing hypothesis is that the intrinsic antiviral activity of PML
NBs is responsible for partially restricting JCPyV replication early
during infection, similar to what has been reported for HPV (87).
Then, after the IFN signaling cascade is activated, the number of
PML NBs increases, and in concert with other ISGs, viral replica-
tion is kept low over time. Interestingly, Jiang et al. showed that
BKPyV infection of HRPTE cells causes a functional reorganiza-
tion of PML NBs (67). The total number of PML NBs per nucleus
was decreased, and the average size was instead increased, result-
ing in the inactivation of their antiviral activity (67). In fact, the
growth of an ICP0-null mutant HSV-1 strain was rescued by pre-
infection with BKPyV (67). In the present study, we recapitulated
their findings and saw a significant decrease in the number of PML
NBs per nucleus at 8 dpi (Fig. 6). Overall we can conclude that
human primary kidney epithelial cells have multiple ways to re-
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strict viral infection, and it appears that such mechanisms are
successful at controlling JCPyV infection. Conversely, the same
mechanisms are not enough to control BKPyV as it appears to
have evolved multiple ways to counteract the restrictions human
primary kidney epithelial cells have in place.

MATERIALS AND METHODS
Cells and viruses. Primary renal proximal tubule epithelial cells were ob-
tained from ATCC (American Type Culture Collection) and were grown
in renal epithelial cell basal medium (RECBM) supplemented with one
Renal epithelial cell growth kit as suggested by the manufacturer (ATCC).
For JCPyV infection, we used a lab-adapted strain referred to as Mad-1/
SVE�, which was described previously (90, 91). For BKPyV infection, we
used the Dunlop strain purchased from ATCC. JCPyV and BKPyV were
grown in SVGA cells (human glial cells transformed with SV40 large T
antigen) and Vero cells, respectively, using 1,700-cm2 roller bottles. Cells
were cultured for 14 days, with the cell culture medium replaced at 7 days.
Viral lysates were harvested by scraping cells in the presence of cell culture
medium, and this lysate was frozen and thawed 3 times. When needed,
JCPyV and BKPyV lysates were purified as previously described (92).

Indirect immunofluorescence assay of JCPyV and BKPyV infection.
For long-term experiments, scoring of infection was done by flow cytom-
etry. For short-term experiments, cells were stained and counted by eye
using epifluorescence microscopy (Nikon E800) as previously described
(93). Briefly, plates were fixed using ice-cold 100% methanol at �20°C for
at least 20 min. They were treated with phosphate-buffered saline (PBS)
containing 1% Triton X-100 for 5 min and blocked with 10% goat serum
for 30 min at room temperature (RT). Samples were incubated for 1 h at
37°C with PAB597 (1:50) or AB-2 (1:20) followed by staining with sec-
ondary antibody conjugated to Alexa Fluor 488 (1:500). Data were ex-
pressed as VP1- or TAg-positive cells/visual field. For flow cytometry
quantification, HRPTE cells were washed once with PBS and detached
with trypsin (Mediatech, Inc.). The cells were then transferred to
V-bottom 96-well plates and pelleted by centrifugation at 600 � g for
5 min, washed with PBS, and fixed in 0.2 ml 4% paraformaldehyde (PFA)
for 10 min. Cells were pelleted, washed with PBS, and permeabilized with
0.2 ml PBS containing 1% Triton X-100 for 10 min at RT. Cells were then
pelleted and resuspended in 0.1 ml PBS containing an Alexa Fluor-labeled
purified monoclonal antibody to VP1 (PAB597-AF488 [1:100]). After
incubation for 1 h at RT, cells were washed once with PBS, and fluores-
cence was read by flow cytometry on a FACSCanto II fluorescence-
activated cell sorter (BD Biosciences). Uninfected cells were used to estab-
lish gates for infected cells, and data were analyzed using FlowJo software
(Tree Star, Inc.) and expressed as percentage of VP1-positive cells.

Time course experiments. Long-term experiments were performed as
follows. HRPTE cells were infected with JCPyV or BKPyV lysates at a
multiplicity of infection (MOI) of 0.03 fluorescence-forming unit (FFU)/
cell. Virus was diluted in culture medium, and cells were infected for 2 h.
Virus was aspirated off, and cells were incubated at 37°C and 5% CO2 for
21 days. Cells were fed every 2 days and medium replaced every 6 days.
Cells were harvested, and infection was scored by flow cytometry as de-
scribed above every 3 days starting at 6 days postinfection. Short-term
experiments were performed as follows: HRPTE cells were infected as
described above, infections lasted for 2 or 3 days, and cells were stained for
large T antigen (TAg) at day 2 or VP1 at day 3. For transcriptome profiling
and ELISA experiments, purified JCPyV and BKPyV were used at an MOI
of 0.03 FFU/cell. Infection was carried out for 9 days, and every 3 days,
total RNA was harvested using the RNeasy minikit (Qiagen) with DNase
treatment for subsequent transcriptome profiling. At each time point,
supernatants were also collected for ELISA. Cells were fed, but medium
was never replaced over the 9-day period.

ELISA, antibodies, and primers. To quantify IFN-� in cell culture
media, we used the VeriKine human interferon beta ELISA kit purchased
from PBL Assay Science with a range of detection of between 50 and
4,000 pg/ml (catalog no. 41410-1B). We used the monoclonal antibody

PAB597 to detect JCPyV and BKPyV VP1. To detect JCPyV and BKPyV
TAg, we used a mouse monoclonal antibody to SV40 large T antigen
(AB-2) purchased from Calbiochem at a 1:20 dilution, which cross-reacts
with both human polyomaviruses. To detect PML protein, we used a
polyclonal antibody purchased from Santa Cruz Biotechnology (sc-5621)
at a 1:200 dilution. To block interferon alpha/beta receptor, we used a
neutralizing monoclonal antibody directed at chain 2 of the protein at a
final concentration of 20 �g/ml (PBL Assay Science catalog no. 21385-1).
To neutralize secreted IFN-� and IFN-�, we used two different monoclo-
nal antibodies at a final concentration of 6 �g/ml each (PBL Assay Science
catalog no. 21400-1 and 21116-1, respectively). To detect pSTAT1, we
used a monoclonal antibody purchased from Santa Cruz Biotechnology
(sc-8394) at 1:25 dilution, and to detect IRF9, we used a polyclonal anti-
body purchased from Novus Biologicals (NBP2-16991) at a 1:100 dilu-
tion. To perform qPCR for OAS1, the following primers were used: for-
ward, TGGAGACCCAAAGGGTTGGA, and reverse, AGGAAGCAGGA
GGTCTCACC.

Transcriptome profiling of infected HRPTE cells and data analysis.
Total RNA was harvested as described above, quantification was per-
formed using NanoDrop 2000c, and the quality of the RNA was deter-
mined with an Agilent 2100 Bioanalyzer. Library preparation, RNA se-
quencing (RNA-seq), and bioinformatics analysis were performed by
Beckman Coulter Genomics (Genewiz). Libraries were prepared with a
TruSeq stranded total RNA sample with a Ribo�Zero prep kit, and the
RNA sequencing read type was 2 � 50 bp. The amount of quality control
(QC) passed reads varied between ~60 and 99 million across all samples
infected and uninfected. Of these reads, between 90 and 99% of the pairs
mapped to the human genome reference sequence GRCh38. The mapping
was performed using Tophat version 2.0.10 in conjunction with Bowtie
version 1.0.0. Cufflinks 2.1.1 was used to detect genes and transcripts, and
then Cuffdiff 2.1.1 was used to collect FPKM expression values (i.e., frag-
ments per kilobase of exons and per million of mapped reads). EdgeR
Bioconductor 2.12 package was used to determine differentially expressed
genes. We obtained ~60 million reads per sample. Genes from JCPyV-
infected cells were compared with those from BKPyV-infected cells at
each of the time points tested (3, 6, and 9 dpi). Additionally, JCPyV-
infected cells and BKPyV-infected cells were, respectively, compared to
uninfected cells. Results were filtered for a log2 fold change (FC) of �1 or
��1, P value of �0.05, and false discovery rate (FDR) of �0.05. The lists
of genes were uploaded to two different gene enrichment analysis tools:
Interferome (http://www.interferome.org/interferome/home.jspx) and
Enrichr (http://amp.pharm.mssm.edu/Enrichr/) (94, 95). Interferome is
a database that contains type I, II, and III interferon (IFN)-regulated
genes, manually curated from publicly available microarray data sets from
cells treated with IFN. This tool has been used to estimate how many ISGs
were upregulated at each time point collected for cells infected with JCPyV
or BKPyV. The gene set libraries provided by Enrichr are divided into six
categories: transcription, pathways, ontologies, diseases/drugs, cell types,
and miscellaneous. Enrichr was used to identify specific biological path-
ways significantly represented in any given gene set. Such biological path-
ways were obtained from the reactome pathway database (http://www.re-
actome.org/pages/about/reactome/). Interactions among genes were
visualized using STRING (http://string-db.org/newstring_cgi/
show_input_page.pl?UserId�xB5_QHMTyV9u&sessionId�
mmAKTMv33duO). STRING is a database of known and predicted pro-
tein interactions, including direct (physical) and indirect (functional) as-
sociations (96).

Pretreatment of cells with IFN-� and blockade of IFN signaling.
HRPTE cells were plated in 96-well plates and the following day treated for
6 h with different concentrations of IFN-� (PBL Assay Science catalog no.
11415-1.) Ten international units was serially diluted in culture medium
down to 0.0001 IU. IFN-� was removed, and cells were infected with
JCPyV or BKPyV for 2 h, fixed at 3 dpi, and stained for VP1 as described
above. VP1-positive cells were counted using epifluorescence microscopy
(Nikon E800). To block IFN signaling, cells were prechilled on ice for
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25 min, interferon alpha/beta receptor blocking antibody was added, and
the cells were incubated for 1 h on ice. Fresh medium supplemented with
a cocktail of anti-IFN-� and anti-IFN-� neutralizing antibodies was
added without removing the interferon alpha/beta receptor blocking an-
tibody. The treatment was repeated every 2 days, and cells were stained for
VP1 at day 11 using immunofluorescence staining scored by flow cytom-
etry and analyzed using FlowJo (cell analysis software).

Confocal imaging. HRPTE cells were plated on coverslips in 24-well
plates, and they were infected with JCPyV or BKPyV at a MOI of 0.03
FFU/cell for 2 h. Virus was aspirated off and replaced with fresh medium.
Cells were fed with 200 �l of medium every 2 days, and medium was
replaced at day 6. At day 8 postinfection, cells were washed with 1� PBS
and then fixed with 4% PFA for 10 min at RT. Cells were permeabilized
using PBS containing 1% Triton X-100 for 10 min at RT. Samples were
blocked with 10% goat serum for 30 min at RT. Cells were costained
overnight at 4°C for PML protein and TAg or for pSTAT1 and IRF9. The
following day, cells were washed 3 times with 1� PBS, and the staining
was revealed by incubation for 1 h at 37°C with a secondary antibody
conjugated to Alexa Fluor 633 and 488, respectively. Finally, nuclei were
stained with DAPI (4=,6-diamidino-2-phenylindole) and coverslips
mounted on slides. Samples were imaged using an LSM-710 laser scan-
ning confocal microscope with a 63� objective (Carl Zeiss). The number
of PML NBs per nucleus was calculated using CellProfiler (97).
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