# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1-(5-Bromo-4-phenyl-1,3-thiazol-2-yl)pyrrolidin-2-one

### Hazem A. Ghabbour,<sup>a</sup> Adnan A. Kadi,<sup>a</sup> Hussein I. El-Subbagh,<sup>b</sup> Tze Shyang Chia<sup>c</sup> and Hoong-Kun Fun<sup>c</sup>\*‡

<sup>a</sup>Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Rivadh 11451, Saudi Arabia, <sup>b</sup>Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University, Cairo 12311, Egypt, and <sup>c</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 28 April 2012; accepted 1 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.051; data-to-parameter ratio = 28.6.

The asymmetric unit of the title compound, C<sub>13</sub>H<sub>11</sub>BrN<sub>2</sub>OS, consists of two crystallographically independent molecules (A and B). In each molecule, the pyrrolidine ring adopts an envelope conformation with a methylene C atom as the flap atom. In molecule A, the central thiazole ring makes a dihedral angle of  $36.69 (11)^{\circ}$  with the adjacent phenyl ring, whereas the corresponding angle is  $36.85 (12)^{\circ}$  in molecule *B*. The pyrrolidine ring is slightly twisted from the thiazole ring, with C-N-C-N torsion angles of 4.8 (3) and 3.0 (4) $^{\circ}$  in molecules A and B, respectively. In the crystal,  $C-H \cdots \pi$  and  $\pi - \pi$  [centroid-to-centroid distance = 3.7539 (14) Å] interactions are observed. The crystal studied was a pseudomerohedral twin with twin law ( $\overline{100}$   $0\overline{10}$  101) and a refined component ratio of 0.7188 (5):0.2812 (5).

#### **Related literature**

For background to thiazoles, see: Bishayee et al. (1997); Chitamber & Wereley (1997); Bhaskar et al. (2008); Sharma et al. (2009); Bhattacharya et al. (2005); Spector et al. (1998). For ring-puckering parameters, see: Cremer & Pople (1975). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).



‡ Thomson Reuters ResearcherID: A-3561-2009.



(10)  $Å^3$ 

 $\times$  0.14 mm

30838 measured reflections

 $R_{\rm int} = 0.032$ 

9338 independent reflections

8701 reflections with  $I > 2\sigma(I)$ 

# **Experimental**

#### Crystal data

| C <sub>13</sub> H <sub>11</sub> BrN <sub>2</sub> OS | V = 1267.23 (10)               |
|-----------------------------------------------------|--------------------------------|
| $M_r = 323.21$                                      | Z = 4                          |
| Monoclinic, P2 <sub>1</sub>                         | Mo $K\alpha$ radiation         |
| a = 7.5243 (3) Å                                    | $\mu = 3.40 \text{ mm}^{-1}$   |
| b = 14.1861 (6) Å                                   | $T = 100 { m K}$               |
| c = 12.4488 (6) Å                                   | $0.26 \times 0.14 \times 0.11$ |
| $\beta = 107.508 \ (1)^{\circ}$                     |                                |

#### Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{\min} = 0.466, \ T_{\max} = 0.646$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.027$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.051$               | $\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$  |
| S = 0.99                        | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$ |
| 9338 reflections                | Absolute structure: Flack (1983),                          |
| 326 parameters                  | with 4219 Friedel pairs                                    |
| 1 restraint                     | Flack parameter: 0.017 (4)                                 |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1B-C6B ring.

 $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$  $D \cdot \cdot \cdot A$  $D = H \cdots A$  $C12A - H12B \cdots Cg1^{i}$ 0.97 2.89 3.767 (3) 151 Symmetry code: (i) -x + 1,  $y + \frac{1}{2}$ , -z + 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HAG and AAK thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University grant (No. 1001/PFIZIK/ 811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5131).

#### References

- Bhaskar, V. H., Kumar, M., Sangameswaran, B. & Balakrishnan, B. R. (2008). Rasayan J. Chem. 1, 218-223.
- Bhattacharya, P., Leonard, J. T. & Roy, K. (2005). Bioorg. Med. Chem. 13, 1159-1165.
- Bishayee, A., Karmaker, R., Mandal, A., Kundu, S. N. & Chaterjee, M. (1997). Eur. J. Cancer Prev. 6, 58-70.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chitamber, C. R. & Wereley, J. P. (1997). J. Biol. Chem. 272, 12151-12157.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.
Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spector, F. C., Liang, L., Giordano, H., Sivaraja, M. & Peterson, M. G. (1998).
 J. Virol. 72, 6979–6987.
 Spek, A. L. (2009). Acta Cryst. D65, 148–155.

# supplementary materials

Acta Cryst. (2012). E68, o1738-o1739 [doi:10.1107/S160053681201954X]

# 1-(5-Bromo-4-phenyl-1,3-thiazol-2-yl)pyrrolidin-2-one

# Hazem A. Ghabbour, Adnan A. Kadi, Hussein I. El-Subbagh, Tze Shyang Chia and Hoong-Kun Fun

### Comment

Thiazole is a five-membered ring system with two hetero atoms (S, N) placed at the 1 and 3 positions of the heterocycle. The nucleus is a building block in the structure of various natural products and biologically active compounds, like thiamine (vitamin-B), also in some antibiotics drugs like penicillin, micrococcin and many metabolic products of fungi and primitive marine animals (Bhaskar *et al.*, 2008). Thiazole-containing drugs have widespread use in a variety of medical conditions such as fungal and bacterial infections, gastric ulcers, cancer, *etc* (Bishayee *et al.*, 1997). Thiazole derivatives are involved frequently as the subject of drug design and synthesis efforts and they are reported to possess several activities like antibacterial, antifungal, anti-inflammatory (Sharma *et al.*, 2009), analgesic, antitubercular, central nervous system (CNS) stimmulant activity as well as anti-HIV activity (Bhattacharya *et al.*, 2005). Aminothiazole derivatives are well explored as agents of potential biological activities and some of the derivatives of thiazoles have shown inhibition towards herpes simplex virus (Spector *et al.*, 1998).

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules (*A* and *B*). In both molecules, the pyrrolidine ring (N2/C10–C13) adopts an envelope conformation with atom C11 as the flap atom [puckering parameters (Cremer & Pople, 1975), Q = 0.272 (3) Å and  $\varphi = 254.4$  (5)° in molecule *A*; Q = 0.282 (3) Å and  $\varphi = 74.7$  (5)° in molecule *B*]. In molecule *A*, the central thiazole ring (S1/N1/C7–C9) makes a dihedral angle of 36.69 (11)° with the adjacent benzene ring (C1–C6), whereas the corresponding angle is 36.85 (12)° in molecule *B*. The pyrrolidine ring is slightly twisted from the thiazole ring with C10–N2–C9–N1 torsion angles of 4.8 (3) and 3.0 (4)° in molecules *A* and *B*, respectively.

In the crystal packing, no significant intermoelcular hydrogen bondings are observed. The crystal packing is stabilized by C—H···Cg1 and  $\pi$ — $\pi$  [Cg2—Cg3 = 3.7539 (14) Å; symmetry code = 1-X,1/2+Y,1-Z] interactions, where Cg1, Cg2 and Cg3 are the centroids of C1B–C6B, S1A/N1A/C7A–C9A and S1B/N1B/C7B–C9B rings, respectively.

### **Experimental**

4-Chlorobutanoyl chloride (423 mg, 3 mmol) was added dropwise to a solution of 5-bromo-4-phenylthiazol-2-amine (255 mg, 1 mmol) and  $K_2CO_3$  (414 mg, 3 mmol) in CHCl<sub>3</sub>. The mixture was stirred for 48 h at room temperature and then ammonia and water were added to remove excess 4-chlorobutanoyl chloride and  $K_2CO_3$ . The organic solvent was removed in vacuum. The residue was taken up in dry toluene and the solution was refluxed for 10 h after addition of excess amount of piperidine. The mixture was cooled and the solvent was removed in vacuum to give solid which was then purified by chromatotron and crystallized from ethanol to give the single crystals.

### Refinement

All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model, with  $U_{iso}(H) = 1.2U_{eq}(C)$ . Three outliers (-1 5 2), (0 2 0) and (-3 0 1) were omitted. The crystal was a twin with twin law ( $\overline{100} \ 0\overline{10} \ 101$ ) and BASF = 0.2812 (5).

### **Computing details**

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).



### Figure 1

The asymmetric unit of the title compound with atom labels and 50% probability displacement ellipsoids.

### 1-(5-Bromo-4-phenyl-1,3-thiazol-2-yl)pyrrolidin-2-one

Crystal data

C<sub>13</sub>H<sub>11</sub>BrN<sub>2</sub>OS  $M_r = 323.21$ Monoclinic, P2<sub>1</sub> Hall symbol: P 2yb a = 7.5243 (3) Å b = 14.1861 (6) Å c = 12.4488 (6) Å  $\beta = 107.508$  (1)° V = 1267.23 (10) Å<sup>3</sup> Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer Radiation source: fine-focus sealed tube F(000) = 648  $D_x = 1.694 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9880 reflections  $\theta = 2.2-32.0^{\circ}$   $\mu = 3.40 \text{ mm}^{-1}$  T = 100 KBlock, colourless  $0.26 \times 0.14 \times 0.14 \text{ mm}$ 

Graphite monochromator  $\varphi$  and  $\omega$  scans

Absorption correction: multi-scan $R_{int} = 0.032$ (SADABS; Bruker, 2009) $\theta_{max} = 33.6^{\circ}, \theta_{min} = 1.4^{\circ}$  $T_{min} = 0.466, T_{max} = 0.646$  $h = -11 \rightarrow 11$ 30838 measured reflections $k = -21 \rightarrow 21$ 9338 independent reflections $l = -19 \rightarrow 19$ 8701 reflections with  $I > 2\sigma(I)$  $I = 2\sigma(I)$ 

### Refinement

| Refinement on $F^2$                                            | Hydrogen site location: inferred from                        |
|----------------------------------------------------------------|--------------------------------------------------------------|
| Least-squares matrix: full                                     | neighbouring sites                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.027$                                | H-atom parameters constrained                                |
| $wR(F^2) = 0.051$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0136P)^2]$                      |
| S = 0.99                                                       | where $P = (F_0^2 + 2F_c^2)/3$                               |
| 9338 reflections                                               | $(\Delta/\sigma)_{\rm max} = 0.001$                          |
| 326 parameters                                                 | $\Delta \rho_{\rm max} = 0.58 \text{ e } \text{\AA}^{-3}$    |
| 1 restraint                                                    | $\Delta \rho_{\rm min} = -0.46 \text{ e} \text{ Å}^{-3}$     |
| Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), with 4219<br>Friedel pairs |
| Secondary atom site location: difference Fourier               | Flack parameter: 0.017 (4)                                   |
| map                                                            |                                                              |

### Special details

**Experimental**. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x           | У             | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|---------------|--------------|-----------------------------|--|
| Br1A | 1.01261 (3) | 0.351681 (14) | 0.70723 (2)  | 0.02637 (6)                 |  |
| S1A  | 0.68748 (7) | 0.33990 (4)   | 0.48703 (5)  | 0.01897 (10)                |  |
| 01A  | 0.4724 (3)  | 0.32508 (11)  | 0.26929 (13) | 0.0249 (3)                  |  |
| N1A  | 0.4385 (2)  | 0.34234 (16)  | 0.59269 (14) | 0.0167 (3)                  |  |
| N2A  | 0.3089 (3)  | 0.33380 (14)  | 0.39687 (16) | 0.0189 (4)                  |  |
| C1A  | 0.7366 (3)  | 0.39986 (15)  | 0.87748 (19) | 0.0214 (4)                  |  |
| H1AA | 0.8276      | 0.4358        | 0.8601       | 0.026*                      |  |
| C2A  | 0.7282 (3)  | 0.39718 (17)  | 0.98699 (19) | 0.0243 (5)                  |  |
| H2AA | 0.8110      | 0.4331        | 1.0423       | 0.029*                      |  |
| C3A  | 0.5979 (3)  | 0.34160 (19)  | 1.01478 (19) | 0.0246 (5)                  |  |
| H3AA | 0.5954      | 0.3389        | 1.0890       | 0.030*                      |  |
| C4A  | 0.4701 (3)  | 0.28953 (17)  | 0.93178 (19) | 0.0225 (4)                  |  |
| H4AA | 0.3815      | 0.2524        | 0.9501       | 0.027*                      |  |
| C5A  | 0.4761 (3)  | 0.29351 (16)  | 0.82224 (18) | 0.0179 (4)                  |  |
| H5AA | 0.3905      | 0.2590        | 0.7667       | 0.022*                      |  |
| C6A  | 0.6091 (3)  | 0.34881 (16)  | 0.79332 (17) | 0.0162 (4)                  |  |
|      |             |               |              |                             |  |

| C7A  | 0.6099 (3)  | 0.34893 (16)          | 0.67534 (17)         | 0.0167 (4)         |  |
|------|-------------|-----------------------|----------------------|--------------------|--|
| C8A  | 0.7554 (3)  | 0.34945 (18)          | 0.63183 (17)         | 0.0176 (4)         |  |
| C9A  | 0.4600 (3)  | 0.33758 (15)          | 0.49273 (18)         | 0.0166 (4)         |  |
| C10A | 0.1169 (3)  | 0.34222 (19)          | 0.40144 (19)         | 0.0225 (4)         |  |
| H10A | 0.0897      | 0.4061                | 0.4195               | 0.027*             |  |
| H10B | 0.0937      | 0.2992                | 0.4563               | 0.027*             |  |
| C11A | 0.0021 (4)  | 0.31523 (16)          | 0.2810 (2)           | 0.0244 (5)         |  |
| H11A | -0.1123     | 0.3515                | 0.2568               | 0.029*             |  |
| H11B | -0.0288     | 0.2487                | 0.2762               | 0.029*             |  |
| C12A | 0.1303 (3)  | 0.33887 (18)          | 0.20894 (19)         | 0.0267 (5)         |  |
| H12A | 0.1118      | 0.2946                | 0.1471               | 0.032*             |  |
| H12B | 0.1068      | 0.4022                | 0.1786               | 0.032*             |  |
| C13A | 0.3242 (3)  | 0.33079 (14)          | 0.28908 (19)         | 0.0212 (4)         |  |
| Br1B | 0.15444 (3) | 0.079853 (14)         | 0.69491 (2)          | 0.02544 (5)        |  |
| S1B  | 0.24659 (7) | 0.09024 (4)           | 0.46979 (4)          | 0.01913 (10)       |  |
| O1B  | 0.2343 (3)  | 0.11605 (13)          | 0.25040 (14)         | 0.0269 (4)         |  |
| N1B  | 0.6031 (2)  | 0.08191 (17)          | 0.56770 (14)         | 0.0179 (3)         |  |
| N2B  | 0.5265 (3)  | 0.09060 (15)          | 0.37119 (14)         | 0.0191 (3)         |  |
| C1B  | 0.5995 (3)  | 0.02734 (16)          | 0.85721 (18)         | 0.0220 (4)         |  |
| H1BA | 0.4904      | -0.0079               | 0.8416               | 0.026*             |  |
| C2B  | 0.7207 (4)  | 0.03050 (17)          | 0.96597 (19)         | 0.0253 (5)         |  |
| H2BA | 0.6929      | -0.0037               | 1.0226               | 0.030*             |  |
| C3B  | 0.8816 (3)  | 0.0835 (2)            | 0.99154 (18)         | 0.0260 (5)         |  |
| H3BA | 0.9604      | 0.0860                | 1.0651               | 0.031*             |  |
| C4B  | 0.9255 (3)  | 0.13339 (18)          | 0.9064 (2)           | 0.0234 (5)         |  |
| H4BA | 1.0339      | 0.1692                | 0.9229               | 0.028*             |  |
| C5B  | 0.8065 (3)  | 0.12933 (17)          | 0.79710 (18)         | 0.0188 (4)         |  |
| H5BA | 0.8372      | 0.1619                | 0.7403               | 0.023*             |  |
| C6B  | 0.6420 (3)  | 0.07735 (17)          | 0.77091 (17)         | 0.0167 (4)         |  |
| C7B  | 0.5198 (3)  | 0.07758 (17)          | 0.65372 (15)         | 0.0160 (3)         |  |
| C8B  | 0.3295(3)   | 0.0800 (2)            | 0.61500 (18)         | 0.0194(4)          |  |
| C9B  | 0.4773(3)   | 0.08761(18)           | 0.47029 (16)         | 0.0170(4)          |  |
| C10B | 0.7195 (3)  | 0.0830 (2)            | 0.37033(17)          | 0.0212(4)          |  |
| H10C | 0 7822      | 0.0302                | 0.4157               | 0.025*             |  |
| H10D | 0.7884      | 0.1404                | 0.3975               | 0.025*             |  |
| C11B | 0.6969 (4)  | 0.06701(18)           | 0.3973<br>0.2457 (2) | 0.023<br>0.0272(5) |  |
| HIIC | 0.7981      | 0.0963                | 0.2246               | 0.033*             |  |
| HIID | 0.6946      | 0.0002                | 0.2240               | 0.033*             |  |
| C12B | 0 5114 (4)  | 0.11300 (18)          | 0.18401 (10)         | 0.0242 (5)         |  |
| H12C | 0.5280      | 0.1781                | 0.1657               | 0.02+2 (3)         |  |
| H120 | 0.5209      | 0.0703                | 0.1057               | 0.029              |  |
|      | 0.4470      | 0.0775<br>0.10670(15) | 0.1131<br>0.2667 (2) | 0.023              |  |
| CIOD | 0.4007(3)   | 0.10079 (15)          | 0.2007 (2)           | 0.0219 (3)         |  |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|--------------|--------------|--------------|--------------|--------------|
| Br1A | 0.01407 (9) | 0.02869 (12) | 0.03443 (13) | -0.00219 (9) | 0.00438 (9)  | 0.00372 (11) |
| S1A  | 0.0193 (2)  | 0.0182 (2)   | 0.0212 (2)   | 0.0000(2)    | 0.00885 (19) | 0.0019 (2)   |
| O1A  | 0.0317 (9)  | 0.0245 (8)   | 0.0207 (7)   | -0.0017 (7)  | 0.0111 (7)   | 0.0014 (6)   |
| N1A  | 0.0130 (8)  | 0.0190 (9)   | 0.0170 (8)   | 0.0014 (7)   | 0.0028 (6)   | 0.0004 (7)   |

| N2A  | 0.0210 (9)   | 0.0174 (9)   | 0.0172 (8)   | 0.0011 (7)   | 0.0040 (7)   | -0.0007 (7)   |
|------|--------------|--------------|--------------|--------------|--------------|---------------|
| C1A  | 0.0223 (11)  | 0.0151 (9)   | 0.0232 (10)  | -0.0031 (8)  | 0.0016 (9)   | 0.0011 (8)    |
| C2A  | 0.0289 (12)  | 0.0215 (10)  | 0.0162 (10)  | 0.0000 (9)   | -0.0029 (9)  | -0.0020 (8)   |
| C3A  | 0.0295 (11)  | 0.0239 (11)  | 0.0185 (10)  | 0.0055 (10)  | 0.0042 (9)   | 0.0003 (10)   |
| C4A  | 0.0231 (11)  | 0.0249 (10)  | 0.0208 (11)  | 0.0014 (9)   | 0.0084 (9)   | -0.0008 (9)   |
| C5A  | 0.0158 (9)   | 0.0199 (10)  | 0.0170 (10)  | -0.0001 (7)  | 0.0032 (8)   | -0.0018 (7)   |
| C6A  | 0.0134 (8)   | 0.0172 (9)   | 0.0162 (8)   | 0.0039 (8)   | 0.0015 (7)   | 0.0023 (8)    |
| C7A  | 0.0154 (8)   | 0.0143 (8)   | 0.0186 (9)   | -0.0006 (8)  | 0.0023 (7)   | 0.0007 (8)    |
| C8A  | 0.0133 (8)   | 0.0187 (9)   | 0.0193 (9)   | -0.0007 (9)  | 0.0024 (7)   | 0.0020 (9)    |
| C9A  | 0.0151 (9)   | 0.0164 (8)   | 0.0171 (9)   | 0.0017 (8)   | 0.0031 (8)   | 0.0013 (7)    |
| C10A | 0.0180 (10)  | 0.0251 (11)  | 0.0212 (10)  | 0.0043 (9)   | 0.0013 (8)   | -0.0024 (9)   |
| C11A | 0.0264 (12)  | 0.0250 (9)   | 0.0191 (10)  | 0.0000 (9)   | 0.0031 (9)   | -0.0020 (9)   |
| C12A | 0.0322 (13)  | 0.0242 (11)  | 0.0193 (10)  | -0.0004 (10) | 0.0008 (9)   | 0.0020 (9)    |
| C13A | 0.0292 (11)  | 0.0148 (9)   | 0.0180 (9)   | 0.0006 (8)   | 0.0047 (10)  | 0.0016 (7)    |
| Br1B | 0.02277 (10) | 0.02499 (10) | 0.03492 (12) | -0.00498 (9) | 0.01830 (9)  | -0.00685 (11) |
| S1B  | 0.0166 (2)   | 0.0177 (2)   | 0.0224 (2)   | 0.0005 (2)   | 0.00493 (19) | -0.0016 (2)   |
| O1B  | 0.0266 (9)   | 0.0261 (8)   | 0.0232 (8)   | 0.0029 (7)   | 0.0002 (7)   | -0.0029 (7)   |
| N1B  | 0.0194 (8)   | 0.0191 (7)   | 0.0175 (7)   | 0.0016 (9)   | 0.0092 (6)   | 0.0007 (8)    |
| N2B  | 0.0216 (9)   | 0.0206 (8)   | 0.0159 (7)   | 0.0007 (8)   | 0.0068 (7)   | 0.0003 (7)    |
| C1B  | 0.0279 (11)  | 0.0214 (10)  | 0.0198 (10)  | -0.0028 (9)  | 0.0117 (9)   | -0.0028 (8)   |
| C2B  | 0.0368 (13)  | 0.0242 (11)  | 0.0183 (11)  | 0.0021 (9)   | 0.0134 (10)  | -0.0002 (8)   |
| C3B  | 0.0294 (12)  | 0.0310 (11)  | 0.0174 (9)   | 0.0074 (12)  | 0.0067 (8)   | -0.0033 (11)  |
| C4B  | 0.0180 (10)  | 0.0266 (11)  | 0.0262 (12)  | 0.0014 (9)   | 0.0075 (9)   | -0.0016 (9)   |
| C5B  | 0.0176 (10)  | 0.0220 (11)  | 0.0191 (10)  | 0.0051 (8)   | 0.0089 (9)   | 0.0024 (8)    |
| C6B  | 0.0214 (9)   | 0.0134 (8)   | 0.0182 (9)   | 0.0021 (9)   | 0.0104 (7)   | -0.0008 (9)   |
| C7B  | 0.0190 (8)   | 0.0132 (7)   | 0.0189 (8)   | 0.0000 (8)   | 0.0105 (7)   | 0.0000 (8)    |
| C8B  | 0.0200 (9)   | 0.0165 (8)   | 0.0246 (10)  | -0.0014 (9)  | 0.0113 (8)   | -0.0022 (10)  |
| C9B  | 0.0171 (9)   | 0.0168 (8)   | 0.0178 (9)   | 0.0027 (8)   | 0.0061 (7)   | 0.0037 (9)    |
| C10B | 0.0200 (10)  | 0.0269 (10)  | 0.0168 (9)   | -0.0025 (11) | 0.0058 (7)   | -0.0016 (11)  |
| C11B | 0.0349 (13)  | 0.0291 (13)  | 0.0215 (10)  | -0.0019 (10) | 0.0146 (10)  | -0.0015 (9)   |
| C12B | 0.0358 (13)  | 0.0206 (10)  | 0.0168 (10)  | 0.0016 (10)  | 0.0086 (9)   | -0.0012 (8)   |
| C13B | 0.0285 (12)  | 0.0156 (10)  | 0.0195 (10)  | 0.0018 (8)   | 0.0042 (9)   | -0.0019 (7)   |

## Geometric parameters (Å, °)

| Br1A—C8A | 1.880 (2)   | Br1B—C8B | 1.874 (2) |
|----------|-------------|----------|-----------|
| S1A—C8A  | 1.725 (2)   | S1B—C8B  | 1.732 (2) |
| S1A—C9A  | 1.7349 (19) | S1B—C9B  | 1.734 (2) |
| 01A—C13A | 1.214 (3)   | O1B—C13B | 1.214 (3) |
| N1A—C9A  | 1.304 (3)   | N1B—C9B  | 1.297 (3) |
| N1A—C7A  | 1.390 (3)   | N1B—C7B  | 1.395 (2) |
| N2A—C9A  | 1.379 (3)   | N2B—C13B | 1.379 (3) |
| N2A—C13A | 1.381 (3)   | N2B—C9B  | 1.391 (3) |
| N2A—C10A | 1.468 (3)   | N2B—C10B | 1.460 (3) |
| C1A—C2A  | 1.384 (3)   | C1B—C2B  | 1.387 (3) |
| C1A—C6A  | 1.392 (3)   | C1B—C6B  | 1.402 (3) |
| C1A—H1AA | 0.9300      | C1B—H1BA | 0.9300    |
| C2A—C3A  | 1.381 (4)   | C2B—C3B  | 1.379 (4) |
| C2A—H2AA | 0.9300      | C2B—H2BA | 0.9300    |
| C3A—C4A  | 1.393 (3)   | C3B—C4B  | 1.393 (4) |
|          |             |          |           |

| СЗА—НЗАА      | 0.9300      | СЗВ—НЗВА      | 0.9300      |
|---------------|-------------|---------------|-------------|
| C4A—C5A       | 1.379 (3)   | C4B—C5B       | 1.387 (3)   |
| C4A—H4AA      | 0.9300      | C4B—H4BA      | 0.9300      |
| C5A—C6A       | 1.401 (3)   | C5B—C6B       | 1.393 (3)   |
| С5А—Н5АА      | 0.9300      | C5B—H5BA      | 0.9300      |
| C6A—C7A       | 1.471 (3)   | C6B—C7B       | 1.472 (3)   |
| C7A—C8A       | 1.360 (3)   | C7B—C8B       | 1.367 (3)   |
| C10A—C11A     | 1.536 (3)   | C10B—C11B     | 1.526 (3)   |
| C10A—H10A     | 0.9700      | C10B—H10C     | 0.9700      |
| C10A—H10B     | 0.9700      | C10B—H10D     | 0.9700      |
| C11A—C12A     | 1.539 (4)   | C11B—C12B     | 1.522 (4)   |
| C11A—H11A     | 0.9700      | C11B—H11C     | 0.9700      |
| C11A—H11B     | 0.9700      | C11B—H11D     | 0.9700      |
| C12A—C13A     | 1.504 (3)   | C12B—C13B     | 1.509 (4)   |
| C12A—H12A     | 0.9700      | C12B—H12C     | 0.9700      |
| C12A—H12B     | 0.9700      | C12B—H12D     | 0.9700      |
|               |             |               |             |
| C8A—S1A—C9A   | 86.83 (10)  | C8B—S1B—C9B   | 87.07 (10)  |
| C9A—N1A—C7A   | 110.89 (17) | C9B—N1B—C7B   | 110.50 (17) |
| C9A—N2A—C13A  | 123.6 (2)   | C13B—N2B—C9B  | 123.5 (2)   |
| C9A—N2A—C10A  | 121.85 (18) | C13B—N2B—C10B | 114.04 (18) |
| C13A—N2A—C10A | 114.25 (19) | C9B—N2B—C10B  | 122.35 (17) |
| C2A—C1A—C6A   | 120.1 (2)   | C2B—C1B—C6B   | 119.8 (2)   |
| C2A—C1A—H1AA  | 119.9       | C2B—C1B—H1BA  | 120.1       |
| C6A—C1A—H1AA  | 119.9       | C6B—C1B—H1BA  | 120.1       |
| C3A—C2A—C1A   | 120.6 (2)   | C3B—C2B—C1B   | 121.1 (2)   |
| C3A—C2A—H2AA  | 119.7       | C3B—C2B—H2BA  | 119.4       |
| C1A—C2A—H2AA  | 119.7       | C1B—C2B—H2BA  | 119.4       |
| C2A—C3A—C4A   | 120.1 (2)   | C2B—C3B—C4B   | 119.6 (2)   |
| С2А—С3А—НЗАА  | 120.0       | С2В—С3В—Н3ВА  | 120.2       |
| С4А—С3А—НЗАА  | 120.0       | C4B—C3B—H3BA  | 120.2       |
| C5A—C4A—C3A   | 119.4 (2)   | C5B—C4B—C3B   | 119.6 (2)   |
| C5A—C4A—H4AA  | 120.3       | C5B—C4B—H4BA  | 120.2       |
| СЗА—С4А—Н4АА  | 120.3       | C3B—C4B—H4BA  | 120.2       |
| C4A—C5A—C6A   | 121.0 (2)   | C4B—C5B—C6B   | 121.2 (2)   |
| С4А—С5А—Н5АА  | 119.5       | C4B—C5B—H5BA  | 119.4       |
| С6А—С5А—Н5АА  | 119.5       | C6B—C5B—H5BA  | 119.4       |
| C1A—C6A—C5A   | 118.8 (2)   | C5B—C6B—C1B   | 118.7 (2)   |
| C1A—C6A—C7A   | 122.8 (2)   | C5B—C6B—C7B   | 118.49 (19) |
| C5A—C6A—C7A   | 118.37 (19) | C1B—C6B—C7B   | 122.8 (2)   |
| C8A—C7A—N1A   | 112.61 (18) | C8B—C7B—N1B   | 113.14 (17) |
| C8A—C7A—C6A   | 130.06 (18) | C8B—C7B—C6B   | 128.69 (17) |
| N1A—C7A—C6A   | 117.22 (18) | N1B—C7B—C6B   | 118.04 (17) |
| C7A—C8A—S1A   | 113.25 (15) | C7B—C8B—S1B   | 112.33 (15) |
| C7A—C8A—Br1A  | 129.24 (16) | C7B—C8B—Br1B  | 129.92 (16) |
| S1A—C8A—Br1A  | 117.40 (11) | S1B—C8B—Br1B  | 117.67 (11) |
| N1A—C9A—N2A   | 121.45 (18) | N1B—C9B—N2B   | 121.12 (18) |
| N1A—C9A—S1A   | 116.41 (15) | N1B—C9B—S1B   | 116.93 (15) |
| N2A—C9A—S1A   | 122.11 (16) | N2B—C9B—S1B   | 121.95 (15) |

| N2A-C10A-C11A                    | 102.29 (19)  | N2B-C10B-C11B                        | 102.22 (17) |
|----------------------------------|--------------|--------------------------------------|-------------|
| N2A—C10A—H10A                    | 111.3        | N2B-C10B-H10C                        | 111.3       |
| C11A—C10A—H10A                   | 111.3        | C11B—C10B—H10C                       | 111.3       |
| N2A—C10A—H10B                    | 111.3        | N2B-C10B-H10D                        | 111.3       |
| C11A—C10A—H10B                   | 111.3        | C11B—C10B—H10D                       | 111.3       |
| H10A-C10A-H10B                   | 109.2        | H10C—C10B—H10D                       | 109.2       |
| C10A—C11A—C12A                   | 104.3 (2)    | C12B—C11B—C10B                       | 104.71 (19) |
| C10A—C11A—H11A                   | 110.9        | C12B—C11B—H11C                       | 110.8       |
| C12A—C11A—H11A                   | 110.9        | C10B—C11B—H11C                       | 110.8       |
| C10A—C11A—H11B                   | 110.9        | C12B—C11B—H11D                       | 110.8       |
| C12A—C11A—H11B                   | 110.9        | C10B—C11B—H11D                       | 110.8       |
| H11A—C11A—H11B                   | 108.9        | H11C—C11B—H11D                       | 108.9       |
| C13A—C12A—C11A                   | 104.47 (19)  | C13B—C12B—C11B                       | 103.98 (18) |
| C13A—C12A—H12A                   | 110.9        | C13B—C12B—H12C                       | 111.0       |
| C11A—C12A—H12A                   | 110.9        | C11B—C12B—H12C                       | 111.0       |
| C13A—C12A—H12B                   | 110.9        | C13B—C12B—H12D                       | 111.0       |
| C11A—C12A—H12B                   | 110.9        | C11B—C12B—H12D                       | 111.0       |
| H12A—C12A—H12B                   | 108.9        | H12C— $C12B$ — $H12D$                | 109.0       |
| O1A—C13A—N2A                     | 123.3 (2)    | O1B—C13B—N2B                         | 123.8 (2)   |
| O1A— $C13A$ — $C12A$             | 129.6 (2)    | O1B— $C13B$ — $C12B$                 | 129.3 (2)   |
| N2A—C13A—C12A                    | 107.1 (2)    | N2B—C13B—C12B                        | 106.9 (2)   |
|                                  | (-)          |                                      |             |
| C6A—C1A—C2A—C3A                  | 2.2 (3)      | C6B—C1B—C2B—C3B                      | 1.2 (4)     |
| C1A—C2A—C3A—C4A                  | -1.7 (4)     | C1B—C2B—C3B—C4B                      | -1.3 (4)    |
| C2A—C3A—C4A—C5A                  | 0.5 (4)      | C2B—C3B—C4B—C5B                      | 0.2 (4)     |
| C3A—C4A—C5A—C6A                  | 0.2 (3)      | C3B—C4B—C5B—C6B                      | 1.0 (3)     |
| C2A—C1A—C6A—C5A                  | -1.4 (3)     | C4B—C5B—C6B—C1B                      | -1.1(3)     |
| C2A—C1A—C6A—C7A                  | 179.7 (2)    | C4B—C5B—C6B—C7B                      | 178.7 (2)   |
| C4A—C5A—C6A—C1A                  | 0.2 (3)      | C2B—C1B—C6B—C5B                      | 0.0 (3)     |
| C4A—C5A—C6A—C7A                  | 179.1 (2)    | C2B—C1B—C6B—C7B                      | -179.8(2)   |
| C9A—N1A—C7A—C8A                  | 0.4 (3)      | C9B—N1B—C7B—C8B                      | 0.3 (3)     |
| C9A—N1A—C7A—C6A                  | -176.2(2)    | C9B—N1B—C7B—C6B                      | -175.9(2)   |
| C1A—C6A—C7A—C8A                  | 38.0 (4)     | C5B—C6B—C7B—C8B                      | -141.2(3)   |
| C5A—C6A—C7A—C8A                  | -140.9(3)    | C1B—C6B—C7B—C8B                      | 38.6 (4)    |
| C1A—C6A—C7A—N1A                  | -146.1(2)    | C5B—C6B—C7B—N1B                      | 34.3 (3)    |
| C5A—C6A—C7A—N1A                  | 35.1 (3)     | C1B—C6B—C7B—N1B                      | -145.9(2)   |
| N1A—C7A—C8A—S1A                  | -1.0(3)      | N1B-C7B-C8B-S1B                      | -1.3(3)     |
| C6A - C7A - C8A - S1A            | 175.1 (2)    | C6B-C7B-C8B-S1B                      | 174.4 (2)   |
| N1A—C7A—C8A—Br1A                 | -176.95(19)  | N1B - C7B - C8B - Br1B               | -177.9(2)   |
| C6A - C7A - C8A - Br1A           | -0.8(4)      | C6B-C7B-C8B-Br1B                     | -2.2(4)     |
| C9A = S1A = C8A = C7A            | 0.9 (2)      | C9B = S1B = C8B = C7B                | 1.4 (2)     |
| C9A— $S1A$ — $C8A$ — $Br1A$      | 177 41 (16)  | C9B = S1B = C8B = Br1B               | 17851(17)   |
| C7A—N1A— $C9A$ —N2A              | -177.8(2)    | C7B— $N1B$ — $C9B$ — $N2B$           | -178.5(2)   |
| C7A—N1A— $C9A$ —S1A              | 0.3(3)       | C7B—N1B— $C9B$ — $S1B$               | 0.9(3)      |
| $C_{13} = N_{2} = C_{9} = N_{1}$ | 1785(2)      | $C_{13B}$ $N_{2B}$ $C_{9B}$ $N_{1B}$ | -172.8(2)   |
| C10A = N2A = C9A = N1A           | 48(3)        | C10B N2B C9B N1B                     | 30(4)       |
| C13A = N2A = C9A = S1A           | 0.5 (3)      | C13B = N2B = C9B = S1B               | 7.8 (3)     |
| C10A = N2A = C9A = S1A           | -173.23 (18) | C10B - N2B - C9B - S1B               | -176.4(2)   |
| C8A = S1A = C9A = N1A            | -0.7 (2)     | C8B— $S1B$ — $C9B$ — $N1B$           | -1.4(2)     |
|                                  |              |                                      | ··· (-)     |

| C8A—S1A—C9A—N2A     | 177.4 (2)  | C8B—S1B—C9B—N2B     | 178.1 (2)  |
|---------------------|------------|---------------------|------------|
| C9A—N2A—C10A—C11A   | -169.7 (2) | C13B—N2B—C10B—C11B  | -16.4 (3)  |
| C13A—N2A—C10A—C11A  | 16.0 (3)   | C9B—N2B—C10B—C11B   | 167.4 (2)  |
| N2A-C10A-C11A-C12A  | -25.5 (2)  | N2B-C10B-C11B-C12B  | 26.6 (3)   |
| C10A—C11A—C12A—C13A | 26.6 (2)   | C10B—C11B—C12B—C13B | -27.8 (3)  |
| C9A—N2A—C13A—O1A    | 4.9 (3)    | C9B—N2B—C13B—O1B    | -3.2 (4)   |
| C10A—N2A—C13A—O1A   | 179.1 (2)  | C10B—N2B—C13B—O1B   | -179.3 (2) |
| C9A—N2A—C13A—C12A   | -173.4 (2) | C9B—N2B—C13B—C12B   | 175.1 (2)  |
| C10A—N2A—C13A—C12A  | 0.8 (3)    | C10B—N2B—C13B—C12B  | -1.0 (3)   |
| C11A—C12A—C13A—O1A  | 164.4 (2)  | C11B—C12B—C13B—O1B  | -163.6 (2) |
| C11A—C12A—C13A—N2A  | -17.4 (2)  | C11B—C12B—C13B—N2B  | 18.2 (3)   |

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1B–C6B ring.

| D—H···A                        | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|--------------------------------|-------------|-------|--------------|---------|
| C12 $A$ —H12 $B$ ···C $g1^{i}$ | 0.97        | 2.89  | 3.767 (3)    | 151     |

Symmetry code: (i) -x+1, y+1/2, -z+1.