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Abstract

Advancing our understanding of the connections among groundwater, food, and climate is

critical to meet global food demands while optimizing water resources usage. However, our

understanding of the linkages among groundwater, food, and climate is still limited. Here,

we offer a Bayesian framework to simulate crop yield at a regional scale and quantify its rela-

tionships and associated uncertainty with climate, groundwater, agricultural, and energy-

related variables. We implemented the framework in the rice-producing regions of Louisiana

from 1960–2015. To build a parsimonious model, we used a probability-based variable

selection approach to detect the key drivers of rice yield. Rice yield increased, groundwater

declined, and area planted declined or did not change over 56yrs. The number of irrigation

wells, groundwater level, air temperature, and area planted were found to be the key drivers

of rice yield. The regression coefficients showed that rice yield was positively related to

groundwater level, and negatively related to area planted and the number of irrigation wells.

The limited influence of N fertilizer was noted on rice yield for the period when fertilizer data

were available. The inverse relationship between rice yield and area planted pointed to the

adaption of efficient crop management practices that maintained or increased yield, despite

the decline in area planted. The farmers’ ability to install irrigation wells during droughts sus-

tained the yields over long-term but not short-term. This decline in rice yield in response to

drought over the short-term might explain the negative relation between yield and irrigation

wells. Overall, this work highlighted the uncertainty in relationships between rice yield and

key drivers and quantified the intimate connection between food and groundwater. This

work may have implications for managing two highly competing commodities (i.e., ground-

water and food) in agricultural regions.

1. Introduction

In 2011, the Food and Agriculture Organization projected that due to the rising population,

global demand for food and freshwater is expected to increase more than 60% by 2050 [1,2].
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Due to the combination of unsustainable irrigation and drought [3], groundwater continues to

decline at an alarming rate globally [4]. Despite overall increases in groundwater used for irri-

gation, crop yields in some regions of the world have stagnated or declined [5]. For instance,

37% of the rice acreage at the global scale exhibited a decline or no change in rice yield from

1961 to 2008 [5]. Such patterns may have severe implications for food security in the near

future. Given the importance of food security and freshwater availability to society, there is an

urgent need to advance our understanding of the intimate linkages between crop production

and groundwater level. In turn, this may lead to the sustainable management of groundwater

resources while meeting global food demands [6].

Several process-based crop growth models have been proposed to simulate yield based on

climatic, agricultural, landscape, and physiological variables. The process-based crop growth

models broadly simulate mechanisms that account for plant development, soil conditions, and

water management practices from plot to regional scales [7–16]. Such detailed consideration

of processes requires several variables to simulate crop yield, resulting in high uncertainty in

the predictions [17]. Further, the lack of availability of a range of datasets needed to build a

process-based model becomes challenging for data-scarce regions with limited resources [18].

These issues have led to the development of statistical models to simulate crop yields [17,19].

Generally, statistical models used regression-based approaches to simulate crop yield from

regional to global scales [20–28]. For instance, a linear regression model was used to investi-

gate relationships of corn and soybean yields with climatic variables, such as precipitation and

air temperature at the county scale across the United States [21]. Similarly, regression-based

models were used to quantify the linkages between rice yield and climatic drivers such as radia-

tion, temperature, and precipitation in China [24] and Philippines [21]. In a seminal study,

multiple linear regression equations were used to attribute the spatiotemporal patterns of six

crop types to climatic drivers on a global scale [25]. These studies collectively demonstrate the

utility of regression-based models in revealing the controls of crop yield across spatial scales.

Largely, the past statistical crop yield models have been limited in their scope in two distinct

ways. First, these statistical studies were focused on quantifying the effect of climate change on

crop yield, so the inclusion of groundwater, agricultural, or energy-related datasets in models

have been rare. For instance, the direct linkages between groundwater and crop production

have been documented across many agricultural regions [28–34]. Using scenario-based statis-

tical analysis, the authors showed how declining groundwater might influence corn produc-

tion in the near future [29]. A modeling study from the North China Plains demonstrated that

limiting groundwater irrigation can lead to 40% reduction in crop production [32]. Recently,

causal linkages between groundwater levels and rice yield have been estimated over 50 years in

the agricultural regions of Louisiana [35], where irrigation is mostly dominated by pumping

[36]. At the same time, energy-related variables have been shown to influence the production

of agricultural commodities [37–38]. For instance, patterns of wheat yield have been attributed

to energy inputs such as energy fuels, electricity [39]. However, energy variables are rarely con-

sidered in the crop yield models. Thus, the linkages among food, energy, and water are crucial

for society but remain understudied in this context [40]. Second, most of the past statistical

models relied on deterministic relationships to simulate crop yield, and the limited attempts

have been made to explore the uncertainty in relationships between crop yield and associated

explanatory variables [41]. Generally, climatic and environmental drivers are highly heteroge-

neous and vary widely in space and time. Groundwater and climatic variables are expected to

change due to the rise in population and climate change, and available datasets may not be

adequate to reflect all possible combinations of outcomes. Thus, incorporating uncertainty is

critical for making informed decisions and advancing our understanding of food, climate, and

water nexus in the near future. Therefore, there is a need to develop an approach that can
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simulate crop yields while systematically exploring uncertainty and including critical food,

energy, and groundwater variables.

Here, we develop a robust yet simple Bayesian inference based framework that simulates

crop yield with commonly available agricultural, climatic, energy, and groundwater-related

datasets, while incorporating uncertainty in the model parameters. To build a parsimonious

Bayesian model, we implemented a variable selection approach to determine the most impor-

tant controls of crop yield. We tested this framework at a regional scale in the rice-producing

region of Louisiana, where groundwater is under stress due to intensive irrigation [36, 42]. We

assembled a combination of climatic, groundwater, energy, and agricultural datasets from sev-

eral publicly available databases such as National Centers of Environmental Information

(NCEI), the National Agricultural Statistics Service (NASS), United States Geological Survey

(USGS), and the Louisiana Department of Natural Resources (LDNR) from 1960 to 2015. The

objectives of the study were to: (i) explore and simulate the spatiotemporal patterns of rice

yield, and (ii) to quantify its linkages with key factors including climate (e.g., rainfall totals, air

temperature), groundwater levels, agriculture (e.g., area planted, number of irrigation wells,

fertilizers) and energy (e.g., oil prices). The study was conducted in the rice-producing regions

of Louisiana. However, the proposed framework can be extended to other agricultural regions

of the world where the datasets used in the study are generally available or could be estimated.

2. Materials and methods

2.1 Study sites

The study was conducted in the rice-producing counties of Louisiana that had the necessary

long-term (>50yrs) data for the range of time series used in the study (S1 Fig). The counties

that were considered in the study include Acadia (AC), Beauregard (BE), Cameron (CN),

Evangeline (EV), East Carroll (EC), Jefferson Davis (JD), Iberia (IB), St. Martin (SM), Vermil-

lion (VE), and West Carroll (WC).

2.2 Datasets

Table 1 summarizes details regarding the datasets used in the study. The annual time series of

rice yield, the area planted, and the total number of wells installed for irrigation at the county

level from 1960 to 2015 were obtained from the National Agricultural Statistics Service

(NASS) and Louisiana Department of Natural Resources. Crude oil prices have been shown to

influence the production and prices of agricultural commodities [37–38]. For example, a study

recently demonstrated a strong relationship between food prices and energy prices over the

past decade [43]. Therefore, we used crude oil prices as a surrogate for energy in our work.

The price of crude oil was adjusted for inflation to 2015 prices.

Groundwater levels (depth from the land surface) were obtained from the USGS groundwa-

ter database. A well with the most available data within each county at the annual timescales

from 1960–2015 was selected for the analysis. The wells are located in the Chicot aquifer,

which is part of the larger Coastal Lowland Aquifer system (e.g., AC, BE, CN, EV, JD, IB, SM,

VE), and in the Mississippi River Valley Alluvial aquifer system (e.g., EC, WC) [50,51]. Span-

ning over 23000 km2, the Chicot aquifer is comprised of sequence of clays, gravel, sand, and

silt constitutes at varying depths [50]. The aquifer thickness can be as great as 700 feet at places

in Louisiana [50]. The Chicot aquifer is the major sources of fresh groundwater for the region,

where the majority (70%) of the freshwater is withdrawn for irrigation purposes [52]. The

Lower Mississippi River Valley Alluvial aquifer system mostly consists of unconsolidated

sands that are interbedded and frequently capped by silt and clay. The aquifer thickness can
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range from 25 feet to 150 feet [51]. The Lower Mississippi River Valley Alluvial aquifer is the

one of the heavily used aquifer in the United States [53].

Two representative climate stations (one in the north for EC, WC, and one in the south for

AC, BE, CN, EC, EV, IB, JD, SM) were used to retrieve mean air temperature and rainfall totals

from 1960 to 2015. The rainfall totals and mean air temperature were computed at the growing

season scale over the tested 56 years (S2 Fig). Studies have also shown the influence of annual

rainfall totals on rice yield [54], which led us to consider it as a potential covariate for the

model. The Palmer Drought Severity Index (PDSI) has been extensively used in understanding

antecedent conditions [45,55]. The PDSI accounts for soil moisture-holding capacity and

evapotranspiration via physical water balance models [56]. For our study, monthly PDSI val-

ues at the county level from 1960 to 2015 were obtained from the Climate Data Online of

National Centers of Environmental Information (NCEI). Further, monthly PDSI values were

aggregated for growing seasons at the county level during the study period. The growing sea-

son for the rice in this region is February through July. The total nitrogen and total phosphorus

fertilizer inputs for the study counties were available at an annual scale from 1987–2012 [47].

We normalized the fertilizer inputs (tons) with the rice area planted within each county.

2.3 Statistical modeling

In order to build a parsimonious model, we implemented a probability-based variable selec-

tion approach to determine the importance of explanatory variables (X) for rice yield (Y) [57].

This approach was also critical in addressing the issue of collinearity, which has been

highlighted in the regression-based crop models [17]. Initially, we built models to exhaust all

possible combinations of variables (2K; K = number of variables). Later, model ensembles were

used to find the probability of inclusion of each variable, depending upon their explanatory

power when they were included in the model. In other words, if the probability of inclusion

for a variable was about 1, it means the variable had the greatest explanatory power when it

was included in the model. The variable selection approach was conducted using the R 2.5.1

software [58].

Table 1. Summary of variables used in the study.

Variables Description Source Spatial Scale of data availability

Seasonal Rainfall totals

(mm)

Daily rainfall depths were aggregated over growing

seasons

NCEI

[44]

North gauging station for (EC, WC counties) and South gauging

station (AC, BE, CN, EV, JD, IB, SM, VE counties)

Mean Air Temperature

(Tmean,˚)

Daily mean air temperatures were averaged over growing

season

NCEI

[44]

North gauging station for (EC, WC counties) and South gauging

station (AC, BE, CN, EV, JD, IB, SM, VE counties)

Palmer Drought Severity

Index (PDSI)

Proxy for antecedent conditions [45]; Monthly PDSI

values were averaged for the growing season

NCEI

[44]

County Scale

Rice Yield (lb/acre) Total rice produced per unit area at annual scale NASS

[46]

County Scale

Area Planted (ha) Total area of rice planted at annual scale NASS

[46]

County Scale

Fertilizer Inputs (TN/TP) Fertilizer totals [47] County Scale

Number of Irrigation wells Total number of wells installed annually for irrigation LDNR

[48]

County Scale

Groundwater Level (m) Mean groundwater level from the surface USGS

[49]

County Scale

Oil price (USD) Nominal crude oil price was adjusted for inflation to 2015

prices

US Scale

Annual Rainfall totals

(mm)

Daily rainfall depths were aggregated at annual scale NCEI

[44]

North gauging station for (EC, WC counties) and South gauging

station (AC, BE, CN, EV, JD, IB, SM, VE counties)

https://doi.org/10.1371/journal.pone.0236757.t001
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We developed hierarchical Bayesian regression models to simulate rice yield and explore

the posterior distributions of regression coefficients for the key potential drivers derived from

the variable selection approach. The Bayesian estimation approach allowed us to incorporate

the uncertainty in relationships between rice yield and the drivers. Owing to missing data and

limited observations (~20) for some counties, we integrated all observations and developed a

fully pooled hierarchical Bayesian regression models for the entire rice producing region.

The multilevel Bayesian regression model included data (Eq 1) and process (Eq 2) models.

All drivers and the response variable were of different magnitude and scale, so for an unbiased

comparison of regression coefficients among drivers, the response variable and all drivers

were standardized before fitting the model [59]. In addition to the major drivers that may

influence rice yield, we used time as a factor in the model, as suggested [60].

θjy � Nðm; tÞ Eq ð1Þ

m ¼ aþ b1 � X1 þ b2 � X2 þ b3 � X3 þ b4 � X4 . . . bn � Xn Eq ð2Þ

where θ represents the distribution of all unknown parameters, y is observed rice yield, τ is

precision (inverse of standard deviation) and μ is the mean of the projected distribution of rice

yield, alpha is the intercept, and β1-βn are the coefficients of the most important variables (X1

to Xn). For simplicity, we refer to this long-term model with key covariates as ‘model 1’. To

test the role of fertilizers, we built another model with fertilizers plus the key drivers (Eq 2) for

a limited duration when fertilizer datasets were available. Here onward, we refer to this limited

duration fertilizer model as ‘model 2’.

As a standard approach, we wanted data to inform our inference, so uninformative priors

with uniform distributions were used for the parameters in data and process models (Eqs 1

and 2), and the gamma distribution based uninformative prior was used for the precision (τ;

Eq 1) [61]. Just Another Gibbs Sampler (JAGS) based on Gibbs sampling, a Markov Chain

Monte Carlo algorithm, was used to estimate distributions of parameters in the R-JAGS [62]

in R 2.5.1 [58]. We built four chains and ran 50000 simulations to assure the model conver-

gence (i.e., Rhat<1.1) for all parameters [63]. The initial 40,000 simulations were discarded

prior to parameter estimation. The Deviance Information Criteria (DIC) and classical coeffi-

cient of determination (R2) were computed to assess the model fit. As part of the post predic-

tive model check, we generated a new set of observations (i.e.,ypred) at every iteration and

compared them with actual observations of crop yield (y) as recommended [61]. If the model

performed well, predicted values (i.e.,ypred) should closely relate to the observed values (y).

3. Results

Rice yield showed a gradual increase over time, and the rate of increase was relatively steep

during the last 30 years of the study period (Fig 1). On the contrary, groundwater level

declined up-to 7m in the study counties (Fig 1), with a few exceptions where groundwater lev-

els were highly variable (i.e., EC, JD) or changed minimally (i.e., IB). The temporal patterns of

area planted showed mixed patterns (i.e., decrease, or no change) among counties during the

study period (Fig 2). The Palmer Drought Severity Index (PDSI), a surrogate for antecedent

conditions, exhibited a large number of negative PDSI values. The frequency of negative values

was consistently higher in more recent years. We found that the high frequency of dry condi-

tions corresponded to increases in the number of irrigation wells installed for most counties

(Fig 3), indicating number of irrigation wells can also serve as a substitute for dry conditions.

For the first three decades of the study period, the number of wells installed per county was
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less than 10. However, the number of irrigation wells dramatically increased near the end of

the study period.

We found that cropped area normalized fertilizer inputs (N & P) did not show any consis-

tent, unidirectional patterns for the limited years of data available (Fig 4). Further, a high cor-

relation (r>0.85) was noted between N and P fertilizers. Due to the similarity in temporal

patterns between N and P, and N being the commonly used fertilizer for rice production [64–

65], we built model 2 using N fertilizer data. Lastly, oil prices from 1960 to 2015 varied widely

with no clear temporal pattern (S3 Fig). S1 Table summarizes spearman’s correlation coeffi-

cients among explanatory variables. A strong correlation (r>0.5) was only noted between

growing season rainfall and PDSI and annual and seasonal rainfall totals (S1 Table). Thus,

minimal correlations were noted among most of the explanatory variables.

Fig 2. Rice area planted during the 56 years across the study counties in Louisiana.

https://doi.org/10.1371/journal.pone.0236757.g002

Fig 1. Spatiotemporal patterns of rice yield and groundwater level across 10 counties in the state of Louisiana from 1960 to 2015. The groundwater

level is measured from the land surface, so greater the level drier the well.

https://doi.org/10.1371/journal.pone.0236757.g001
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A variable selection approach ranked the key drivers of rice yield for the study period

(Table 2). The probability of inclusion was high (>0.9) for the number of irrigation wells,

groundwater level, mean air temperature, and area planted, indicating that these variables had

higher explanatory power than the rest of the variables. The PDSI, a surrogate for antecedent

conditions, and rainfall totals exhibited relatively weak influence on crop yield. Based on these

observations, we chose the top four key variables with a high probability of inclusion (>0.9) to

build model 1 and model 2 to simulate rice yield (Table 2).

Our long-term, hierarchical Bayesian model 1 had a DIC of 393 and a classical R2 of 0.82.

Fig 5 summarizes the medians and related confidence intervals of regression coefficients of the

four key variables (air temperature, area planted, groundwater level, number of irrigation

wells) that were used in model 1. S2 Table highlights the descriptive statistics for the model

intercept (α) and precision (τ). The precision (τ) highlighted the potential uncertainty in crop

yield across counties. The confidence intervals of regression coefficients demonstrated that the

uncertainty in relationships between rice yield and the key drivers (Fig 5). The median regres-

sion coefficient was maximum for the number of irrigation wells, followed by groundwater

level, area planted, and air temperature. The number of irrigation wells had a stronger influ-

ence than the groundwater level on predicting rice yield. A post predictive check of the model

1 was performed by estimating Pearson correlation coefficient (r) between predicted (ypred)

Fig 3. Spatiotemporal patterns of Palmer Drought Severity Index (PDSI) and numbers of irrigation wells installed across 10 counties of

Louisiana.

https://doi.org/10.1371/journal.pone.0236757.g003
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and observed (y) was about 0.9, and the 95% confidence interval ranged between 0.88 and

0.92.

Our limited time duration, rice yield model 2 had a DIC of 197 and R2 of 0.64. The distribu-

tion of the regression coefficient of N fertilizers was positively related to rice yield but had high

uncertainty (S4 Fig). As a post predictive check, model 2 had Pearson correlation coefficient

(r) between predicted (ypred) and observed (y) of about 0.8, and the 95% confidence interval

ranged between 0.74 and 0.84.

4. Discussion

Our work is unique in revealing the linkages among food, climate, and groundwater for a

region that has been showing increasing rice yield in the past 56 years. The hierarchical Bayes-

ian model 1 successfully simulated rice yield with the selected variables such as groundwater

level, area harvested, the number of irrigation wells, and air temperature. The proposed frame-

work was tested for rice, but it could be extended to other crops and other locations.

Crop yield models have shown the negative impacts of antecedent conditions on crop pro-

duction [66–69]. Our work showed a decline in rice yield during extremely dry conditions

Fig 4. Nitrogen and Phosphorus fertilizers inputs applied to the study counties.

https://doi.org/10.1371/journal.pone.0236757.g004

Table 2. Summary of the probability of inclusion for all variables.

Variables Probability of Inclusion

Groundwater level 1.00

Irrigation Wells 1.00

Air Temperature 0.999

Area Planted 0.999

Oil Price 0.761

Seasonal Rainfall 0.265

PDSI 0.133

Annual Rainfall 0.061

https://doi.org/10.1371/journal.pone.0236757.t002
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over a short time scale, but a minimal effect was noted over the long term (Figs 1 and 3). These

results are also supported by a global study in which authors demonstrated that the impact of

extreme conditions on crop yields is most notable at a short time scale, and the long term pat-

terns of yield are rarely altered [69]. In an attempt to offset the climate-induced demand, farm-

ers increased the installation of irrigation wells, especially during times of frequent dry

conditions (Figs 1 and 3). However, the installation of irrigation wells could not buffer the

decline in rice yield for the short-term, explaining the negative relationship between rice yield

and irrigation wells (Figs 1, 3 and 5). The farmer’s ability to install irrigation wells helped them

to sustain the yield over the long-term. Our work aligns with a recent study that highlighted

the efficacy of irrigation wells in maintaining the economic benefits of crop production for a

range of hydro-climatic conditions [70]. These findings underline a need to build short-term

and long-term adaption strategies to counter droughts and minimize yield gaps [68].

Utilizing an empirical relationship to simulate crop yield with groundwater has been rare

[71]. Groundwater can influence crop growth in multiple ways. For instance, groundwater

level may determine the water available for irrigation and plays a critical role in the sustenance

of water intensive crops, such as rice. Our findings showed a substantial decline in groundwa-

ter level for most study counties (Fig 1), which can be attributed to excessive pumping for

Fig 5. The posterior distributions of regression coefficients for the covariates used in the hierarchical Bayesian model 1. Black filled circle and

associated thick black line represent median and 50% confidence interval, respectively. Abbreviations: Irrigation wells (Iwells), Area planted (AP),

Groundwater level (GW), Mean Air temperature (Tmean).

https://doi.org/10.1371/journal.pone.0236757.g005
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irrigation [35–36]. It is likely that the current rate of groundwater decline may not sustain rice

production in the future, highlighting a need to develop sustainable adaption strategies to opti-

mize groundwater usage and to maintain rice yield in the region. An approach may be adopted

that is similar to the study where groundwater level and rice yield were linked to propose adap-

tion strategies for an alternate crop and reverse the groundwater declining trends [72]. The

empirical relationship between water level and crop yield proposed in our study may help us

simulate the impact of plausible changes in groundwater on crop production and prepares us

in advance to manage the demand for water. Such empirical relationships are also important

from an economic perspective because groundwater is intricately intertwined with global food

trade [73].

Area planted or “cropped area” is generally considered an important variable to simulate

crop yield [24,69,74]. However, simulating crop yield in response to varying (increasing or

decreasing) planted area could be difficult because the production per unit land may depend

upon the agricultural management practices and land productivity [11,15,24,65]. Our work

showed that cropped area declined or almost remained unchanged (Fig 2), but the rice yield

continued to increase over the 56 years (Fig 1). The negative relationship noted between

cropped area and rice yield could be attributed to the adaptation of better crop and water man-

agement practices by farmers in the region over time [15,75,76]. Farmers in the region have

gradually shifted to more productive hybrid cultivars over time [79]. Additionally, there has

been a 52% decline in the number of small farms in Louisiana and other rice-dominated

regions over the last two decades [65]. The consolidation of farms facilitated the use of

advanced precision agricultural equipment, resulting in improved rice yield over time [65].

We suggest that the combination of changes in agricultural management practices and the

usage of advanced technologies may have sustained and slightly improved the rice yield,

despite the decline in the cropped area. Similar to our work, several studies have reported a

negative relationship between crop yield and area planted [24,77,78]. For example, a study

attributed increasing rice yield (> 50%) to the use of a more productive cultivar, despite a

decline in the cropped area [77]. Overall, disentangling the mechanisms driving the relation-

ship between crop yield and area planted is a multifaceted problem, and highlights a need to

incorporate interactions of several agricultural management variables to examine the effect of

cropped area on the crop yield.

Our work also showed that the regression coefficients of air temperature could vary widely

and revealed the heterogeneity in the relationship between air temperature and rice yield over

the 56 years (Fig 5). Air temperature can influence crop yield via multiple pathways, such as by

mediating water availability, ecophysiology, and pest infestation [79,80]. Our results are in

agreement with studies using process-based crop growth [81,82] and statistical [17,25] models

that reported air temperature as an important driver of crop yield by utilizing a range of cli-

mate scenarios. For instance, temperature could increase or decrease yield, depending on lati-

tude and crop type [25]. Lastly, our variable importance analysis further confirmed that air

temperature was relatively more important variable than rainfall totals (Table 2). This result

agrees with a global scale study indicating that the air temperature may have a stronger influ-

ence on simulating crop yield than rainfall [25].

The role of fertilizers in augmenting crop growth and increasing yield from regional to

global scales has been well documented [83–86]. However, our results showed no unidirec-

tional change in N fertilizer amounts over time (Fig 4). The model 2 with N fertilizer did show

a positive relationship with rice yield, but this relationship is subject to high uncertainty (S4

Fig). These findings indicated that the N fertilizer may have a contribution, albeit limited and

less important than other variables, to increasing rice yield in this region. The lack of a signifi-

cant relationship between fertilizer and rice yield could be attributed to limited datasets.
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Conversely, there is some evidence from the study region suggesting a shift towards more effi-

cient application of N in rice farms [87]. Therefore, we speculate that due to the high costs

associated with fertilizers, farmers are carefully evaluating their fertilizer needs and relying

more on other management practices (e.g., hybrid cultivar, technology) to increase yield in

this region.

Technological development is an important variable that we were unable to consider

directly in the models [65]. We attempted to look into this possible driver by using farm-

related income retrieved from NASS as a surrogate. We assumed that the rise in income would

allow farmers to afford better equipment, resulting in higher crop productivity. Mean annual

farm-related income at the 5yr interval increased by almost two-fold since the inception of the

survey in 1997 (S3 Table). Therefore, it is likely that rising farm-related income might have

allowed farmers to use more efficient technologies, leading to higher productivity. However,

additional data would be needed to include this in the modeling framework.

5. Conclusions and implications

The proposed Bayesian-based framework offers a novel way to dynamically model the impact

of climate, groundwater, and agricultural-related drivers on food production. The variable

selection approach demonstrated that air temperature was a more important climate driver

than rainfall totals, indicating the potential sensitivity of rice production to climate change and

warmer temperatures in the near future. Oil prices and PDSI had relatively low influence on

rice yield. The ability of the farmers to install wells allowed them to buffer the influence of

extremely dry conditions on rice yield over the long-term. However, the installation of irriga-

tion wells could not sustain the decline in rice yield in the short-term, which could explain the

negative relationship between rice yield and irrigation wells. The rice acreage declined or

showed no change, but the rice yield continued to increase, indicating the implementation of

efficient crop management practices such as more productive hybrid cultivar and the optimal

use of advanced precision agricultural equipment. We did not detect significant influence of N

fertilizer on rice yield.

Our findings have implications for food security because rice is grown in approximately

100 countries and fulfills energy requirements for more than 3 billion people worldwide [88].

Understanding the intimate linkages among food-groundwater-climate is critical to framing

holistic climate change adaption strategies, especially in the developing world, with limited

resources [89]. Another key implication of our work is about the importance of incorporating

uncertainty in the relationship between crop yield and associated drivers in the statistical mod-

els. Based on the point estimates (i.e., median) and confidence intervals, both rice yield models

exhibited some degree of uncertainty in the relationships between yield and covariates. These

results pointed to the importance of drawing inferences based on both point and confidence

intervals of the posterior distributions.
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