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Abstract

Background: Hedgehog (Hh) signaling is over-activated in several solid tumors where it plays a central role in cell growth,
stroma recruitment and tumor progression. In the Hh signaling pathway, the Smoothened (SMO) receptor comprises a
primary drug target with experimental small molecule SMO antagonists currently being evaluated in clinical trials.

Principal Findings: Using Shh-Light II (Shh-L2) and alkaline phosphatase (AP) based screening formats on a ‘‘focused
diversity’’ library we identified a novel small molecule inhibitor of the Hh pathway, MS-0022 (2-bromo-N-(4-(8-
methylimidazo[1,2-a]pyridin-2-yl)phenyl)benzamide). MS-0022 showed effective Hh signaling pathway inhibition at the
level of SMO in the low nM range, and Hh pathway inhibition downstream of Suppressor of fused (SUFU) in the low mM
range. MS-0022 reduced growth in the tumor cell lines PANC-1, SUIT-2, PC-3 and FEMX in vitro. MS-0022 treatment led to a
transient delay of tumor growth that correlated with a reduction of stromal Gli1 levels in SUIT-2 xenografts in vivo.

Significance: We document the in vitro and in vivo efficacy and bioavailability of a novel small molecule SMO antagonist,
MS-0022. Although MS-0022 primarily interferes with Hh signaling at the level of SMO, it also has a downstream inhibitory
effect and leads to a stronger reduction of growth in several tumor cell lines when compared to related SMO antagonists.

Citation: Strand MF, Wilson SR, Dembinski JL, Holsworth DD, Khvat A, et al. (2011) A Novel Synthetic Smoothened Antagonist Transiently Inhibits Pancreatic
Adenocarcinoma Xenografts in a Mouse Model. PLoS ONE 6(6): e19904. doi:10.1371/journal.pone.0019904

Editor: Eric J. Bernhard, National Cancer Institute, United States of America

Received March 18, 2010; Accepted April 20, 2011; Published June 15, 2011

Copyright: � 2011 Strand et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the Research Council of Norway (http://www.forskningsradet.no/), and by ChemDiv Inc. (http://www.chemdiv.com/). The
Research Council of Norway had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. As indicated under the
competing interests section, Drs. Alex Khvat, Ilya Okun and Dan Holsworth are employed by ChemDiv Inc., and ChemDiv Inc. had a partial role in the study design,
execution of the experiments, data analysis, and decision to publish and in reviewing the manuscript. The MS-0022 chemotype has been patented by ChemDiv
Inc. (PCT/IB2008/055258; WO 2009/077956 A2 and WO 2009/077956 A3).

Competing Interests: The chemotype detailed in this study is part of a patent filed by Drs. Alex Khvat, Ilya Okun and others titled: HETEROCYCLIC INHIBITORS
OF AN Hh-SIGNAL CASCADE, MEDICINAL COMPOSITIONS BASED THEREON AND METHODS FOR TREATING DISEASES CAUSED BY THE ABERRANT ACTIVITY OF AN
Hh-SIGNAL SYSTEM (PCT/IB2008/055258; WO 2009/077956 A2 and WO 2009/077956 A3). There are currently no products arising from the work under
development based on the chemotype detailed in this study. None of the authors, aside from Drs. Alex Khvat, Ilya Okun and Dan Holsworth who are employed by
ChemDiv Inc, have any financial relationships that could be perceived as relevant. The authors declare no other competing interests. The competing interest
detailed here does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: martin.frank.strand@rr-research.no (MFS); stefan.krauss@rr-research.no (SK)

Introduction

The Hedgehog (Hh) signaling pathway is one of the key

regulators in vertebrate development and is highly conserved

among species from fruit flies to humans [1–4]. It is also one of the

key pathways that regulate stem cells in the adult body [5].

Aberrant Hh signaling has been associated with a number of

human tumors where the pathway has been implicated in tumor

growth, malignancy, metastasis, and cancer stem cells [6–9]. Thus,

the Hh pathway has become a focus for drug discovery and

development [10–15].

The Hh pathway is unusual by several means, and central

aspects of its functioning remain to be explored. The morphogens

IHH, DHH and SHH interact with the 12-pass transmembrane

receptor Patched (PTCH). PTCH inhibits the physically separate

7-pass transmembrane receptor Smoothened (SMO) by gating the

movement of SMO into cilia. Evidence suggests, that upon Hh

binding, PTCH leaves the shaft of the primary cilium which allows

SMO to enter from its inactive endosomal state into cilia [16–18].

Furthermore, it has been proposed that SMO exists in an inactive

and active state [19,20] that may be regulated through a

hypothesized sterol-like small molecule [4,19,21]. SMO migration

into the primary cilium is followed by the inactivation of

Suppressor of fused (SUFU) [22]. Current data suggest that

SUFU, being a part of a multiprotein complex that also includes b-

arrestin, KIF3a and IFT88, impedes the nuclear localization of

GLI proteins [16,17,22]. In addition it may act as a nuclear co-

repressor [23]. SUFU is ubiquitinated upon the activation of Hh

signaling which initiates its degradation in the proteasomes [24]

leading to the release of GLI2/3 into the nucleus where they

regulate transcription of downstream target genes including the

activating transcription factor GLI1. Although GLI1 presence in
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the nucleus is primarily a consequence of active Hh signaling, it

can be attenuated by other signaling pathways [25].

There are several key mechanisms in tumorigenesis that may

involve Hh/GLI signaling [11,13]; first, inactivating mutations in

the negative regulators PTCH or SUFU, or activating mutations

in the positive regulator SMO cause pathway activation in a cell-

autonomous and Hh ligand independent manner [5,26–28];

secondly, ligand-dependent autocrine mechanisms in which

cancer cells both secrete and respond to Hh ligands causing cell-

autonomous pathway activation [29,30]; thirdly, paracrine

mechanisms in which stromal cells are induced by Hh producing

cancer cells [31–34]. Both autocrine and paracrine effects can lead

to heterogeneity with respect to Hh pathway activity within a

tumor [35]. Several SMO antagonists have been developed and

early data show clinical efficacy in selected tumors [36]. However,

there has been some debate whether the in vivo growth inhibition

observed for Hh antagonists is due to inhibition of autocrine or

paracrine Hh signaling. Several recent studies suggest that the

primary role of Hh inhibition in Hh secreting tumors may be due

to the inhibition of paracrine signaling involving tumor-stroma

interactions [33,37–41]. In particular, tumor derived SHH has

been shown to promote desmoplasia in pancreatic cancer [42],

where the induced stroma in combination with poor vasculariza-

tion may act as a barrier that is linked to a poor response to

chemotherapy [40,41].

Following the identification of cyclopamine as a natural SMO

inhibitor [43–45], several Hh pathway antagonists have been

reported that either act at the level of SMO [46], GLI1 [47], or

other parts of the pathway [10,13,36]. Among these inhibitors,

some have been progressed to clinical trials. One of these, GDC-

0449 [15,34,48], is currently in several phase I and phase II

clinical trials for various types of cancers, including pancreatic

cancer (trial ID: NCT01064622 and NCT00878163). Also, the

cyclopamine derivative IPI-926 [14] has been through a phase I

clinical trial in patients with non-disclosed advanced and/or

metastatic solid tumors, and is currently in a phase Ib/II clinical

trial in patients with untreated metastatic pancreatic cancer (trial

ID: NCT01130142).

Here, we describe the identification and evaluation of a novel

small molecule SMO antagonist, MS-0022. MS-0022 displays a

differential efficacy on various solid tumors in vitro and on PANC-1

and SUIT-2 xenografts in vivo. The reported findings are a further

confirmation of the potential of small molecule Hh antagonists as

anticancer agents.

Results

Identification of the novel Hh antagonist MS-0022
To identify novel antagonists to Hh signaling, a focused diversity

library of 12,000 compounds (10 mM) was screened using

C3H10T1/2 cells induced by recombinant human SHH and

employing an alkaline phosphatase (AP) readout in high throughput

format [49], followed by a verification step using Shh-L2 cells. MS-

0022 (2-bromo-N-(4-(8-methylimidazo[1,2-a]pyridin-2-yl)phenyl)-

benzamide), was identified as a potent Hh pathway antagonist with

an IC50 of 100 nM in Shh-L2 cells. The structure of MS-0022 was

confirmed by 1H and 13C NMR (Table S1 and Figure S1). In order

to explore the parts of the core structure required for activity in MS-

0022, a small scale broad structural analysis was performed based

on activity inhibition in Shh-L2 cells. As shown in Table 1, a

deletion of the 2-bromophenyl or the Imidazo[1,2-a]pyridine

moiety of MS-0022 led to a substantial loss of activity (for the

structure backbone see Figure 1A). The activity was partially

retained when replacing the Imidazo[1,2-a]pyridine system with a

napthlene-2-ylcarbamoyl system (MS-0018) or a 6-morpholinopyr-

idazin-3-yl system (MS-0015). A further focused structural analysis

of a limited number of MS-0022 analogs is shown in Table 2 (for the

base structure see Figure 1B).

Changing R2 from a hydrogen to a methyl group reduced

activity 6-fold (MS-0030). Incorporation of a nitrogen atom in

position Y reduced activity 23-fold (MS-0031). Substitution of R3

with a 2-fluorophenyl group reduced activity 1.6-fold (MS-0032).

Interestingly, if R1 was replaced with a hydrogen and R3 with 4-

methoxyphenyl, the activity dropped 1.8-fold (MS-0033). If R1 of

MS-0033 was replaced with a nitrogen atom in the ring (MS-0035),

the activity dropped an additional 8-fold. In general, a nitrogen

atom in the 8-position of the imidazo[1,2-a]pyridine ring system

caused a significant reduction in activity. Furthermore, a nitrogen

atom placed in position Y impacted the activity negatively.

A dose response curve of MS-0022 in Shh activated Shh-L2

cells, is shown in Figure 1C, using cyclopamine and GDC-0449 as

a comparison. MS-0022 exhibited an IC50 of 100 nM, while

cyclopamine exhibited an IC50 of 210 nM and GDC-0449 an

IC50 of 30 nM.

To ascertain that the compounds interacted at the level of

SMO, the most potent compounds, MS-0022, MS-0032 and MS-

0033 were shown to compete with BODIPY-cyclopamine with

IC50
’s of 259, 93 and 287 nM respectively (Table 2). Thus, MS-

0022 and analogs of MS-0022, as well as GDC-0449, inhibit Hh

Table 1. Activity of MS-0022 and deletion/substitution analogs (See structure in figure 1A).

ID R1 R2 R3 MW IC50 (Shh-L2, nM)

MS-0022 8-methylimidazo[1,2-a]pyridine – 2-bromophenyl 406.3 100

MS-0011 8-methylimidazo[1,2-a]pyridine – Methyl 265.3 .20,000

MS-0012 8-methylimidazo[1,2-a]pyridine – 2-propyl 293.4 .20,000

MS-0013 – O-Amide 2-bromophenyl 319.2 .20,000

MS-0014 Propyl – 2-bromophenyl 318.2 10,000

MS-0015 6-morpholinopyridazin-3-yl – 2-bromophenyl 439.3 800

MS-0016 (6-phenylpyrimidin-4-yl)amino – 2-bromophenyl 445.3 2000

MS-0017 naphthalen-2-ylcarbamoyl – 2-bromophenyl 445.3 280

MS-0018 2-benzylidenehydrazinecarbonyl – 2-bromophenyl 442.3 5000

Table depicting molecular weight and bological activity (nM IC50) of deletion or substitution analogs of MS-0022 as measured by pathway inhibition in Shh induced
Shh-L2 cells.
doi:10.1371/journal.pone.0019904.t001
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signaling at the level of SMO. MS-0022 inhibited SMO with

similar affinity as cyclopamine.

MS-0022 blocks Hh signaling at the level of SMO, but has
additional activity downstream of SUFU

MS-0022 was shown to compete with BODIPY-cyclopamine,

and the observed effect on C3H10T1/2 cells and Shh-L2 cells

suggested that MS-0022 blocks Hh signaling at the level of SMO.

However, to further verify the function of MS-0022 as a SMO

blocker, the activity of MS-0022 was evaluated in experiments that

explore the various modes of Hh signaling induction in mouse cell

lines. Upstream of Gli, Hh signaling can be induced by the Hh

morphogens; by functional loss of Ptch, as present in the

constitutively active Ptch2/2 mouse embryonic fibroblast

(MEF) cell line; by a combination of the activating oxysterols

hydroxycholesterol 20-alpha and hydroxycholesterol 22S (Ac-

tOXS) and by the SMO agonist SAG and by Sufu inactivation, as

present in Sufu2/2 MEFs. As seen in Figure 1D, MS-0022

blocked Hh pathway induction in Shh, SAG and ActOXS induced

Shh-L2 cells similarly to GDC-0449 and cyclopamine. MS-0022

also reduced Gli1 mRNA expression in Ptch2/2 MEFs, similar

to GDC-0449 and cyclopamine (Figure 1E). Cyclopamine blocks

Smo function within primary cilia without blocking its transloca-

tion to the cilia. In contrast, MS-0022 effectively blocked ciliary

accumulation of Smo (Figure 1F-H), indicating an effect on the

level of Smo similar to GDC-0449, but divergent from

cyclopamine. Primary cilia in reporter cells were identified using

an antibody against the ciliary maker acetylated tubulin.

Acetylation of tubulin is found in stabilized microtubular

structures like cilia and mitotic spindles, and has effectively been

used as a marker for cilia in various studies [50,51].

As expected for a SMO antagonist, cyclopamine and GDC-

0449 exhibited little inhibitory effect on Hh signaling downstream

of Smo in Sufu2/2 MEFs. In contrast, MS-0022 reduced relative

Gli1 mRNA levels Sufu2/2 MEFs by 50% at a dose of 10 mM

(Figure 1I). Further downstream, at the level of Gli1 or Gli2, Hh

pathway inhibitory effect by MS-0022 was not detected as

indicated by the lack of inhibition of a forced expression of either

of the two transcription factors with 10 mM of MS-0022 (Figure 1J).

MS-0022 was able to show partial inhibition (Figure 1J) of Gli1 or

Gli2, only when the Hh signaling pathway was further activated by

Shh. In order to further elucidate the activity of MS-0022, Sufu2/

2 MEF cells that have been treated with MS-0022, cyclopamine

or GDC-0449 were stained with an antibody recognizing Gli1.

The intensity of Gli1 staining in the nucleus and the cytoplasm was

measured, and neither of the treatments resulted in a shift in the

ratio of Gli1 in the nucleus versus the cytoplasm (Figure 1K). Thus

the reduction of Gli1 mRNA levels in the Sufu2/2 MEF cells by

MS-0022 was not a consequence of Gli1 relocation in the cell.

However, while the treatment with 20 mM MS-0022 did not alter

the ratio of nuclear versus cytoplasmic Gli1, the total level of Gli1

in the cells was reduced (Figure 1 L–M), correlating well with the

Table 2. Activity analysis of MS-0022 chemotype (See structure in figure 1B).

ID R1 R2 R3 X Y MW
IC50 (Shh-L2,
nM)

IC50 (nM, BODIPY-
cyclopamine inhib.) cLogP PSA

MS-0022 CH3 H 2-bromophenyl C C 406.3 100 259 5.44 46.4

MS-0030 CH3 CH3 2-bromophenyl C C 420.3 630 – 5.86 46.4

MS-0031 CH3 H 2-bromophenyl C N 407.3 2300 – 3.88 59.29

MS-0032 CH3 H 2-fluorophenyl C C 345.4 161 93 4.39 46.2

MS-0033 H H 4-methoxyphenyl C C 343.4 181 287 4.24 55.63

MS-0034 – H 2-methoxyphenyl N C 344.4 .10,000 – 3.21 68.5

MS-0035 – H 4-methoxyphenyl N C 344.4 877 – 3.1 68.52

MS-0036 – H 3,5-dimethylphenyl N C 342.4 3,700 – 4.06 59.29

MS-0037 – H 3-chlorophenyl N C 348.8 1,870 – 3.87 59.29

MS-0038 – H 2-trifluoromethylphenyl N C 382.3 1,150 – 2.98 59.3

Biological activity of side group analogues of MS-0022 measured by pathway inhibition in Shh induced Shh-L2 cells and by BODIPY-cyclopamine competition, including
cLogP (computed LogP, octanol/water partition coefficient) and polar surface area (PSA).
doi:10.1371/journal.pone.0019904.t002

Figure 1. Identification and activity of MS-0022. A) Structure for Table 1. B) Structure for Table 2. C) Dose response curves of indicated
compounds in Shh activated Shh-L2 cells after 48 hours treatment (n = 8). D) Shh-L2 cells activated with Shh, 200 nM SAG and ActOxs (5 mM+5 mM)
treated with indicated compounds at 5 mM for 48 hours. Graph displays fold Hh reporter activity with standard deviation (SD) (n = 3). The basal
activity (DMSO) was set as = 1. E) Normalized (GADPH) Gli1 mRNA expression in Ptch2/2 MEF after 48 hours of treatment with indicated compounds
at 5 mM. Graph displays fold expression compared to DMSO control, with SD (n = 3). F–H) Immunostaining of Ptch 2/2 MEF cells treated with MS-
0022 or DMSO control for 24 hours (anti-smoothened (Smo) in green, anti acetylated Tubulin (aTub) in red, DAPI in blue). Treated and control culture
slides (n = 3) were stained and 3 regions on each slide was imaged and analyzed. F) Graph displaying the ratio of Smo positive cilia versus total
number of cilia in stained cells by eye count, with SD. G) Graph displaying the ratio of mean ciliary intensity of Smo staining versus aTub as quantified
using ImageJ software, with SD. I) Dose response curve of MS-0022, GDC-0449 and cyclopamine by normalized (GAPDH) Gli1 mRNA expression in
Sufu 2/2 MEF after 72 hours treatment (n = 3). J) NIH3T3 cells cotransfected with GliBS-Luc in combination with pBluescript (pBS), FL-GLI1-HA or
Gli2-GFP, were treated with DMSO, 50% Shh conditioned medium, 10 mM MS-0022 and a combination of Shh and 10 mM MS-0022 for 48 hours.
Graph displays relative Hh pathway activity (reporter firefly luciferase normalized for renilla transfection control), with SD (n = 3). K–M)
Immunostaining of Sufu2/2 MEF cells treated with DMSO control, MS-0022 (5, 10 and 20 mM), cyclopamine (20 mM) and GDC-0449 (20 mM) for
48 hours (n = 3). K) Graph displaying ratio of nuclear Gli1 staining intensity versus cytoplasmic Gli1 staining intensity, with SD. L) Graph displaying
sum of nuclear and cytoplasmic Gli1 staining intensity in treated cells, with SD.
doi:10.1371/journal.pone.0019904.g001
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reduction in Gli1 mRNA. At the same dose GDC-0449 also

reduced Gli1 levels in the cells, but to a lesser extent than MS-

0022 (Figure 1L), while cyclopamine had no significant effect.

We conclude that MS-0022 acts at the level of SMO blocking its

ciliary transport in the nanomolar range. An additional inhibitory

effect of MS-0022 on Hh signaling downstream of Sufu that

required a dose in the 10–20 micro molar range is linked to a

reduction of Gli1 protein levels.

MS-0022 blocks tumor growth in pancreatic
adenocarcinoma, prostate carcinoma and melanoma cell
lines in vitro

To test in vitro efficacy of MS-0022, we profiled the presence of

central components of the Hh signaling pathway in the pancreas

adenocarcinoma cell lines PANC-1 and SUIT-2, the prostate

cancer cell line PC-3, and the melanoma cell line FEMX by real

time PCR (Table 3). Although all cell lines expressed detectable

levels of GLI1 mRNA, the level of expression varied, as did other

components of the Hh signaling pathway. However, the clear

presence of the direct Hh downstream marker PTCH1 in all cell

lines, indicated Hh/GLI1 pathway activity.

To determine if GLI1 mRNA levels in the tumor cells could be

reduced by MS-0022, real time PCR was carried out on cells treated

with different doses of MS-0022, cyclopamine and GDC-0449 for

48 hrs (Figure 2A). In parallel, growth inhibition was measured by

MTS (Figure 2B). For the PANC-1 cell line, growth inhibition and

reduction of GLI1 mRNA levels upon treatment, correlated well at

10 mM for all three compounds. At 5 mM, however, MS-0022 and

GDC-0449 reduced growth without reducing GLI1 mRNA levels.

In the SUIT-2 cell line, MS-0022, cyclopamine and GDC-0449 all

reduced GLI1 mRNA levels, but only MS-0022 reduced growth.

For the PC-3 cell line, both MS-0022 and GDC-0449 reduced GLI1

mRNA levels, although growth was only reduced by MS-0022. For

the FEMX cell line, the growth and GLI1 mRNA levels correlated

well at 10 mM, but not at 5 mM. In conclusion, using the SMO

antagonists GDC-0449 and cyclopamine, no correlation between

growth inhibition and reduction of GLI1 mRNA levels could be

detected in the four tumor cell lines PANC-1, SUIT-2, PC-3 and

FEMX. However, a correlation between growth inhibition and

GLI1 mRNA levels were apparent at a dose of 10 mM MS-0022

across all four tumor cell lines. The data set is consistent with an

additional Hh pathway inhibitory effect of MS-0022 downstream of

SMO/SUFU that requires relative higher doses of the compound as

compared to direct SMO inhibition. As seen in Figure 2B, both

CDG-0449 and cyclopamine did not lead to more than 30% growth

reduction in the tested cell lines PANC-1, SUIT-2, PC-3 and FEMX

during a 4 day exposure to 10 mM compound in a MTS assay. In

contrast, at the same dose, MS-0022 reduced growth from 40%–

70% in the same cell lines (Figure 2B). An immortalized,

non-tumorigenic hepatocyte cell line, THLE-2, was included as a

control, and the THLE-2 cells responded with a 25%–30% growth

reduction to 10 mM compound exposure possibly indicating a weak

Hh dependency in this control cell line (Figure 2B).

To address growth inhibition in a model relevant to xenograft

studies, PANC-1 and SUIT-2 cells were seeded in a soft agar

colony forming assay. A dose response curve was generated for

MS-0022, while using GDC-0229 and cyclopamine as controls.

For both cell lines, treatment with MS-0022 led to a reduction in

large (Figure 2C–D, and G) and medium sized colonies in a dose

dependant manner (Figure 2E–F, and G). Also upon MS-0022

treatment, an increase in the number of small colonies was

observed, indicating that the reduced growth of the small and

medium sized colonies is linked to decreased proliferation rather

than apoptosis. The cyclopamine control was excluded from the

dataset due to problems with crystallization of cyclopamine in the

soft agar.

Long term growth assays with 2–3 serial passages (5–7 days per

passage) further confirmed the efficacy of MS-0022 on the tested

PANC-1, SUIT-2, PC-3 and control THLE-2 cell lines (Figure 2H).

In the presence of 5 mM MS-0022, there was an initial growth

reduction in the first passage of the control THLE-2 cells, but by the

second passage the growth was not affected by the treatment. In

contrast, the growth was reduced by 80% in PANC-1 cells and PC-3

cells after passage 2. Serial passage growth reduction was not

significant for passage 2 and 3 in the SUIT-2 cells.

Pathway specificity
To address possible effects of MS-0022 on other central

signaling pathways, we analyzed whether MS-0022 affected Wnt

and TNF-a signaling using firefly luciferase reporter assays. As

seen in Figure 3A, MS-0022 did not significantly block L1 medium

induced Wnt signaling in HEK293 cells, nor did it block TNF-a
induced NfkB signaling in NIH3T3 cells at 10 mM and 20 mM

(Figure 3B). Instead, MS-0022 led to a slight increase of NFkB

signaling (Figure 3B). In addition, MS-0022 was tested at 10 mM

in a Millipore diversity panel comprised of 58 kinases. MS-0022

did not significantly inhibit the activity of any of the tested kinases

(Table 4).

Efficacy and bioavailability of MS-0022 in an in vivo
pancreatic adenocarcinoma xenograft model

In preparation for in vivo xenografts, the bioavailability of MS-

0022 in mouse plasma was evaluated. The maximum concentra-

tion (Cmax) of the compound in plasma was 934 ng/mL upon a

5 mg/kg IV injection. For a 5 mg/kg IP injection, it was 378 ng/

mL and after 5 mg/kg PO administration, it was 912 ng/mL

(Figure 3D–F and Table 5). Per oral bioavailability was calculated

to be 98%. The half-life (T1/2) after MS-0022 administration was

between 55 and 60 minutes, indicating that MS-0022 has a

moderate stability in plasma. Compound concentration in mouse

liver tissue 2 hours after IP administration was 244 ng/g. Thus,

MS-0022 readily enters tissue from the plasma. Overall, the

compound exhibited good exposure and moderate stability in

plasma.

Next the in vivo tolerability of MS-0022 was examined. No

statistically significant alterations in body weight were observed in

animals treated with daily IP injections of 200 mg/kg of MS-0022

for 5 days (Figure 3G), indicating that the compound was well

tolerated. Mice did not show any outward signs of toxicity or other

side effects (weight loss, fur ruffling, hunched posture). Even

though there were no outward signs of side effects or toxicity, we

analyzed the AST/ALT levels as a measure of liver toxicity in

xenografted animals that had been treated with MS-0022 for a

Table 3. Expression profile, Tumor cell lines.

PTCH1 SMO GLI1 GLI2 GLI3 SHH HIP SUFU

PANC-1 +++ + +++ +++ + +++ +/2 +++

SUIT-2 ++ ++ ++ ++ nt +++ nt nt

PC-3 ++ ++ ++ + + +++ + +

FEMX ++ + + + 2 2 2 +

Expression analysis of tumor cell lines according to the PCR cycle where
amplification was detected, starting with 1 mg mRNA (+++ = 20–25, ++ = 25–30,
+ = 30–35, 2 = .35 and nt = not tested).
doi:10.1371/journal.pone.0019904.t003
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longer time period than 5 days. As the liver normally acts as the

primary site of drug metabolism, AST/ALT serum levels is an

easily obtainable measure of toxic side effects. As seen in

Figure 3C, AST/ALT levels remained greater than 1 in mice

treated with 50 mg/kg of MS-0022 after a 30 days injection

scheme (5 day injection, 2 day pause), suggesting that at this dose

MS-0022 was well tolerated without apparent toxic effects in the

liver in comparison to the control treated mice.

In-vivo efficacy of MS-0022 was tested against two pancreatic

adenocarcinoma cell lines PANC-1 and SUIT-2. For PANC-1,

subcutaneous tumors were established in CB17/SCID mice

(n = 6). Mice were randomized and dosed with control solvent

(water with 1% Tween 80) or MS-0022 (QD, IP at 50 mg/kg) in a

5 day injection/2 day pause scheme. Tumor volumes were

evaluated throughout the treatment by measuring two perpendic-

ular diameters with calipers, and by calculating tumor volume

(mm3) using the formula V = a6b26,Pi./6. At the end of the

treatment there was a 38% reduction in tumor volume and a 33%

reduction in tumor weight compared to tumors in control solvent

treated littermates (Figure 3H–I). The growth curve (Figure 3H),

shows that the tumors in both control and treated groups

eventually reached a similar growth pattern, and the growth

inhibition by MS-0022 appeared to be transient. At the endpoint

of the experiment, no statistically relevant difference in human

(tumor) or mouse (stroma) Ptch1 or Gli1 mRNA levels could be

identified in the extracted tumor mRNA (P.0.05) (Figure 3J).

Compared to PANC-1, SUIT-2 cells displayed a stronger

responsiveness to MS-0022 in vitro, both in the reduction of

GLI1 expression and in growth (MTS assay). Therefore, the

effect of MS-0022 was also tested in vivo using SUIT-2 pancreas

adenocarcinoma cells, and subcutaneous tumors were estab-

lished in CB17/SCID mice (n = 11). Mice were randomized

and dosed daily with solvent or 50 mg/kg MS-0022 via PO

administration. The MS-0022 treatment did not result in any

outwards signs of toxicity in the mice, and animal weight

(Figure 4C) was unaffected by the treatment when compared to

the animals that received control solvent. After 7 days, 3 mice

from each treatment group were sacrificed and the tumors

were harvested for analysis, while the remaining animals (n = 8)

were sacrificed after 18 days of treatment, due to tumor

burden. In general, the SUIT-2 tumors showed a more

aggressive growth in comparison to the PANC-1 tumors. At

the endpoint of the experiment, a 27% reduction in tumor

volume and a 36% reduction in tumor weight were measured

in treated animals compared to the control group (Figure 4A–

B). Similar to PANC-1 xenografts (Figure 3D), a transient delay

of growth was observed during the first days of treatment,

followed by a recovery of growth with growth rates similar to

untreated tumors. As in PANC-1 xenografts, no statistical

relevant reduction of human or mouse Gli1, or Ptch1 mRNA

levels was detectable at the endpoint of the experiment

(Figure 4E). However, when samples from the SUIT-2

xenografts were analyzed after 7 days of treatment only,

mouse (stromal) Gli1 mRNA in the tumors was reduced

significantly (P,0.001), while both human and mouse PTCH

and human GLI1 remained unaltered (P.0.05) (Figure 4D).

There was no detectable difference in animal weight between

the control and MS-0022 treated animals (Figure 4C). As

inhibition of SMO has been linked to an increase in

vascularization in poorly vascularized tumors [41], we inves-

tigated the vascularization of the tumor tissue upon MS-0022

treatment. Samples from the harvested tumors were cryosec-

tioned, fixed and stained for the presence of the endothelial cell

marker (CD31), as a marker for microvessles in tumor tissue.

Large variations in SUIT-2 tumor shape including the

occurrence of necrotic cavities, led to substantial variations in

the vascularization of the tumors in all samples derived after 7

or 18 days of treatment and in control samples. Due to

substantial variability, no apparent difference between the

vascularization of samples derived from treated and untreated

animals was detectable. Irrespective of MS-0022 treatment,

CD31 staining revealed high vascularization at the tumor edge,

while vascularization in the center of the tumor was generally

low (Figure 4F).

Discussion

MS-0022 was identified as a potent antagonist of Hh signaling

that blocks the translocation of SMO to the cilia displaying a

transient in vivo antagonistic effect in a pancreatic adenocarcinoma

xenograft model.

MS-0022 contains a core structural motif common to other

SMO antagonists. Analysis of the core structure of MS-0022

revealed that the ‘‘phenyl-amide-phenyl’’ (Figure 1A, where R3 =

phenyl) portion of the molecule was also present in HhAntag [33],

GDC-0449 [52], Sant-2 [53] and Compound Z [54]. Deleting the

2-bromobenzene moiety of MS-0022 resulted in a total loss of

activity, confirming the importance of the identified core structure

for the activity of this class of molecules. Interestingly, although the

‘‘phenyl-amide-phenyl’’ core is identical in all of these molecules,

there are also important differences in the structures. HhAntag,

Sant-2 and Compound Z are closer to each other in structure than

MS-0022 and GDC-0449, as they share a 1H-benzoimidazo

structure coupled in the 3 position to the 4-chloro-N-phenyl.

Interestingly, when the imidazo[1,2-a]pyridine of MS-0022 was

deleted, activity was reduced. However, when it was substituted

with groups that contain nitrogen in ortho position to the N-

phenyl, partial activity was retained. Similar to GDC-0449 and

cyclopamine, MS-0022 inhibited the Hh pathway activity after

induction by various agonistic factors like Shh, oxysterols and

SAG. The ability of MS-0022 to compete with BOPIDY-

cyclopamine binding suggests that it acts by a similar mode of

action as structurally related SMO antagonists, such as GDC-

0449. This was further confirmed by the inhibition of SMO

translocation to the primary cilium by MS-0022. While MS-0022

inhibited SMO in the nanomolar range, it displayed an additional

effect on the Hh pathway downstream of SMO that required a

higher dose. In the micromolar range, MS-0022 led to a significant

Figure 2. In vitro activity in tumor cell lines and a control cell line. A) Graphs displaying dose response curves of normalized (GAPDH) Gli1
mRNA expression in indicated tumor cell lines after 48 hour treatment of MS-0022, cyclopamine and GDC-0449. Graphs include standard deviation
(n = 3). B) Graphs displaying 4 day dose response curves of cell growth as a % growth of DMSO control (MTS) for PANC-1, SUIT-2, PC-3, FEMX and
THLE-2 cells treated with MS-0022, GDC-0449 and cyclopamine at the indicated dose, with SD (n = 8) C-G) Soft agar colony formation assay of PANC-1
(21 days) and SUIT-2 (14 days) cells treated with DMSO or MS-0022 and GDC-0449 at the indicated doses (n = 3). Each well was imaged and colonies
were counted by eye according to size. Graphs displaying the colony count of larger colonies (0.5–1 mm) are shown in C) for PANC-1 and D) for SUIT-
2, with SD. Graphs displaying the colony count of medium (0.2–0.5 mm) and small (,0.2 mm) colonies are shown in E) for PANC-1 and F) for SUIT-2,
with SD. H) Passage growth assays with PANC-1, SUIT-2, PC-3 and THLE-2 cell lines treated with DMSO control or 5 mM MS-0022 for 2–3 passages of
5–7 days, displayed as % growth of DMSO control, with SD (n = 3).
doi:10.1371/journal.pone.0019904.g002
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Figure 3. In vitro MS-0022 pathway selectivity, in vivo tolerance and distribution, and activity in a PANC-1 xenograft model. A)
HEK293 cells cotransfected with SuperTop-luc (ST-Luc) and pRL-TK, were treated with control medium and L1 medium +/2 10 and 20 mM MS-0022 for
24 hours. Graph displays fold reporter activity with standard deviation (n = 3). B) NIH3T3 cells cotransfected with NFkB-luc and pRL-TK, treated with control
medium and 10 ng/mL TNF-a +/2 10 and 20 mM NFkB inhibitor Bay11-7082 or 10 and 20 mM MS-0022 for 24 hours. Graph displays fold reporter activity
with SD (n = 3). C) Graph depicting average AST/ALT ratio from mouse blood at end of animal treatment in the PANC-1 xenograft. D–F) Blood distribution
curves after IV, IP and PO administration of 5 mg/kg MS-0022 in mice. Graphs display mean dose (ng/mL by time) +/2 SD. G) Body weight change in
animals treated with 200 mg/kg MS-0022 over 5 days, with SD (n = 5). H–J) Analysis of subcutaneous PANC-1 tumors in mice treated with solvent control
or 50 mg/kg MS-0022 for 21 days (n = 6) by IP administration. H) Growth curves of PANC-1 tumors in mice after 30 days of treatment, showing average
tumor volume (mm3) with standard error of the mean (SEM). I) Graph displaying average PANC-1 tumor weight at end of treatment, with SD. J) Graph
displays normalized (GUSB) fold expression of mouse and human Gli1 and Ptch in treated tumors, with SD (n = 3). * = P value ,0.05. (n.s. = P value .0.05).
doi:10.1371/journal.pone.0019904.g003
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reduction of Gli1 mRNA and protein levels in Sufu2/2 cells.

This effect was not due to an altered or inhibited translocation of

Gli1 to the nucleus, indicating that MS-0022 did not reduce Gli1

levels by direct inhibition of Gli1. The precise cause of this

secondary effect remains to be elucidated.

As the implications of aberrant Hh signaling are getting

increasingly evident in several cancers, pathway antagonists will

be an essential toolkit for development of future treatments. The

emerging data from clinical trials with GDC-0449 show both the

benefits and possible pitfalls of a pure SMO antagonist; a clear

tumor response in Hh driven tumors such as basal cell carcinoma

and medulloblastoma [34,55,56], and the occurrence of a drug

induced resistance caused by mutations in the Smo locus [34,55].

A possible solution to block Hh/GLI1signalling despite activation

mutations in the Smo locus would be to develop drugs that act on

the pathway downstream of SMO [47]. A GLI inhibitor would

also address non-canonical activation of GLI [57].

The high level of tumor-stroma interactions found in advanced

cancers like pancreatic adenocarcinoma poses additional chal-

lenges for developing treatment strategies based on Hh

antagonists. Such strategies would require that, in addition to

autocrine efficacy, paracrine interactions between tumor activat-

ed stroma and tumor cells are disrupted [33]. Furthermore, the

barrier that the stromal cells create around the tumor, and the

lack of compound delivery to areas of low vascularization need to

be addressed [41].

The physiochemical properties of MS-0022 (MW = 406.3;

clogP: 5.44; PSA: 46.4 (Table 2)), its excellent per oral

bioavailability, and the initial evidence that it is well tolerated

in vivo (MTD .200mg/kg) makes MS-0022 a potential drug

candidate. In PANC-1 and SUIT-2 xenograft experiments, MS-

0022 treatment led to a partial response, where growth was

halted during the first days of treatment compared to the control.

Over time, however, both the treated and control xenograft

groups reverted to similar growth. In both SUIT-2 and PANC-1

xenografts, the growth delay in the MS-0022 treated group

resulted in a statistically relevant (P,0.05) average reduction in

tumor volume of subsequently 27% and 38%. Our in vivo results

lend support to the idea that the primary effect of Hh inhibition

in pancreatic cancer treatment is due to the inhibition of Hh

pathway activity in the stromal cells, although we also observe a

mild initial reduction of GLI1 levels in tumor cells. Both

pancreatic cancer cell lines, SUIT-2 and PANC-1, that were

xenografted as a part of this study, express high levels of Shh

mRNA (Table 4), and should be able to induce a Hh response in

stromal cells. It’s interesting to note that though both MS-0022

and GDC-0449, and to a certain degree cyclopamine, led to a

reduction of GLI1 mRNA in SUIT-2 cells in vitro, suggesting the

possibility to affect autocrine Hh signaling in this cancer cell line.

In an in vivo context, the effect of MS-0022 in vivo on SUIT-2 and

PANC-1 tumors was most likely due to an inhibition paracrine

Hh signaling since no statistically relevant reduction of either

hGLI1 or hPTCH could be measured in mRNA derived from the

tumor tissue. In contrast, mGli1 was reduced in the stroma of the

SUIT-2 tumors (P,0.05) after 7 days of treatment, but not at the

end of the treatment, while at the end of the treatment in PANC-

1 xenografts, there was a slight reduction of mGli1 (although with

a P.0.05). Reasons for the lack of a measurable reduction of

hGLI1 or hPTCH in the tumors, at the time points that were

taken, could be low levels of compound reaching the tumor, or

activation mutations that occurred within the tumors. Activation

mutations in SMO have been observed in a recent clinical trial

using CDG-0449 in a medulloblastoma patient [34,58]. Also, the

development of resistance against chemotherapeutic agents in

pancreatic cancer has been linked to both dense stromal matrix

and increased stromal barrier, which over time, may cause

resistance. Interestingly, Olive et al. found that treatment with

IPI-926 led to an increased vascularization in KPC tumors, but

similarly to our observations, the effect of this SMO inhibitor was

due to a developing resistance [41].

KPC mice develop pancreatic tumors that resemble human

pancreatic ductal adenocarcinoma due to a conditional expression

of endogenous mutant Kras and p53 alleles in pancreatic cells

[59,60]. Similarly, the SUIT-2 and PANC-1 cell lines are mutant

for p53 and Kras [61–65]. Despite the differences in the two models,

with tumors forming in the mouse pancreas in the KPC model and

tumor cells injected under the skin in the in vivo xenograft model,

Table 4. Kinase activity in presence of 10 mM MS-0022 in a
kinaseprofiler diversity array.

kinase:
Activity
% kinase:

Activity
% kinase:

Activity
%

Abl(h) 96 EphB4(h) 99 NEK2(h) 127

ALK(h) 95 Fyn(h) 100 p70S6K(h) 94

AMPK(r) 98 GRK5(h) 119 PAK2(h) 93

ASK1(h) 91 GSK3b(h) 88 PDGFRb(h) 108

CaMKI(h) 106 IGF-1R(h) 105 Pim-1(h) 103

CDK1/cyclinB(h) 110 IKKa(h) 103 PKA(h) 100

CDK2/cyclinA(h) 98 IRAK4(h) 95 PKBa(h) 107

CDK7/cyclinH/
MAT1(h)

103 JAK2(h) 110 PKCa(h) 106

CDK9/cyclin
T1(h)

98 JNK3(h) 71 PKCh(h) 103

CHK1(h) 84 KDR(h) 103 PKG1a(h) 94

CK1c1(h) 93 LOK(h) 93 Plk3(h) 107

CK2a2(h) 109 Lyn(h) 103 PRAK(h) 71

cKit(h) 109 MAPK2(h) 101 ROCK-I(h) 103

c-RAF(h) 106 MAPKAP
-K2(h)

92 Rse(h) 107

cSRC(h) 83 MEK1(h) 73 Rsk1(h) 91

DRAK1(h) 97 MKK7b(h) 109 SAPK2a(h) 102

DYRK2(h) 97 MLK1(h) 103 SRPK1(h) 102

eEF-2K(h) 99 Mnk2(h) 90 TAK1(h) 98

EGFR(h) 84 MSK2(h) 92

EphA5(h) 112 MST1(h) 94

Millipore diversity panel - percent activity of tested kinases in the presence of
10 mM MS-0022.
doi:10.1371/journal.pone.0019904.t004

Table 5. Pharmacokinetics of MS-0022.

Cmax,
ng/ml

AUClast
ng*min/ml

AUCinf
ng*min/ml T1/2, min

Kel,
min-1

IV 934.3 87683.5 93897.6 59.27 0.0117

IP 377.7 25025.0 26237.8 54.83 0.0126

PO 912.0 64177.5 68526.0 59.10 0.0117

Pharmacokinetic profile of MS-0022 by IV, IP and PO administration in mice. The
table displays the maximum concentration (Cmax), total drug exposure
(AUClast) and (AUCinf), half-life (T1/2) and terminal slope (Kel).
doi:10.1371/journal.pone.0019904.t005
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both studies provide evidence that the pancreatic cancer may only

transiently be inhibited by a SMO antagonist, revealing that the

challenge of overcoming resistance is ever present.

Materials and Methods

Ethics statement
All animals were housed and treated under the approved

protocols in accordance with the National Institute of Health guide

for the care and use of laboratory animals and according to

regulations outlined in the USDA Animal Welfare Act (9 CFR Parts

1, 2 and 3) and the conditions specified in The Guide for Care and Use of

Laboratory Animals (National Academy Press, Washington, D.C.,

1996). Animal experiments performed in Norway were approved by

the Centre for Comparative Medicine at the National Hospital of

Norway according to the Regional Ethical Comity guidelines

(permit nr: 19/08-910) and at the Norwegian Institute of Public

Health (permit nr 2722), while animal experiments performed by

Chemdiv were approved by ChemDiv’s Institutional Animal Care

and Use Committee (Permit nr: 8/21.01.2008). All efforts were

made to minimize the number and suffering of animals.

Cells and culture conditions
PANC-1, PC-3, THLE-2, NIH3T3, Shh-Light 2 (Shh-L2) and

C3H10T1/2 cells were obtained from ATCC. SUIT-2 cells were

obtained from Cell Bank, RIKEN BioResource Center.

PTCH2/2 MEF [45] was a gift from P. A. Beachy and

SUFU2/2 MEF were a gift from R. Toftgård (Karolinska

Institutet). FEMX was a gift from G. E. Melandsmo. All cell lines

were cultured at 37uC in a humidified atmosphere of 5% CO2 in

the medium formulations as instructed by the suppliers.

Alkaline phosphatase assay and screening protocol
C3H/10T1/2 cells were seeded 5*103 cells per well in a 96-well

format and allowed to attach for 3–5 hours, before adding serial

dilutions of compounds (from a DMSO stock). After 30 minutes

Figure 4. In vivo activity of MS-0022 in a SUIT-2 xenograft. A-F) Analysis of subcutaneous SUIT-2 tumors in mice treated with solvent control
or 50 mg/kg MS-0022 for 7 (n = 3) or 18 days (n = 8) by PO administration. A) Graph displaying average SUIT-2 tumor weight at end of treatment, with
SD. B) Tumor growth curve of SUIT-2 tumors in mice after 18 days of treatment, plotted as tumor volume (mm3) with standard error of the mean
(SEM). C) Average animal weight through the course of the treatment with SD (n = 8). D) and E) Graphs showing normalized (GUSB) fold expression of
mouse and human Gli1 and Ptch in treated tumors with SD. D) Shows expression in tumors harvested after 7 days (n = 3), while E) shows expression in
tumors harvested after 18 days (n = 8). F) Immunostaining of microvessles using anti-CD31 (endothelial cell marker) in cryosectioned tumor tissue
slides. Images depict CD31 staining in the tumor edge and in the centre of the tumors. * = P value ,0.05.
doi:10.1371/journal.pone.0019904.g004
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recombinant human SHH (C24II) (RnD systems (1845SH)) was

added (300 ng/mL). After 72 hours, the cells were lysed for 15

minutes using 20 mL of a 10 mM Ethanolamine Buffer (pH 8.0)

with 0.2% Triton-X100, supplemented 1:100 with Protease

Inhibitor Cocktail (EMD Bioscience). 7.5 mL of lysate was mixed

with 45 mL of CSPD Alkaline Phosphatase Substrate with

Emerald-II (Applied Biosystems) and incubated at room temper-

ature, in the dark, for 45 minutes. The plate was measured using a

Wallac VictorV reader (0.1 s Luminescence). Screening com-

pounds and MS-0022 were part of a Chemdiv chemical library.

Hh reporter assay
Shh-L2 cells were used as a Hh reporter cell line as described

previously [45]. Hh signaling was induced by Shh conditioned

medium, 200 nM SAG (AH-Diagnostics) and ActOXS (a

combination of 5 mM Hydroxycholesterol 20-alfa and 5 mM

Hydroxycholesterol 22S (Sigma-Aldrich)). For Shh conditioned

medium, Shh-PANC-1 cells were grown to confluence and

switched to fresh medium. Shh conditioned medium was harvested

after 48 hours, and was diluted to 50% in fresh DMEM before

use. The clonal Shh-PANC-1 cell line was generated by stably

transducing PANC-1 cells with virus containing medium from

HEK293T cells that were transfected using a Virapower Lentiviral

expression kit (Invitrogen). The vector was produced by removing

GFP from a pLenti 6.2-vector, and inserting the mouse Shh cDNA

sequence.

IC50 calculation
IC50 values were calculated using dose response curve data

where n = 3. The calculations were performed with an online

calculator using the formula: a exp (2bx) + c at the website;

http://www.changbioscience.com/stat/ec50.html

NMR spectroscopy of MS-0022
NMR spectra of MS-0022 (approx. 2 mg) were obtained from a

solution in 0.5 ml of DMSO-d6 ((CD3)2S(O), 99.9% D, Cam-

bridge Isotope Laboratories, Andover, MA) in a 5.0 mm tube

(WILMAD, WG-5 Economy). The spectra were acquired on an

Avance AV 600 MHz NMR spectrometer (Bruker BioSpin,

Rheinstetten, Germany) with a 5 mm CP-TCI (1H/13C, 15N-

2H) triple-resonance inverse cryo probe, equipped with a Z-

gradient coil. NMR assignments of MS-0022 were inferred from

examination of 1H- and 13C spectra, attached proton test (APT),

correlated spectroscopy (COSY45), total correlation spectroscopy

(TOCSY) pulsed field gradient heteronuclear single quantum

coherence (g-HSQC), pulsed field gradient heteronuclear multiple

bond correlation (g-HMBC) and pulsed field gradient hetero-

nuclear two-bond correlation (g-H2BC/g-HSQC-COSY). The

data were processed using the Bruker TOPSPIN software (version

1.3 or version 2.1 pl 2). Chemical shift values were referenced to

the residual solvent signals, i.e. CHD2S(O)CD3 = 2.49 ppm and

(CD3)2S(O) = 39.5 ppm, respectively. All NMR spectra were

acquired at 25uC.

BODIPY assay
BODIPY assay was performed to determine competition with

cyclopamine as described previously [21,66].

Real Time PCR
Cells were lysed for RNA extraction after 48 or 72 hours of

treatment. Total RNA from cultured cells or tumor tissue was

isolated using the GeneElute miniprep kit (Sigma-Aldritch)

following the manufacturer’s instructions. cDNA was synthesized

from the isolated mRNA using the Retroscript kit (Ambion), and

real-time PCR was carried out using the SYBR Green PCR

master mix (Stratagene) according to the manufacturer’s

instructions with an Mx3000P cycler (Stratagene). The relative

concentrations of cDNA present in each sample were calculated

by the MxPro software (Stratagene), normalized for GAPDH

(mRNA from cells) or GUS (mRNA from tumors). For real time

PCR primer sequences see Table 6. For the tumor tissue real time

PCR, previously described human and mouse specific primers

against GUSB, PTCH1 and GLI1were used [33].

Immunofluorescence
PTCH2/2 MEF were seeded on pre-coated glass slides (1

hour coating with 0.1% Gelatin (G1393) and 0.003% Collagen

(C8919) (Sigma-Aldrich) in PBS). 80% confluent cells were

switched from 10% to 0.5% FBS in medium and cells were

treated with DMSO or 5 mM MS-0022 for 24 hours in (n = 3)

before subsequent immunofluorescent staining: Slides were fixed

with 4% paraformaldehyde (Sigma-Aldrich), permeabilized for 10

min in 0.1% v/v Triton X-100 (Sigma-Aldrich) in PBS (PBT), and

blocked with 10% w/v BSA (Saveen Werner) in PBT for 1 hour.

Primary antibodies, mouse anti-acetylated tubulin (a-Tub) (Sigma-

Aldrich (T7451), 1:1000) goat anti-Smo (Santa Cruz Biotechnol-

ogy (sc-6367), 1:1000), and goat anti-GLI-1 (RnD systems

(AF3455), 1:500) were diluted in 0.5% w/v BSA in PBT and left

on the slides over night at 4uC. Secondary antibodies donkey anti-

goat IgG-Alexa 594 and donkey anti-mouse IgG-Alexa 488

(Invitrogen, both at 1:500) were added in 0.5% w/v BSA in PBT

for 1 hour. The slides were counterstained with DAPI (Roche,

Table 6. Primer sequences for quantitative real time PCR.

Primers: Primer sequence, 59 R 39 Tm,6C

hPTCH1 fwd CGA GCC CCC CTG TAC GAA GTG G 67.7

hPTCH1 rev GAC CCC CAG CAA GCC CAG AAA A 64.0

hGLI1 fwd GCG CAT CCC GAG CCC AGC 65.1

hGLI1 rev GCC CTC GGT GCA GCT GTT GGT C 67.7

hGLI2 fwd GCC TCC GAG AAG CAA GAA GCC AAA A 64.4

hGLI2 rev CCT GGT GTC GCA TGT CAA TCG GTA G 66.3

hGLI3 fwd CGG GAC GGT GTT TGC CAT GGA C 65.8

hGLI3 rev GGA GGA TGG AAG GCA GGG AAA AGA T 64.6

hSHH fwd GCC AGC GGA AGG TAT GAA GGG AAG 66.1

hSHH rev ACC GAG ATG GCC AAA GCG TTC AAC 64.4

hHIP fwd TGG GGA TGG CTC GCA ACG TCT C 65.8

hHIP rev TGG GAT GGA ATG CGA GGC TTA GC 64.2

hSUFU fwd CCC GAG GAT GAC GAG GAC AGC C 67.7

hSUFU rev CGC GTG CGA ATC AGC TCA TGG G 65.8

hSMO fwd CCA GGA GGA AGC GCA CGG CAA G 67.7

hSMO rev TCG CAC TGG CCT GAA CTG TTG AAC T 64.6

hGAPDH fwd GCC CCC TCT GCT GAT GCC CCC A 75.7

hGAPDH rev TGG GTG GCA GTG ATG GCA TGG 70.2

mGLI1 fwd AGC CAA CTT TAT GTC AGG GTC CCA GGG T 71.2

mGLI1 rev GAG CCC GCT TCT TTG TTA ATT TGA CTG 66.5

mGAPDH fwd TAT GTC GTG GAG TCT ACT GGT GTC TTC ACC 68.1

mGAPDH rev GAG TTG TCA TAT TTC TCG TGG TTC ACA CCC 66.8

Table of real time PCR primers; name, sequence and TmuC (h = human,
m = mouse).
doi:10.1371/journal.pone.0019904.t006
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1 mg/ml) in PBS. 3 random regions were imaged pr slide using a

confocal LSM510 microscope (Carl Zeiss MicroImaging). The

ratio of green Smo positive cilia versus the red aTub positive cilia

was quantified manually or processed and analyzed using ImageJ

to quantify the intensity of Smo and aTub for each cilium in the

images (http://rsb.info.nih.goc/ij/). Graphs display mean with

standard deviation error bars.

Frozen tumor tissue was cryosectioned (n = 8 pr group), and the

sections were fixed with 4% paraformaldehyde for 10 minutes

before permeabilization with 0.2% Triton-X in PBS for 10 minutes.

Sections were blocked for 30 minutes at room temperature with 3%

BSA in PBS and was subsequently incubated over night at 4uC with

rat anti-mouse CD31 (BD Biosciences (550274), 1:500) in 1% BSA

in PBS. The secondary antibody used was Alexa Fluor 488 goat-

anti-rat (Molecular Probes; 1/700 dilution) in 1% BSA in PBS for

1 hour at RT. Nuclei were counterstained with DAPI, in PBS for 10

minutes at RT. Images was acquired as above and electronic images

was further processed using ImageJ.

Transfection and luciferase assay
Vectors were obtained from the following: GliBS-Luc reporter

[67] (gift from H. Sasaki), pBluescript (pBS) (Stratagene), FL-HA-

GLI1 (Gli1) and Gli2-GFP (Gli2) (gifts from R. Toftgård),

Super8XTOPFlash [68], and NFkB-luc (Panomics). 10 ng renilla

luciferase (pRL-TK) (Promega) was used as a transfection control.

HEK293 and NIH3T3 cells were seeded at 80,000 per well in 48-

well plates on day 1, and were co-transfected on day 2 using a total

of 0.4 mg plasmid per well mixed at 1:3 in FUGENE6 according to

manufacturer’s instructions. On day 3, control medium and

activating medium (50% L1 conditioned medium, 50% Shh

conditioned medium or medium containing 10 ng/mL recombi-

nant rcrTNF-a (R&D Systems)) +/2 10–20 mM MS-0022 were

added, using DMSO as a control (the NFkB pathway inhibitor

Bay11-7082 was used as a control in the NFkB assay). Samples

were analyzed on day 4 or 5 using the Dual Luciferase assay kit

according to manufacturer’s instructions. Graphs display relative

or fold reporter activity, and are calculated from a mean ratio of

firefly reporter luminescence/pRL-TK luminescence with stan-

dard deviation error bars (n = 3). The experiments have been

repeated with similar results.

In vitro antiproliferative assay
Cells were plated at a density of 3000 (THLE-2 and PC-3) and

1000 (PANC-1, SUIT-2 and FEMX) cells per well (on the basis of

their growth rate) in 200 ml of medium in a 96-well plate. Medium

was changed daily, and after four days, the assay was read using a

MTS kit (Promega) according to the instructions of the

manufacturer. Graphs display average of percent growth with

standard deviation (n = 8).

Passage growth assay
20,000 cells were seeded per well in 6 well plates (triplicates)

with DMSO or 5 mM MS-0022. Treatment medium was changed

on day 3–5, and after 5–7 days the cells were trypsinized, re-

suspended in medium and counted, before reseeding cells at

20,000/well for a subsequent passage. The average growth of MS-

0022 treated cells was calculated as a percentage of the growth of

the DMSO control at the end of each passage. Graphs display

average of percent growth with standard deviation bars (n = 3).

Soft agar colony formation assay
2000 PANC-1 or SUIT-2 cells were suspended in 1.5 mL

growth media containing 0.35% agar (Oxoid), over a 1.5 mL

base layer containing 0.5% agar in 6-well plates. The plates

were incubated for 14 days (SUIT-2) and 21 days (PANC-1)

and then stained for 1 h with 1 ml of 0.02% crystal violet

(Sigma-Aldrich), and colonies were counted according to sizes;

,0.2 mm (small), 0.2–1 mm (medium) and .1 mm (large).

Data represent average numbers with standard deviation bars

(n = 3). The experiments have been repeated with similar

result.

Pharmacokinetics, dose tolerance, animal tumor
establishment and treatment

For pharmacokinetic (PK) analysis, 5 mg/kg MS-0022 was given

by IV, PO and IP administration to 7–8 week old male C57BL mice

(mouse musculus), and blood was collected after 5, 15, 30, 60, 120, and

240 min, with n = 3. Animals were sacrificed and blood samples

(,0.5 mL each) were collected from the abdominal aorta into

EDTA-containing tubes, centrifuged (2–8uC for ,10 minutes at

,10000 xg) and plasma harvested into single tubes for each animal

and frozen (,270uC). Blood samples were analyzed by ChemDiv’s

bioanalytical department. The maximum concentration (Cmax),

total drug exposure (the area under the curve to the last quantifiable

concentration (AUClast) and as the AUClast value extrapolated to

infinity (AUCinf), calculated as AUCinf = AUClast+C(t)last/Kel,

where C(t)last is the last measurable concentration), half-life (T1/2)

calculated as ln(2)/Kel and Kel calculated as the slope of the terminal

linear portion of the concentration/time curve. The WinNonlin

Professional 5.2 software (Pharsight Corp.) was used for the

calculation of the PK parameters.

For the analysis of uptake of MS-0022 in organs and tissue,

livers were dissected out from mice 120 min after PO adminis-

tration of MS-0022 and frozen (,270uC). The LC-MS method

used to detect MS-0022 was described previously [69], with the

main exception being that isocratic conditions were used (50%

0.1% FA (aq), 50% 0.1% FA (ACN), v/v), and that a UV detector

was placed between the LC and MS instrument.

MS-0022 tolerance was tested by daily injections of 200 mg/kg

MS-0022 for 5 days in 7–8 week old male C57BL mice. Animal

were observed daily for outward signs of toxicity (weight loss, fur

ruffling, hunched posture).

For PANC-1 xenografts, 4–6 week old CB17/SCID mice were

injected with 56106 PANC-1 (n = 6 per group) cells in 200 ml PBS

subcutaneously on day 1. IP treatment with 50 mg/kg MS-0022

began when median tumor size reached 25 mm2 (day 27). MS-

0022 was pulverized using a pestle, and was mixed into a stable

suspension in water containing 1% Tween 80 (Sigma-Aldrich).

Mice were treated with MS-0022 or solvent for a period of 30 days

after initiation in a 5 day injection 2 day pause scheme, and tumor

size was measured throughout using calipers (mm2). After 30 days

the mice were sacrificed and tumors dissected and weighed. The

PANC-1 xenograft endpoint was taken two days after the last

compound treatment.

For SUIT-2 xenografts, 4–6 week old CB17/SCID mice were

injected with 56106 SUIT-2 (n = 11 per group) cells in 200 ml PBS

subcutaneously on day 1. IP treatment with 50 mg/kg MS-0022

began when median tumor size reached 35 mm2 (day 8). Mice were

treated daily with MS-0022 or solvent for a period of 18 days after

initiation, and tumor size was measured throughout using calipers

(mm2). After 8 days, three mice from each group were sacrificed and

tumors dissected, weighed and processed for analysis. The remaining

animals (n = 8) were sacrificed after 19 days of treatment, and tumors

harvested. Tumor volume (mm3) was calculated using the formula

a6b26,pi./6. End tumor measurement statistics were obtained

using two samples T-test in the Sigmaplot software.
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Liver transaminases
Blood was collected from the hepatic vein of freshly sacrificed

animals into heparinized capillary blood collection tubes

(Sarstedt), which were immediately centrifuged and the serum

was collected. AST and ALT were run on non-hemolyzed

samples using AST and ALT kits (Randox) following the

manufacturer’s instructions.

Supporting Information

Figure S1 Atom numbering of MS-0022. The atom

numbering of MS-0022 used in the 1H and 13C NMR analysis.

(See Table S1)

(TIF)

Table S1 NMR analysis of MS-0022. 1H and 13C NMR Data

for MS-0022 (DMSO-d6). For the atom numbering used see Figure

S1.

(DOC)
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