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Abstract

Retinoic acid receptor alpha (RARA), a nuclear receptor protein, has been validated as a target for

male contraception by gene knockout studies and also pharmacologically using a pan-retinoic acid

receptor antagonist. Retinoic acid receptor alpha activity is indispensable for the spermatogenic

process, and therefore its antagonists have potential as male contraceptive agents. This review

discusses the effects of systematic dosing regimen modifications of the orally bioavailable and

reversible pan-antagonist BMS-189453 as well as studies with the alpha-selective antagonists

BMS-189532 andBMS-189614 in amurinemodel.We also provide an overview of structure–activity

studies of retinoic acid receptor alpha antagonists that provide insight for the design of novel alpha-

selective ligands.

Summary Sentence

Fertility studies with retinoic acid receptor antagonists in male mice and the current state of RARA-

selective antagonist development are reviewed.

Key words: retinoic acid receptor, antagonists, selectivity, male contraception, mouse model, structure–activity
relationships.

Introduction

Despite making progress worldwide in providing birth control

options to families, the rate of unintended pregnancies, defined as

both unwanted and mistimed pregnancies resulting from not using

contraceptives or incorrect/inconsistent contraceptive use, remains

high [1]. While rates of accidental pregnancies have decreased, the

unintended pregnancy rates in developed nations are 45% and

remain around 65% in developing nations [1]. Approximately

56% of all unintended pregnancies ended in abortion between

2010 and 2014—55% in developing nations and 59% in developed

nations [1]. There is thus a critical need for additional approaches

and resources for reversible contraception. While many reversible

contraceptive methods are available to women, such as hormonal

birth control, emergency contraception, vaginal rings, cervical caps,

and spermicides, reversible methods for men are limited to condoms

and withdrawal. For in-depth reviews and discussions of male

contraceptives, refer to Long et al. [2] and Blithe [3]. There has been

http://creativecommons.org/licenses/by/4.0/
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Figure 1. Molecular mechanisms underlying the role of RARα in regulating gene expression during spermatogenesis. The RAR alpha–RXR complex with

repressor proteins inhibits gene transcription by facilitating chromatin condensation. After binding with ATRA, repressor proteins dissociate from the complex

and coactivators are recruited, resulting in chromatin relaxation and expression of genes necessary for male germ cell differentiation during mammalian

spermatogenesis.

interest in the use of testosterone and various testosterone esters

as potential contraceptive agents [4, 5]; however, testosterone alone

does not completely suppress sperm production, and there are ethnic

differences in its efficacy [4, 6]. Supplementation of testosterone

administration with progestogens enhances the suppression of

sperm production at lower doses of testosterone. However, the

effects of long-term exogenous testosterone administration remain

unclear. Treatment with testosterone has been associated with

several negative side effects, which can include cardiac toxicity [7]

and liver damage [8]. The most common negative side effect was

erythrocytosis, which has been linked to cerebrovascular disease

[9]. Additionally, exogenous testosterone has been shown to lower

high-density lipoprotein (HDL) cholesterol and increase hematocrit,

hemoglobin, and thromboxane, all of which are associated with

cardiovascular disease [7]. In addition to the more serious side

effects, patients also experienced weight gain, acne, injection-site

pain, and mood changes like aggression and decreased libido [10].

In the study described above, 2.2% of patients failed to reach

the oligozoospermia threshold, indicating that certain men are

“nonresponders” to testosterone treatment [10].

Therefore, a critical need exists for an effective, nonsteroidal

hormone-based reversible male contraceptive that exhibits few if any

side effects, health risks, and further complications. While hormone

therapy relies on interrupting the spermatogenic process, there are

far more targets for non-hormonal-based therapies that can be

pursued [11]. Non-hormonal male contraceptive approaches involve

targeting proteins that affect either sperm production or sperm

function and are anticipated to have minimal side effects, depending

on the specificity and potency of inhibitors for the target protein.

This review will not attempt to provide a comprehensive overview

of hormonal and non-hormonal male contraception but will focus

on one attractive target, the retinoic acid receptor alpha (RARA),

as its ligand all-trans-trans retinoic acid (ATRA) is required for

several phases of spermatogenesis, including differentiation of type

A spermatogonia, the onset of meiosis, and spermiation [12, 13].

This review will discuss RARA, in particular, as a target and will

explore what has been learned from systematic dosing regimens

of antagonists to the receptor in a murine model. Furthermore,

the review will provide an overview of structure–activity studies of

existing RARA inhibitors, which are instructive for the design of

novel potent and selective retinoid antagonists for reversible male

contraception.

Implications of retinoid signaling for male

contraception

Previous studies have demonstrated that retinoid signaling is

required for the differentiation of undifferentiated type Aaligned

spermatogonia to differentiating type A1 spermatogonia [12, 14,

15] and recently for aspects of meiosis in spermatocytes [16, 17].

In addition, spermiation is exquisitely sensitive to perturbation of

retinoid signaling [18–22].
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Figure 2. Cartoon representation of the mouse spermatogenic cycle illustrating the profound abnormalities in RAR alpha-deficient testes clustered in stage

VIII–IX tubules. Details of the symbols used in the staging diagram can be found in Russell et al. [62]. The green bar line indicates stage VIII, which showed the

highest frequency of cellular abnormalities. Red arrows point to the specific cell types at stage VIII, in which various abnormalities were found. Reprinted with

permission from the article by Wolgemuth and Chung [21].

ATRA, the active metabolite, is formed via the metabolic oxida-

tion of dietary retinol (vitamin A).All-trans-retinol is first oxidized to

all-trans-retinaldehyde by alcohol dehydrogenase or retinol dehydro-

genase and then subsequently oxidized by aldehyde dehydrogenase

to ATRA [14]. RA exerts its effects through binding to a family

of nuclear receptors comprising the RARs as well as the retinoid

X receptors (RXRs) (Figure 1) [20]. These receptors have three

isoforms: alpha, beta, and gamma [20]. RARs are primarily activated

through the binding of ATRA, while RXRs are exclusively activated

by 9-cis retinoic acid [20]. These receptors are active as dimers,

either as RXR/RXR homodimers or RXR/RAR heterodimers [20].

The dimers bind to RA response elements in the DNA to affect tran-

scription [20]. In the absence of RA, histone deacetylases and other

repressors of transcription are recruited, keeping DNA tightly bound

to the histone (heterochromatin) to prevent transcription [14]. Once

activated by RA, the complex recruits histone acetyltransferases and

other coactivators that acetylate lysines and thereby neutralize the

interaction between the negatively charged DNA and the positively

charged histone; the tightly packed heterochromatin then unfolds

to form transcription-ready lightly packed euchromatin, resulting in

gene transcription (Figure 1) [14, 23].

The need for vitamin A and its active metabolite ATRA for

normal spermatogenesis has been recognized for decades [24–26].

There are numerous excellent and comprehensive reviews on the

role of vitamin A, its synthesis, transport, metabolism, and down-

stream function, and the potential interference with its function as

approaches to male contraception to which the reader is referred

[2–5, 12, 14, 17, 20, 21]. As mentioned above, metabolism of

dietary vitamin A involves the conversion of retinol to retinal and

finally to ATRA. Inhibitors of enzymes involved in this process

could potentially disrupt ATRA synthesis and thereby stop sper-

matogenesis. Indeed, suppression of spermatogenesis involving the

ATRA pathway was demonstrated with a bisdichloroacetyldiamine

analog (BDAD) [2, 27, 28]. WIN 18 446, one of the BDAD analogs,

was used in a clinical study to treat over 60 men for 1 year and

was shown to efficiently suppress sperm production in men [27].

However, men taking WIN 18 446 exhibited a severe negative disul-

firam reaction upon alcohol consumption, resulting in termination

of development of the drug. The mechanism of suppression was

subsequently elucidated when WIN 18 446 was shown to inhibit

the enzymes aldehyde dehydrogenase ALDH1A1 and ALDH1A2

[29, 30]. Using X-ray crystallography, direct binding studies, and

enzymatic analyses, a recent report determined the structural basis of

ALDH1A2 inhibition by WIN 18 446, and two novel and reversible

small molecule inhibitors were identified which are being investi-

gated for their property of not blocking alcohol metabolism [28, 31].

Results provide a structural framework toward the rational design

of potent and selective ALDH1A2 inhibitors that might be suitable

for non-hormonal male contraception [28].

The present review is focused on the unique functions of the

RARs and RARA in particular. In this light, we note the important

insight into the molecular basis for the need of this micronutrient

that was revealed by targeted mutagenesis ofRara, the gene encoding

RARA. In Rara−/− mice, there was a disruption in spermatogenesis

with defects similar to the effects of VAD and complete male infertil-

ity while the females were fertile [20, 32]. The majority of testicular

tubules at 4–5 months of age were severely abnormal, with few

germ cells, and the epididymides contained only very few abnormal

spermatids [32]. A study determining the chronology of appearance

of spermatogenic abnormalities in Rara−/− testes showed that in
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Table 1. Structures and antagonist data for RAR inhibitors BMS-189453 (1) [35], BMS-189532 (2) [37], and BMS-195614 (3) [38].

Antagonism IC50 (nM)a Kd (nM)

Compound RARA RARB RARG RARA RARB RARG

1 (BMS-189453) 200 200 200 — — —

2 (BMS-189532) — — — 27 1020 3121

3 (BMS-195614) 500 5000 10 000 — — —

aTransactivation assay.

Figure 3. Development of RAR antagonists from all-trans-retinoic acid.

the tubules that did contain germ cells, spermiation was defective

[18]. Late spermatids are normally released at the end of stage VIII

of the spermatogenic process; however, late spermatids in these mice

were still present at the luminal edge at stage IX (Figure 2) [18, 19].

Spermatids were also observed undergoing apoptosis and engulf-

ment by the Sertoli cells [19]. A study of germ-cell-specific Rara

conditional knockout mice (Rara cKO) demonstrated that RARA is

involved in modulating the synaptonemal complex of proteins that

forms between homologous chromosomes during meiosis, which is

consistent with the previous observation that meiosis is delayed in

VAD animals and Rara−/− mice [16]. The role of RARA during

spermiogenesis in the germline is further supported by the partial

rescue of spermiogenic defects by targeted expression of Rara cDNA

specifically in haploid spermatids of otherwise RARA-deficient mice

[22]. Another recent study has also shown that ATRA plays a role

at two postmeiotic transitions: the initiation of spermatid elongation

and spermiation [17, 33]. For a more detailed review of the functions

that are important specifically during spermatogenesis and the basic

cellular processes within testicular cells that may be regulated by

retinol and ATRA, with a focus on cells within the seminiferous

tubules, please refer to Chung and Wolgemuth [20] and Endo et al.

[17].

Oral administration of pan-RAR antagonist

BMS-189453 reversibly inhibits spermatogenesis

in mice

Studies showing “testicular toxicity” but no other side effects of

several retinoid antagonists [34] suggested that RAR antagonists

might be attractive compounds for a non-hormonal approach to

male contraception. Such a pharmacological approach to inhibit

spermatogenesis in the mouse model was explored using low

doses (initially 5 mg/kg for 7 days) of the pan-RAR antagonist

BMS-189453 (1, Table 1) [35]. Morphological examination of

testes from the treated animals showed that spermatogenesis was

disrupted, with a failure of spermatid alignment and sperm release as

well as loss of germ cells into the lumen, abnormalities that resembled

those in VAD and Rara−/− testes. Most importantly, the induced

sterility was reversible as assessed by mating studies. There were no

changes in testosterone levels, suggesting that the drug would not

affect male libido or sexuality. Enhanced efficacy and a lengthened

infertility periodwith full recovery of spermatogenesis were observed

using systematically modified dosing regimens (5 mg/kg for 2 weeks

versus 2.5 mg/kg for 4 weeks). Toxicological evaluation including

hematology, serum chemistry, and hormonal and pathological

evaluations was performed blinded in collaboration with Dr. Stephen

Griffey, from the Comparative Pathology Laboratory, University

of California Davis, and revealed no detectable abnormalities or
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Figure 4.Crystal structures of RARAwith different ligands. (A) Agonist-bound RAR shows H12 (yellow) closing the entrance to the LBD and creating a binding site

for the coactivator (red) (PDB ID: 3kmr). (B) Antagonist binding prevents H12 (yellow) binding to the LDB entrance due to the sterically demanding substituent

on the ligand molecule so that the coactivator cannot bind (PDB ID: 1dkf). (C) Binding of an inverse agonist prevents H12 (yellow) binding to the LDB entrance

and results in a highly mobile structure of H12; also it facilitates the binding of a corepressor fragment (magenta) (PDB ID: 3kmz).

Figure 5. Structural differences in the ligand-binding domain of RARA ((A) PDB ID, 1dkf), RARB ((B) PDB ID, 4jyi), and RARG ((C) PDB ID, 4lbd). Ser232 is unique

in RARA, whereas the same position is occupied by alanine residues 225 and 234 in RARB and RARG, respectively.

adverse side effects except the distinct testicular pathology [35].

Finally, the resulting progeny of two recovered males (4 litters, 22

males and 22 females) were allowed to grow to adulthood. These

progeny were healthy, and the males exhibited normal testicular

weight, spermatogenesis, and serum testosterone levels [35]. Both

male and female progeny yielded a similar number of embryos

upon mating. Because tailoring the dose-to-weight on a daily basis

would not be practical for application in humans, a regimen in

which the dose was modified weekly was examined. Induction of

sterility and recovery of fertility were observed and were identical

to those obtained with a regimen modified daily. These collective

results suggest that testes are exquisitely sensitive to disruption

of retinoid signaling and that RAR antagonists may represent

new lead molecules in developing reversible nonsteroidal male

contraceptives.

Prolonged oral administration of a pan-RAR

antagonist inhibits spermatogenesis with a rapid

recovery

It was encouraging that oral administration of the pan-retinoic acid

receptor antagonist 1 reversibly inhibited spermatogenesis, with no
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Table 2. Structure and data for RARA-selective antagonist 4 [53].

Binding IC50 (nM)

Compound RARA RARB RARG

ATRA 14 14 14

4 (Ro 41-5253) 60 2400 3300

detectable side effects. Given that contraception is typically used for

long periods of time, the next experiments focused on determining

the lowest dose and the longest dosing period regimens that inhibit

spermatogenesis but also result in complete restoration of fertility

upon cessation of administration of the drug [36]. The studies

demonstrated that daily doses of 1 as low as 1.0 mg/kg with dosing

periods of 4, 8, and 16 weeks resulted in 100% sterility in all

regimens, with restoration of fertility upon cessation of the drug

treatment even for as long as 16 weeks. There was no change in

testosterone levels in these males. The progeny examined from two of

the recovered males were healthy and fertile, with normal testicular

weight and testicular histology.

Strikingly, a more rapid recovery, as assessed by mating studies,

was observed at the lower dose and longer dosing periods (1 mg/kg

for 16 weeks) [36]. Insight into possible mechanisms underlying this

rapid recovery was obtained at two levels. First, histological exam-

ination revealed that spermatogenesis was not as severely disrupted

at the lower dose and with the longer treatment regimens. Second,

gene expression analysis revealed that the more rapid recovery may

involve the interplay of ATP-binding cassette efflux and solute car-

rier influx transporters in the testes. These observations showed that

(i) increasing the duration of treatment still resulted in restoration of

fertility following cessation of treatment; (ii) even lower doses of the

drug can be effective in inhibiting spermatogenesis; and (iii) longer

dosing periods were characterized by a more rapid restoration of

spermatogenesis and fertility [36].

A next logical question is whether such pan-RAR antagonists

(or, if available, RARA-selective antagonists) will function in higher

mammals by testing the drug in a nonhuman primate model and

assessing the efficacy of the antagonists in the induction of sterility

and restoration of fertility. This research may have a potentially

important impact by identifying a prospective therapeutic for male

contraception.

RARA-selective antagonists may allow a better

therapeutic efficacy in reversibly inhibiting

spermatogenesis

After a successful demonstration of contraceptive effect by pan-RAR

antagonist 1 (BMS-189453), RARA-selective antagonists were pur-

sued to preclude effects on RARB and RARG functions. Two RARA-

selective antagonists, BMS-189532 (2) [37] and BMS-189614 (3)

[38] (Table 1), were characterized by transactivation and transac-

tivation competition assays and were tested in a mouse model to

determine whether they effectively inhibit spermatogenesis. These

studies showed that although these two antagonists were potent in

vitro, they displayed poor in vivo activity in mice when administered

orally at the dose of 2 mg/kg and 10 mg/kg for 7 days [38]. Testicular

weights were normal, and morphological analysis revealed normal

spermatid alignment and sperm release. To assess properties that

might have resulted in the poor in vivo efficacy of these compounds,

in vitro drug property analyses were performed with one of these

antagonists, compound 2, and compared with the pan-antagonist

1. The discrepancies may be explained by several factors, including

high plasma protein binding, faster hepatic metabolism relative to the

pan-antagonist, and only moderate permeability [38]. The conclu-

sion of poor oral bioavailability was supported by more pronounced

defects in mice when the antagonist was administered intravenously

versus intraperitoneally. These results are crucial for designing new

RARA-selective antagonists for pharmaceutical application.

The medicinal chemistry of RAR inhibitors

In the following section, we will review structure–activity relation-

ships for agonism, antagonism, and inverse agonism for the three

RARs. Insights from these studies are expected to be useful for the

design of novel RARA-specific antagonists with suitable pharma-

cokinetic properties.

The development of RAR ligands began in the 1980s to obtain

potent RAR agonists with selectivity toward RAR over RXR. Dur-

ing initial development, conformational restriction was used to

decrease rotational freedom of ATRA. The polyene chain next to

the cyclohexene moiety was converted to an aromatic ring and the

terminal dienoic acid to a benzoic acid moiety (Figure 3). This pro-

vided E)-4-(2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-

yl)prop-1-en-1-yl)benzoic acid, a chemically stable and potent RAR

agonist that does not bind RXR [39]. The introduction of bulky

substituents at the 8-position of an agonist molecule (such as the

phenyl group in compound 1) led to antagonism and inverse agonism

[40–45].

In its native unliganded conformation, helix H12 of RAR

adopts a conformation that prevents coactivator binding but allows

corepressor binding, thereby inhibiting gene transcription [40,

42]. After agonist binding, the H12 helix conformational change
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Table 3. Structures and data for chromene and tetrahydronaphthalene RAR antagonists [37].

Ki (nM)

Compound X R Y Z RARA RARB RARG

ATRA 15 13 18

5 (AGN 193109) CMe2 H — — 16 7 7

6 O CH3 — — 14 5 14

7 S CH3 — — 4 2 10

2 (AGN 193491) CMe2 H H, H H 27 1020 3121

8 (AGN 193618) CMe2 H H, F H 5.7 622 863

9 (AGN 194202) CMe2 H F, F H 32 2256 >30 000

10 (AGN 194301) O CH3 H, F Br 2.8 320 7258

11 (AGN 194574) O CH3 F, F Br 1.5 898 10 618

prevents access to the ligand-binding domain (LBD) while generating

a coactivator binding site to which coactivators are recruited

that promote gene transcription (Figure 4A). As shown above

for antagonist 1, an RAR agonist can be modified to become an

antagonist by introducing a sterically demanding substituent. This

tactic has been successfully employed for a number of ligands [46–

48]. It was later discovered that the phenyl moiety is not large enough

to induce complete antagonism and results in partial antagonism,

whereas a tolyl group confers full antagonism [49]. Sterically

demanding substituents present on the antagonist cause helix H12 to

adopt a conformation that prevents coactivator binding. The crystal

structures of agonists and antagonists bound to RARA (Figure 4)

provide insight into protein conformational changes depending on

which ligand is bound. When antagonist Am580 is bound to RARA

(Figure 4B), the H12 helix fails to cap the LBD and instead binds

to the coactivator binding site resulting in coactivator recruitment

failure [41, 44]. When mixed agonists bind to the LBD, H12 can

assume agonist and antagonist conformations due to inadequate

steric bulk that is required to completely inhibit H12 coactivator

binding [45, 50]. In the case of inverse agonists, ligand binding

stabilizes corepressor binding with RAR and further inhibits basal

levels of gene transcription. The structural requirement for inverse

agonism is less straightforward due to the highly variable nature of

the H12 domain and the requirement for suitable H12 conformation

for repressor binding (Figure 4C) [41].

RARA selectivity

A common structural feature for both agonists and antagonists

among RARA-selective ligands is the presence of a hydrogen bond

donor such as an amide (2, 8–11, Table 3) or a pyrrole (15–17;

Table 4) interacting with Ser232 of RARA (Figure 5A) [51]. This

selectivity can be explained by the structural differences between

the three RARs. A comparison of their binding domains reveals

the presence of Ser232 in RARA, but in the analogous position

of both RARB and RARG, there is an alanine (Figure 5B and C).

Therefore, the more polar binding site architecture of RARA favors

the binding of polar groups. Moreover, substitution of Ser232 with

alanine abolishes the selectivity of ligands toward RARA [52].

Selective RARA antagonists

The first RARA-selective antagonist, compound 4 (Ro 41-525)

(Table 2), was reported in 1992 [53]. The compound has little

structural similarity with other antagonists because it does not

carry the sterically demanding substituent characteristic of the other

antagonists. Instead, the compound has a heptyl ether chain ortho

to the olefinic linkage. Additionally, it lacks the hydrogen bond

donor commonly found in other RARA-selective antagonists. This

deviation from the normal architecture suggested that the compound

might exploit other structural differences in the RAR proteins to

achieve selectivity.



Retinoic acid receptor antagonists, 2020, Vol. 103, No. 2 397

Table 4. Structures of pyrazole agonist 12, pyrazole agonist 13 (ER-27191), pyrrole antagonist 14 [57], and structure–activity relationship

data for quinolone pyrrole antagonists 15–17 [58].

Binding affinity IC50 (nM) Antagonism IC50

(nM)

Compound R RARA RARB RARG

15 MeO 0.5 247 350 1.6

16 Et 0.5 17 9 17

17 (ER 50891) Ph 1.2 278 181 6.4

Initially, phenylacetylene analogs 5 (AGN 193109), 6, and 7

were described as potent RAR antagonists that do not bind to

RXRs (Table 3) [54]. Results from a transactivation assay showed

that compound 5 binds to the RAR–RXR dimer and inhibits RA-

induced gene expression in a dose-dependent manner. Evaluation of

analogs in which the tolyl group was replaced with other substituted

aromatic rings revealed that the para-substitution of phenyl rings

with methyl, ethyl, and methoxy groups provided maximal activity

[55]. Further truncation or elaboration of the para-substituent did

not improve activity and confirmed the optimal activity for 4-

methylphenyl and 4-ethylphenyl substituents on the aromatic rings

[56]. Chromene and thiochromene substitution for the tetrahydron-

aphthalene ring also was explored. Thiochromenes were more potent

than chromenes, and analogs carrying gem-dimethyl groups were

superior to demethyl analogs. When the acetylene linker in tetrahy-

dronaphthalene and chromene scaffolds of pan-RAR inhibitors 5

and 6 were replaced with the hydrogen bond donating amide linker,

the resulting compounds 2 and 8–11 (Table 3) were found to selec-

tively antagonize the activity of RARA over RARB and RARG [37].

This exemplifies how non-selective antagonists can be modified to

gain RARA selectivity. It was also reported that fluoro substitution

on the ortho-position of the benzoic acid moiety increased the alpha

selectivity of the antagonists, which increased further with difluoro

substitution (8–9 and 10–11).

A similar approach to obtain an antagonist from a reported ago-

nist was adopted to identify RARA-selective antagonist 15 (Table 4).

Conformational restriction of agonist 12 (500 nM antagonism) [47]

by introducing another ring and by adding a sterically demand-

ing 3-pyridin-3-ylmethyl group to the N1-pyrazole moiety pro-

vided antagonist 13 (1.3 nM agonism in HL-60 promyelocytic

leukemia cells). Subsequent modifications of this scaffold involved

the introduction of a naphthalene moiety into the hydrophobic

portion of the molecule, which provided RARA-selective inhibitor

14 (transactivation assay EC50 RARA = 2.8 nM, RARB = 250 nM,

RARG = 2200 nM [57]. Based on these observations, the related

quinolone derivatives 15–17 (Table 4) were designed to increase

potency and selectivity [58]. Analog 15 was found to be a potent

and selective antagonist (494-fold selective for RARA over RARB

and 700-fold selective over RARG). Analog 15 is the most potent

and selective RARA antagonist discovered to date.

Future directions

The orally bioavailable pan-antagonist 1 (BMS-189453) has pro-

vided proof of principle that inhibition of RAR leads to infertility

in male mice and that this is a reversible process and well tolerated.

Genetic studies underscore the critical role of RARA in particular

in spermatogenesis and hence male fertility; however, an effective

RARA-specific antagonist that is orally bioavailable has yet to be

identified. Therefore, future studies should focus on discovering and

evaluating orally active RARA-selective antagonists. RARA-specific

antagonists are expected to possess marked effects on spermatoge-

nesis and not display any possible side effects that might be due

to the inhibition of the RARB or RARG. The highly lipophilic

ligand-binding sites of RARs favor lipophilic ligands for binding.

However, higher lipophilicity can be associated with high metabolic
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liability, poor oral bioavailability, high plasma protein binding, in

vivo toxicity, and target promiscuity. RARA-selective antagonists

with lower lipophilicity would most likely be better suited for

clinical applications. Given the preference for oral administration

of male contraceptives, antagonists should be designed to maximize

oral bioavailability [59]. This could be accomplished by judicious

application of structure filters like Lipinski’s rule of five and Veber’s

rule [60, 61]. Since the structural requirements for antagonism and

selectivity have been established, additional agonists could be struc-

turally modified to become antagonists that are selective for RARA

in a manner similar to the discussion above [46–48]. In addition,

RARA selectivity could be sought by introducing polar linkers (such

as hydrogen bond donors) to pan-antagonists to facilitate interaction

with Ser232 of RARA.
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