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A B S T R A C T   

Stress corrosion cracking (SCC) under harsh environmental conditions still poses a significant 
challenge, despite extensive research efforts. The intricate interplay among mechanical, chemical, 
and electrochemical factors hinders the accurate prognosis of material degradation and remaining 
service life. Furthermore, the demand for real-time monitoring and early detection of SCC defects 
adds further complexity to the prognostication process. Therefore, there is an urgent need for 
comprehensive review papers that consolidate current knowledge and advancements in prognosis 
methods. Such reviews would facilitate a better understanding and resolution of the challenges 
associated with SCC under harsh environmental conditions. This work aims to provide a 
comprehensive overview of various prognosis methods utilized for the assessment and prediction 
of SCC in such environments. The paper will delve into the following sections: exacerbating harsh 
environmental conditions, non-destructive testing (NDT) techniques, electrochemical techniques, 
numerical modeling, and machine learning. This review is inclined to serve as a valuable resource 
for researchers and practitioners working in the field, facilitating the development of effective 
strategies to mitigate SCC and ensure the integrity and reliability of materials operating in 
challenging environments. Despite considerable research, stress corrosion cracking in harsh en-
vironments remains a critical issue, complicated by the interplay of mechanical, chemical, and 
electrochemical factors. This review aims to consolidate current prognosis methods, including 
non-destructive testing, electrochemical techniques, numerical modeling, and machine learning. 
Key findings indicate that while traditional methods offer limited reliability, emerging compu-
tational approaches show promise for real-time, accurate predictions. The paper also briefly 
discusses notable SCC failure cases to underscore the urgency for improved prognosis techniques. 
This work aspires to fill knowledge gaps and serve as a resource for developing effective SCC 
mitigation strategies, thereby ensuring material integrity in challenging operational conditions.   

1. Introduction 

Stress corrosion cracking is a kind of corrosion that occurs when a material is subjected to both applied load and corrosive 
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environments [1]. It is a widespread issue in several areas, especially oil and gas, nuclear power, and aerospace. SCC occurs when a 
material operating in a corrosive environment is subjected to tensile loading [2], The combined effect of these two elements might 
cause material degradation and eventually fracture [3]. Numerous factors can lead to SCC, including the composition and concen-
tration of the corrosive medium, the temperature and humidity of the surroundings, the material type, and the existence of other 
elements that can influence the material’s susceptibility to corrosion, like metallurgical flaws or stress concentrations [4]. SCC is one of 
the most common yet problematic engineering fracture and failure processes [5,6] that is manifested by corrosion fatigue (CF) and 
hydrogen-induced cracking (HIC). Harsh environments such as high temperature, high salinity, or exposure to aggressive chemicals 
pose significant challenges to the durability and safety of structural components in various industries, including aerospace, oil and gas, 
and nuclear power [7,8]. The accurate and timely prognosis of SCC under such harsh environmental conditions is of paramount 
importance to prevent catastrophic failures and ensure the reliability and longevity of critical assets [9]. Prognosis methods, including 
both experimental and computational techniques, play a crucial role in assessing the severity and predicting the remaining life of 
materials affected by SCC [10]. Despite extensive research efforts, the prognosis of SCC remains a significant challenge. The complex 
interactions between mechanical, chemical, and electrochemical factors make it difficult to accurately assess the severity and predict 
the remaining life of materials. Moreover, the need for real-time monitoring and early detection of SCC defects further complicates the 
prognosis process. Therefore, there is a critical need for comprehensive reviews that consolidate the current knowledge and ad-
vancements in prognosis methods, enabling researchers and practitioners to better understand and address the challenges associated 
with SCC. This review paper aims to provide a comprehensive overview of various prognosis methods employed for the assessment and 
prediction of SCC under harsh environmental conditions. The paper will focus on the following topics: Harsh environmental conditions 
that exacerbate SCC, Non-Destructive Testing (NDT) Techniques, Electrochemical Techniques, Numerical Modeling, and Machine 
Learning. 

2. Harsh environmental conditions that exacerbate SCC 

SCC is a phenomenon that results in the initiation and growth of cracks in metallic materials under specific environmental con-
ditions [11]. The conditions that can exacerbate SCC are often harsh and change from one environment to another, and include factors 
such as corrosion, vibration, diffusion, mechanical shock, and low-cycle strain hardening [12]. Additionally, cyclical thermal stresses 
induced by differences in the Coefficient of Thermal Expansion between different interfaces can also contribute to SCC. Structural 
materials that are more susceptible to SCC include high-strength alloys such as stainless steel and aluminum [13]. Fig. 1 shows an 
overall diagram of factors that affect SCC under Harsh Environmental conditions. 

2.1. Environmental factors 

One of the harsh environmental conditions that can exacerbate SCC is high temperature. In high-temperature environments, 
materials can become more susceptible to SCC due to thermal stresses and the accelerated corrosion processes that occur at elevated 
temperatures [14]. High-temperature SCC can be a significant problem in industries such as nuclear power generation, where ma-
terials are exposed to high temperatures and radiation [15]. Another harsh environmental condition that can exacerbate SCC is 
exposure to harsh chemicals. Chemicals such as acids, alkalis, and salts can accelerate the corrosion process and increase the likelihood 
of SCC [9,16]. This is particularly true in environments where these chemicals are present in high concentrations, such as in the 
chemical processing industry [17]. Other factors that can also contribute to SCC include high pressure, irradiation, and high humidity 
[18]. In high-pressure environments, materials can experience higher levels of stress, which can increase the prospect of SCC [19]. This 
is particularly true in the oil and gas industry, where materials are subjected to high-pressure environments during drilling and 
production operations [20]. Radiation exposure can also exacerbate SCC. In environments with high humidity or moisture, materials 
can be exposed to a corrosive environment that can accelerate the corrosion process and increase the probability of SCC. This is 
particularly true in industries such as marine and offshore oil and gas, where materials are exposed to saltwater and high humidity [21, 

Fig. 1. Factors that exacerbate stress corrosion cracking under harsh environment conditions.  
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22]. The factors that influence the corrosion of buried natural gas and oil pipelines include the Chemical composition of the soil, 
including pH levels, moisture content, oxygen concentration, etc. [23]. Also, Temperature fluctuations in the environment can cause 
thermal fatigue on pipeline materials leading to cracking or other forms of damage [24]. The presence of corrosive chemicals such as 
acids or alkalis is present in soils due to industrial activities nearby [25]. Bacterial activity, or Microbiologically Induced Corrosion 
(MIC), causes localized pitting corrosion damages on external surfaces resulting in loss of wall section thicknesses over time [26]. 

2.2. Mechanical factors 

SCC occurs under tensile mechanical or thermal loading, and it is affected by several mechanical factors that can aggravate the 
severity of cracking, especially in harsh environmental conditions [27]. These mechanical factors include applied stress, stress con-
centration factors, residual stress, strain rate, vibrations, and cyclic loading [28,29]. The presence of stress concentration factors and 
residual stress can further promote the propagation of stress corrosion cracks by deteriorating the local mechanical properties of 
materials [30]. In addition to these factors, strain rates play a fundamental role in promoting stress corrosion cracking by lowering the 
threshold for crack propagation [31]. Moreover, vibrations and cyclic loading can also contribute to the deterioration of material 
properties by inducing intergranular corrosion penetration and reducing crack closure stresses [32]. It is important to consider these 
mechanical factors when dealing with materials under tensile loading and corrosive environments, as ignoring them could lead to 
catastrophic failure. 

2.3. Material factors 

Research has shown that the stress intensity factor K1 is a significant indicator characterizing the stress corrosion process in metals 
[33]. Corrosion cracking can typically cause ductile metal alloys subjected to high temperature and tensile stress to fail suddenly [34]. 
Ultrahigh-strength steels are particularly susceptible to stress corrosion cracking in aqueous solutions [35]. According to Banda, three 
types of corrosion have been explained, with stress corrosion cracking occurring when high mechanical stress is present in a corrosive 
environment, causing failure of metallic materials by cracking [36]. To evaluate the stress corrosion cracking resistance of metallic 
alloys, fracture mechanics principles, and pre-cracked specimens have been used successfully in recent years [37]. These pre-cracked 
specimens can be produced by fatigue, which creates compressive residual stresses in the vicinity of the crack tip [38]. In addition, Li 
has pointed out that stress-corrosion cracking occurs when the corrosion product occupies a larger volume than the volume of metal 
destroyed [39]. Combined with the applied stress and the stress from the wedging action of the corrosion product, this can be sig-
nificant enough to propagate a crack [40]. Furthermore, it is crucial to consider factors such as alloy composition, microstructure, 
surface finish, mechanical properties, and corrosion resistance when designing materials that will be exposed to extreme environ-
mental conditions, as these factors can exacerbate stress corrosion cracking [41]. 

2.4. Electrochemical factors 

Several electrochemical factors exacerbate stress corrosion cracking under extreme environmental conditions, including the 
metal’s corrosion potential, corrosion rate, Anodic and cathodic reactions, electrolyte conductivity, and current density [42]. These 
factors play a crucial role in the initiation and propagation of stress corrosion cracking. In extreme environmental conditions, the 
corrosion potential can shift towards more aggressive values, thereby increasing the susceptibility to SCC [43]. For instance, highly 
positive potentials (more oxidizing) can promote anodic reactions, while highly negative potentials (more reducing) can favor cathodic 
reactions, both of which can exacerbate the SCC process [44]. The corrosion rate tends to escalate, leading to enhanced metal loss and 
weakening of the material. The accelerated corrosion rate can provide more active sites for crack initiation and propagation [45]. The 
anodic and cathodic reactions occurring at the metal surface directly influence SCC behavior. Under extreme environmental condi-
tions, the presence of aggressive species, such as chlorides or sulfides, can promote localized anodic dissolution of the metal, gener-
ating corrosive reaction products [46]. Electrolyte conductivity affects the transport of ions and charge transfer processes, influencing 
the overall electrochemical behavior and SCC susceptibility [47]. High electrolyte conductivity facilitates the movement of corrosive 
species toward the metal surface and enhances the ionic flow, leading to a higher likelihood of SCC initiation and propagation [48]. 
Higher current densities can result from increased anodic dissolution or cathodic processes. Elevated current densities can accelerate 
localized corrosion and promote crack growth by providing the necessary electrochemical conditions for SCC [49]. 

Methods for prognosis of SCC under harsh environmental conditions. 

3. Non-destructive testing (NDT) techniques 

3.1. Ultrasonic testing 

To test for the stress corrosion cracking (SCC) failure of materials, one can go through experimental destructive testing, as in 
constant slow strain rate testing (SSRT), constant load testing, and constant total strain testing [50], in which the specimen is destroyed 
and failed to collect SCC data. However, non-destructive testing (NDT) methods are widely used to test components for SCC in a 
material. NDT can be done through Ultrasonic testing, Radiography, Eddy Current testing, DCPD testing, and many other methods 
[51]. The ultrasonic test method is a nondestructive test methodology that uses high-frequency sound waves to detect material flaws 
and defects [51–53]. This is done by sending ultrasonic waves, from the transmitter part of the sensor, through the material and 
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measuring the time needed for the waves to be reflected and travels back to the receiver of the sensor, and the different peaks and dibs 
of the sound wave are translated into, cracks, pits, defects, or a normal smooth surface. 

3.1.1. Through transmission 
Through transmission is an ultrasonic testing method in which the internal structure of the material is thoroughly tested, as 

described and shown by Fig. 2, where two transducers are placed on two opposite sides of the material and ultrasonic waves are sent 
through it, from one transducer to another Any detected change in the recorded waves by the receiver indicates a defect within the 
material, allowing this method to be the choice for materials with access difficulties and irregular geometries [54–57]. This method has 
been thoroughly utilized in many engineering test disciplines, including civil and mechanical applications. For SCC, this method is 
conducted in pipelines, in which access to the inside is deemed to be difficult [58], and these pipelines are noted to be under continuous 
corrosive conditions, with some transporting highly toxic chemicals, such as H2S, which is a main chemical byproduct in the oil and gas 
industry. 

3.1.2. Pulse echo 
Pulse echo testing is another non-destructive testing type that falls under the ultrasonic test methodology. It works by sending short 

bursts of ultrasonic high-frequency waves into a material using a transducer that acts as both the transmitter and receiver, and when 
the waves encounter a defect, a change is noted in the wave, and it is then reflected to the same transducer, which will now act as a 
receiver [59–62]. This method can be performed in different modes such as the contact testing methodology [63], in which the 
material is directly in contact with the transducer, and immersion testing [64], in which the material or test object is submerged in a 
water tank to facilitate the ultrasonic tests. This method can be applied to materials that are both under atmospheric and submerged 
harsh corrosive conditions, which allow for remote and continuous material testing to detect SCC material defects [65]. Fig. 3 shows a 
three-experiment setup done to measure the relative fraction of gas, liquid, and solid inside pipe runs of a biogas plant, using an 
ultrasonic sensor in pulse-echo mode, and at three different angles (top position, air-water phase boundary, and 90◦ from the top 
position), this research is done by Mukherjee et al. [66], representing a novel method to detect segregated phases in digesters of biogas 
plants. 

3.1.3. Resonance 
Resonance-based ultrasonic testing is like the pulse-echo type, however, the difference lies in the transmission regularity, which can 

be adjusted in this case, and the application of the transducer, where it can be used when only one side of the specimen or material is 
accessible, which is quite useful in the case of structural inspections, especially in pipelines [67,68]. Shown in Fig. 4 is a test setup used 
to determine the dynamic Young’s modulus of a specimen using a lead zirconate titanate (PZT) ultrasonic transducer and a laser 
doppler vibrometry (LDV) to map the resonant ultrasound waves, this study done by Jung et al. [69] shows that the mechanical 
properties of materials can be enhanced and studied using ultrasonic fatigue testing methods, which contribute to better enhancing the 
design of specimens and components. 

3.2. Radiography 

Radiography is a non-destructive testing type that works on the principle of radiation, in which radiation particles and isotopes are 
emitted from a source, which can typically be x-rays or gamma-rays. The rays are absorbed by digital or traditional film detectors 
placed on the opposite side of the test specimen or material, which form an image based on the captured radiation particles [70,71]. 
Digital films form two-dimensional images through the absorbed radiation, while digital detectors for immediate images for the user to 
see on an interface. The material defects would alter the radiation, which forms discontinuities in the formed image by the detector, 

Fig. 2. Schematic of a through-transmission ultrasonic test apparatus [54].  
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and this is where the trained users would classify the material defects and irregularities, through the image discontinuities [72]. When 
dealing with this type of testing methodology, extra caution must be taken due to the presence of radiation, which can be done by using 
proper protective equipment and careful test execution. As discussed, there are two main types of radiography test methodologies, one 
is the conventional type, which is also known as film radiography, and the other is called digital radiography. Digital radiography is 
also divided into two different types, one is Computed Radiography (CR), which works by using phosphorus-coated reusable plates that 
capture the transmitted radiation energy, and the plates are then laser scanned to produce images, and the other type is called Direct 
Radiography (DR), which uses solid-state detectors to directly capture the radiation and produce images [73]. Fig. 5 shows a sample of 
X-ray images taken of a weld cross-section, where Fig. 5a shows the X-ray image obtained for the defects detected, and Fig. 5b shows 
the LP results that are obtained using dye penetrant testing. 

Fig. 3. Pulse Echo Test of a Two-Phase System in a Biogas Plant Pipe Set up; a) Ultrasonic Sensor Placed on the Top Position of the Pipe, b) Sensor is 
Placed on the Water-Air Phase Boundary Position, c) Sensor is Placed 90◦ From the Top Position, d) Photograph of Experiment 1, and e) Phase 
Composition Estimation Based on the Critical Angles Observed During the Sensor Sweep. This study is done by Mukherjee et al. [66]. 
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3.3. Eddy current testing 

Eddy current testing is another non-destructive method to assess the quality of conductive materials. Its working principle, as 
described in Fig. 6, is based on inducing electric currents, in which a coil or a probe is placed near the surface of the test material and an 
alternating current is passed through it, which produces a changing magnetic field, and induces eddy currents [74]. The interaction 
between the eddy currents and the material being inspected generates a secondary magnetic field, and any variations in this field are a 
result of material defects and discontinuities. Eddy current testing methodologies include the first type known as surface eddy current 
testing, which works by scanning the surface of the material in the same way as the described working principle, and this type is the 
most basic type of eddy current tests [75]. The tubular eddy current testing is used to inspect conductive tubes by moving a coil or 
probe through the interior of the test tube [76]. The third type is the weld eddy current testing, which is specifically designed to test 
welds and study the weld defects [77]. The fourth type is the array eddy current testing, which works by utilizing an array of probes to 
inspect a larger area simultaneously [78]. The fifth type is the remote field testing, which is used to inspect conductive tubes by 
inducing currents on the external and internal surface of the tube to penetrate the walls allowing for the detection of defects at multiple 
depths [79]. The sixth and final type is the pulsed eddy current testing, which works by sending short electromagnetic pulses into the 
material and then measuring the response signals, which is done to assess the thickness and corrosion under the insulation of metal 

Fig. 4. Measurement of the Dynamic Young’s Modulus using the Resonance Ultrasonic Testing Technique [69].  

Fig. 5. X-ray and LP Comparison of Defect Detection, a) X-ray results, and b) LP results [70].  

Fig. 6. (a) Cross-section illustration of an eddy current testing experimental setup, (b) image of the actual experimental setup [80].  
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parts [80]. 

3.4. DCPD 

The Direct Current Potential Drop (DCPD) technique is a non-destructive testing method that works based on the change in po-
tential around material discontinuities. It is a non-destructive method that is mainly used in SCC or fatigue cracking defects. It is 
generally made of a pair of electric potential sensors placed on opposite sides of the specimen being studied, as shown in Fig. 7, and 
around the region of interest, and a low-level direct current is applied through the structure, where the electric potential is measured, 
and any crack or discontinuity in the material will show a drop in the measured potential [81–83]. It is based on the principle that 
cracks in the material would act as a resistor in an electric circuit, whereas the crack propagates, the resistance increases causing the 
potential readings to change and drop, which would allow for the direct calibration of the potential drop readings to the instantaneous 
crack length, and the crack propagation rate [84]. 

Table 1 shows a comparison of recent works for the prognosis and prediction of SCC using NDT methods, including the cases 
studied, and the results obtained. Although NDT methods are commonly used for SCC failure detection and in most cases prediction as 
well, we can note that they require skilled personnel to operate them, understand how they are used, and understand the output data 
they provide. Thus, in most cases, they are noted as an expensive method of predicting or detecting SCC in pipelines and mechanical 
components. 

4. Electrochemical techniques 

4.1. Electrochemical impedance spectroscopy 

Corrosion is an electrochemical process in basic terms. Any material or part of interest works in an environment condition that 
causes a certain amount of corrosion, and corrosion is an oxidation and reduction reaction that happens between the environment and 
the part that is working inside of it, which is a process of exchange of particles and electrons [90]. Thus, to study the corrosion of any 
material, the electrochemical properties of the system must be investigated, and two main techniques are employed. The first method is 
called the Electrochemical Impedance Spectroscopy (EIS) technique, and the second method is called the Potentiodynamic Polari-
zation technique. 

Electrochemical impedance spectroscopy is an electrochemical technique that studies the surface of a material. EIS works by 
applying a small amplitude of an alternating current (AC) signal to the electrochemical system and measuring the voltage response, 
where the signal applied is typically sinusoidal and varied over a range of frequencies, and then the impedance response of the system 
is determined [91]. The obtained system impedance is then used to generate a spectrum or plot, and two main plots used to analyze the 
generated spectrum are called the Bode and Nyquist plots. 

4.1.1. Bode plot 
The Bode plot is a combination of two plots in one, where the horizontal x-axis is the logarithmic scale of the frequency, the first 

vertical y-axis is the logarithm of the impedance, and the second vertical y-axis is the phase shift [92]. The first plot is called the 
magnitude plot, in which the magnitude of the response of the system is represented as the logarithm of the amplitude as a function of 
the frequency, while the second plot is called the phase plot, which represents the phase shift of the system as a function of the 
frequency. 

4.1.2. Nyquist plot 
The Nyquist plot is both literally and figuratively more complex than the bode plot. The literal part deals with the complex negative 

impedance as a function of the system’s frequency response, where the imaginary reactance of the system’s impedance is plotted 
(vertically) against the real resistance (horizontally) [93]. However, for the figurative part, the Nyquist plot is very complex to deal 
with and study, it is very sensitive to the changes in the system and would produce different results with slight uncertainties. 

Fig. 7. The DCPD method [84].  
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4.1.3. Equivalent circuit fitting 
Equivalent circuit fitting is a technique that is done using the frequency response obtained from the discussed plots and finding a 

mathematical model or equivalent electric circuit that matches the experimental impedance data, which provides insights and in-
formation into the underlying electrochemical process occurring within the system [94–97]. As explained, the electric circuit uses 
electrical components, which can be a simple resistor, capacitor, or system impedance. In corrosion and SCC studies, there are many 
different EIS equivalent circuits which, depending on the system of interest, can be a simple metal under corrosion, a metal with 
coating and corrosive conditions, a disbanding coating with film resistance and corrosion, or other experimental cases. These cases can 
be studied using an EIS sensor and a spectrum analyzer [98–101]. Cases, circuits, and systems can be represented as mathematical and 
physical representations. Equation (1) represents the simple resistor in an equivalent circuit, while similarly the capacitor is shown in 
Equation (2). Fig. 8 shows the generalized Randles equivalent circuit of an electrochemical system. The electrochemical cell is an 
electric circuit by nature, where the current flows from one electrode to another through the solution and encounters obstacles such as 
protective layers formed on the electrodes called the double layer, which is represented as a capacitance as in Equation (3). 

R=
U
I

(1)  

C=
Q
E

(2)  

Cdl =
1

Ret2πfmax
(3) 

The process inside the electrochemical corrosion cell or any cell is also a diffusive process with mass transport, which is simulated 
and represented using the Warburg Impedance term in Equation (4), and the diffusion coefficient in Equation (5), which describes the 
diffusion of ions that occur inside the electrolyte of the electrochemical cell [103]. 

ZW =
σ

√2πf
− j

σ
√2πf

(4)  

Table 1 
Comparison of non-destructive technique.  

Ref NDT Method Used Application for SCC Prognosis Environment and Material Case Results Found 

Hernandez-Valle 
et al. (2014) 
[52] 

Ultrasonic NDT Prediction of SCC Failure and 
Detection of SCC Defects 

AISI 304 Stainless Steel Sections of 
Pipes 

Sonograms of the Defects, with SCC 
Crack and Pits Found 

Cai et al. (2017) 
[85] 

DCPD NDT Prediction of SCC Defections in 
Materials Used in Chemical and 
Nuclear Power Plants 

Austenitic stainless steel of type 
316 in boiling 42 % MgCl2 solution 

Determining Conductivity in SCC 
Crack Region with Experimental and 
Numerical Methods 

Cai et al. (2020) 
[86] 

Eddy Current and 
DCPD NDT 

Prediction of Conductivity 
Distribution in a Material due to 
SCC 

three plates of type 316 austenitic 
stainless steel 

ECT and DCPD Results for SCC 
Conductivity were Shown to be Higher 
around the Crack tip area 

Ooka et al. (2017) 
[87] 

Digital 
Radiographic NDT 

Prediction of Pitting Corrosion 
Based on a Phase Field Model 

Seven Carbon and Stainless-Steel 
Plates Under Surface, Fatigue, and 
SCC Conditions 

Identification of Material Defects 
Under Different Conditions 

Wang et al. (2019) 
[88] 

DCPD NDT Monitoring SCC Defects in Steel 
Alloys 

321 Stainless-Steel in a Solution of 
0.5 M H2SO4/0.01 M KSCN at 
room temperature 

Crack Propagation and Damage 
Assessment and Prognosis 

Yusa et al. (2007) 
[89] 

Eddy Current NDT Prediction of SCC Material Failure 
Under Different Loading 
Conditions 

Six Austenitic Stainless-Steel Plates 
in MgCl2 Solution at Boiling 
Temperature 

Monitoring the Change in EC Signals 
due to Change in Load Conditions  

Fig. 8. Generalized randles equivalent circuit of a multicell electrochemical system [102].  
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σ =
RT

Az2F2
̅̅̅
2

√

(
1
̅̅̅̅̅̅̅̅̅̅̅
DOcb

O

√ +
1
̅̅̅̅̅̅̅̅̅̅̅
DRcb

R

√

)

(5)  

Where σ is the Warburg coefficient, R and F are the gas and Faraday constants respectively, D is the diffusion coefficient, cb is the 
species’ concentration inside the solution, and T is the solution temperature, the sub- R and O indicate the oxidized and reduced 
species. While in Equation (4), ZW is the Warburg element impedance. 

4.2. Potentiodynamic polarization 

Potentiodynamic polarization is an electrochemical technique used in corrosion studies of metallic materials, in which the current 
response of an electrode is measured as a function of the applied sweep potential [104–106]. As described, in potentiodynamic po-
larization, a constant rate of potential is swept on the working electrode, which is typically the specimen or material of study, and the 
sweep is done from a more negative potential to a more positive potential. If the potential sweep is done from a negative (cathodic 
region) to a positive (anodic region) value manner, the process is called Anodic Polarization, where the anodic dissolution, active 
dissolution current, and passivation behaviors are studied. On the other hand, if the sweep is done oppositely, the process is then called 
Cathodic Polarization, in which the hydrogen evolution, oxygen reduction, and cathodic current response are studied and used to 
assess the material’s susceptibility to cathodic reactions (Hydrogen Induced Corrosion) [107,108]. This electrochemical process allows 
the researcher to obtain the very important Tafel Plot, which correlates the swept potential (swept potential value is against the 
potential value of the reference electrode) against the recorded logarithmic scale of the current or current density [109]. This plot helps 
researchers obtain very important data, such as the corrosion potential, corrosion current, corrosion rate, and the current density 
change over time. 

5. Numerical modeling 

5.1. SCC mechanisms 

Understanding the underlying mechanisms of SCC is crucial for developing effective prevention strategies and ensuring the 
integrity and safety of critical infrastructure. Over the years, extensive research has been conducted to unravel the intricate processes 
involved in SCC initiation, propagation, and failure [110–112]. Multiple mechanisms have been proposed, including film rupture, 
hydrogen embrittlement, surface mobility, and coupled environment fracture. These mechanisms consider factors such as plastic 
deformation, electrochemical reactions, diffusion, and microstructural characteristics [113]. However, a comprehensive 

Fig. 9. Types of SCC mechanisms (a) coupled environment fracture model [114] (b) the surface mobility mechanism [115] (c) film-induced 
cleavage mechanism [115] (d) film rupture dissolution repassivation mechanism [116]. 
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understanding of SCC mechanisms is still evolving, and further investigations are necessary to elucidate the interplay between various 
factors and advance our knowledge in this field. Fig. 9 indicates various types of SCC mechanisms, including the coupled environment 
fracture model (Fig. 9a), the surface mobility mechanism (Fig. 9b), the film-induced cleavage mechanism (Fig. 9c), and the film 
rupture dissolution repassivation mechanism (Fig. 9d). 

5.1.1. Film rupture dissolution repassivation model 
The mechanism described in the passage has been extensively studied in the context of stress corrosion cracking of alpha brass in an 

ammoniacal environment and caustic cracking of boiler steel [118]. The model is based on the concept of a strain-induced rupture of a 
protective film, where plastic strains play a significant role in the failure process [119]. According to the theory, a passivation film 
exists on the surface of the metal, which serves as protection against corrosive agents [120]. However, mechanical loading can cause 
plastic strain, leading to the rupture of the passivation film [116]. Once the film is ruptured, the bare metal is exposed to a corrosive 
environment. This process of disruptive strain (rupturing of the protective film) and film formation (due to repassivation) alternate 
with each other. Stress corrosion cracking occurs when the rate of rupture of the oxide film is higher than the rate of repassivation of 
the film [121]. One of the widely used models for SCC is the slip dissolution/film rupture mechanism, which was developed by Ford 
and Andersen [122,123]. It suggests that crack growth is affected by the strain rate, the charge oxidation density, and the stress in-
tensity factors, which are factors of the crack tip region following Equation (6). 

vct =
M

Z.ρ.F.
Qf

εf

(
dε
dt

)

ct
EQ (6)  

where: vct is the crack tip growth rate, M is the molecular weight of the material, z is the charge of the anodic dissolved material, ρ is the 
material density, F is the Faraday constant, Qf is charge density per film rupture event, εf is the oxide fracture strain, and (dε/dt)ct is the 
crack tip strain rate. The model’s exceptional predictive abilities stem from its foundation in a deep comprehension of the crack 
advancement mechanism involving film rupture and repassivation. 

5.1.2. The surface mobility mechanism model 
The surface mobility mechanism (SMM) employs a unique strategy where cracks progress not through anodic dissolution, but 

through the movement of atomic vacancies formed at the crack edges near the tip. This is the only model that presents equations to 
forecast the rate at which cracks spread, and it also accounts for the introduction of hydrogen in the process, thereby extending the 
scope of stress corrosion cracking (SCC) theory to encompass hydrogen embrittlement [124–126]. Rhead [127] demonstrated that 
contaminants have an impact on surface mobility. Building on these findings, Galvele [128] proposed the surface mobility mechanism 
for stress corrosion cracking (SCC) based on four hypotheses: (i) The presence of the environment alters the surface self-diffusivity of 
the metal. (ii) SCC occurs at temperatures lower than 0.5 times the absolute melting temperature. (iii) Only elastic stresses play a 
significant role in the SCC process. (iv) SCC transpires through the capture of vacancies by the crack tip. Galvele developed Equation 
(7) to estimate the rate at which cracks propagate (v). 

=
Ds

L

[

exp
(

σl3 + αEb

kT

)

− 1
]

EQ (7)  

where Ds is the surface self-diffusion coefficient; L the vacancy diffusion distance; σ the elastic surface stress at the crack tip; l the size of 
the atom; α a dimensionless function; Eb hydrogen binding energy; k the Boltzmann constant; and T temperature. 

5.1.3. Coupled environment fracture model 
The Coupled-Environment Fracture Model (CEFM), developed for evaluating the crack growth rate (CGR) in sensitized Type 304SS 

exposed to extreme environmental conditions, focuses on the electrochemical, mechanical, and microstructural properties of the 
system [129]. The CEFM incorporates both mechanical and electrochemical processes and is based on the differential aeration hy-
pothesis (DAH) [130]. It proposes that crack propagation occurs through a modified slip/dissolution/repassivation (SDR) mechanism. 
Initially, the CEFM assumed that cracks advance through the SDR mechanism. Later, SDR was adjusted to consider the unexpectedly 
large microfracture dimension and low microfracture frequency by integrating hydrogen-induced cracking (HIC) into the model [131]. 
The CEFM calculates the CGR in two steps. Firstly, it determines the electrochemical potential (Ecorr or ECP) of the external surface, 
and then the CGR is estimated [132]. The CGR calculation involves splitting the system environment into the crack-internal and 
crack-external environments, recognizing that the transport (Nernst-Planck) and potential distribution (Poisson’s or Laplace’s) 
equations for both environments are interconnected through common boundary conditions (concentrations and electrostatic poten-
tial) at the crack mouth [133]. Finally, as in Equation (8), the CGR is determined using Faraday’s law. 

v=
MI0

Z.ρm.F.Act
EQ (8)  

where M is the composition- and oxidation charge-averaged atomic weight of the metal, rm is the metal density, z is the oxidation 
number, and F is Faraday’s constant. Act is the area at the crack tip over which dissolution occurs immediately upon rupture of the film, 
and I0 is Tafel’s equation to yield the current averaged over a slip dissolution-repassivation cycle [114]. 
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5.1.4. Internal oxidation model 
Scott and Le Calvar [134] proposed a mechanism to explain the intergranular (IG) embrittlement of alloy 600, focusing on the 

diffusion of oxygen into the metal lattice. They suggested that embrittlement could occur due to the presence of an oxygen atom layer 
at the grain boundary, the formation of internal oxide (Cr2O3), or the creation of gas bubbles (CO/CO2). Specifically, considering gas 
bubble formation, they presented an equation (Equation (9)) to estimate the crack growth rate. 

=

(
81.kTD0

512.γ3a2

)(
δNS

6πz

)1
2

σpKI EQ (9)  

Where k is the Boltzmann constant, T is the absolute temperature, Do is the grain boundary diffusion coefficient for oxygen, γ is the 
surface energy, a is the interatomic spacing, δ is the grain boundary thickness, Ns is the surface solubility of oxygen, z the number of 
sites explored per gas atom jump, σp is the yield stress of alloy 600, and KI is the stress intensity at the crack tip. 

5.1.5. Film-induced cleavage mechanism 
In 1985, Sieradzki and Newman introduced the film-induced cleavage (FIC) model to explain stress corrosion cracking (SCC) in 

typically ductile (fcc) materials [135]. According to this model, the process involves several consecutive stages: (i) the development of 
a brittle film induced by the environment at the crack tips, (ii) rapid fracture of the brittle film, (iii) propagation of brittle fracture into 
the underlying substrate, and (iv) subsequent crack-arrest and blunting [136]. Consequently, the model predicts that crack growth 
occurs intermittently, resulting in the presence of crack-arrest markings on fracture surfaces, which are sometimes observed. FIC 
applies to both transgranular (cleavage-like) and intergranular cracking [137]. It is presumed that crack velocities decrease as cracks 
extend, either due to occasional emission of dislocations from crack tips or encountering obstacles like slip bands, leading to extensive 
dislocation activity, ultimately resulting in crack-arrest and blunting. The cleavage-assisted SCC propagation rate, vc, is given by: 

vc = a0f0 exp
(

GIΔA
kT

)

EQ (10)  

where a0 is the balanced atomic distance, f0 is the basic lattice frequency, GI is the system energy release rate, ΔA is the area where the 
crack is propagating, k is the Boltzmann constant, and T is the Kelvin temperature. 

5.2. Computational modeling 

Several types of computational modeling techniques have been used to study stress corrosion cracking (SCC) in materials. Finite 
element analysis (FEA) is one of the most widely used techniques, which involves modeling the mechanical stress distribution in the 
material and its interaction with the corrosive environment [138]. Molecular dynamics (MD) simulation is another technique that can 
provide atomic-level insights into the SCC process by modeling the behavior of individual atoms and molecules [139]. Continuum 
mechanics-based models such as the boundary element method (BEM) and the extended finite element method (XFEM) have also been 
used to simulate the crack propagation behavior in materials subjected to stress and corrosion [140]. Furthermore, multiscale 
modeling approaches that integrate FEA and MD simulations have emerged as a promising tool to study SCC at different length scales, 
from the atomic to the macroscopic level [141]. These modeling techniques have been instrumental in providing a better under-
standing of the SCC phenomenon and facilitating the development of new materials and prevention strategies. Table 2 compares the 
numerical methods available in the literature. The table summarizes several studies on stress corrosion cracking (SCC) mechanisms 
and materials. Different numerical methods like XFEM, CZM, Peridynamics, PFM, and MD are used. Materials studied include Alloy 
600, Alloy 690, 316L stainless steel, 304 stainless steel, AISI 4135 steel, and Polycrystalline Ni60Cr30Fe10 alloys. Various load 
conditions, such as constant load, stress intensity factor, strain rate, and tensile strain, are explored. These studies provide insights into 

Table 2 
Comparison of numerical methods.  

Ref Numerical 
Method 

SCC mechanism Material Model Load Condition 

Bashir (2020) 
[142] 

XFEM Anodic dissolution Alloy 600 under light water reactor at high 
temperature 

Constant Load 

Lee (2018) 
[143] 

XFEM Coupled environment fracture 
model 

Alloy 690 under primary water The constant stress 
intensity factor 

Sedlak (2019) 
[144] 

CZM Slip dissolution 316L stainless steel exposed to cold work in primary 
water condition 

Constant Load 

Tan (2022) 
[145] 

Peridynamics Anodic dissolution 304 stainless steel in a simulated atmospheric 
environment. 

Strain Rate 

Mai (2016) 
[146] 

PFM Film rupture dissolution 
repassivation 

304 stainless steel in high purity water Constant Load 

Emilio (2022) 
[147] 

PFM Hydrogen assisted cracking AISI 4135 steel under seawater Slow strain rate 

Liu (2021) 
[148] 

MD Dissolution-precipitation Polycrystalline Ni60Cr30Fe10 alloys under high- 
temperature water 

Tensile strain of 40 %  
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SCC in diverse environmental and material settings, contributing to a deeper understanding of corrosion phenomena. 

5.2.1. Extended finite element modeling (XFEM) 
XFEM is an innovative computational method that combines the advantages of finite element analysis with the capability to 

explicitly model crack propagation without the need for re-meshing [149]. By enriching the standard finite element mesh with 
additional degrees of freedom to capture crack growth, XFEM enables accurate simulations of complex crack patterns and crack in-
teractions [150]. Rehmit [142,151,152] investigates the effect of variations in macrostructural properties of Alloy 600 on stress 
corrosion cracking plastic zone ahead of the crack-tip using the extended finite element method (XFEM). The results show that the 
plastic zone is affected by stress intensity factors, yield strength, and hardening exponent “n" of the materials. Lee [143] discusses a 
parametric study on primary water stress corrosion cracking (PWSCC) initiation and propagation of a control rod driving mechanism 
by using different mesh qualities. The study aims to suggest an XFEM-based representative model for PWSCC initiation and propa-
gation simulation. Lee and Chang [117] propose a method to accurately evaluate the crack growth rate (CGR) of nickel-base alloys, 
which are susceptible to primary water stress corrosion cracking (PWSCC) in nuclear components. The method uses the extended finite 
element method and a strain rate damage model and was verified using Alloy 600 and applied to estimate the CGR curve of Alloy 690 
[153]. Example results for XFEM SCC crack growth are shown in Fig. 10 below. 

5.2.2. Cohesive zone modeling (CZM) 
One approach to understanding and predicting SCC is to use cohesive zone modeling (CZM), which is a numerical technique that 

simulates the fracture process at the microscale [154]. CZM incorporates the material properties, loading conditions, and environ-
mental factors that contribute to SCC and provides insights into crack initiation and propagation [155]. This method has gained 
popularity in recent years due to its ability to capture the mechanics of crack growth in a realistic and computationally efficient manner 
[156]. Chen [157] uses a cohesive zone model to study the effects of corrosion product films on anodic dissolution stress corrosion 
cracking in flat and U-shaped edge-notched specimens. The simulation results show that the thickness, Young’s modulus, and fracture 
strength of the corrosion product films affect the susceptibility and threshold stress intensity factor of the SCC. Sedlak [158,144] 
presents a model to simulate intergranular stress corrosion cracking in boiling water reactors. The model includes an adaptive oxide 
thickness derived from a slip-oxidation and diffusion model, which is updated in every structural iteration to fully couple the fracture 
properties of the cohesive element. The model results agree with experiments in the literature for changes in stress intensity factor, 
yield stress representing cold work, and environmental factors such as conductivity and corrosion potential. Unai [159] presents a 
microstructural intergranular hydrogen environmentally assisted cracking (HEAC) model using a cohesive zone approach in Abaqus. 
The model was fitted with parameters using in-situ synchrotron tomography observations of crack initiation and propagation during 
HEAC of AA7449-T7651 and was able to accurately replicate the real HEAC behavior of the aluminum alloy. Raykar [160] proposes a 
new strategy to study hydrogen-assisted stress corrosion crack growth using a combination of analytical and finite element solutions. 
The results show improvement over the full finite element approach and provide a relationship between concentration-dependent 
reduction in cohesive strength and plastic strain rate. Fig. 11 provides a visual representation of the CT specimen modeled for 
CZM, including mesh and geometry. The mesh was refined close to the crack path, and the cohesive elements were also refined by tying 
four cohesive elements to the surface of every bulk element along the crack path. To avoid penetration in the crack path, Abaqus 
surface-to-surface contact formulation was used for the bulk material elements at the crack path. 

5.2.3. Phase field modeling (PFM) 
In recent years, phase field modeling (PFM) has emerged as a promising computational tool for investigating SCC behavior [161]. 

PFM is a versatile numerical technique that simulates crack propagation and material degradation at the mesoscale, capturing the 
evolution of the crack front continuously and diffusely [162]. PFM extends the traditional fracture mechanics approach by incorpo-
rating the phase field concept, which describes the local damage and crack propagation as a continuous variable within the material 
domain. This allows for a more realistic representation of the crack geometry, including crack branching and tortuosity, and the ability 
to simulate crack nucleation and growth under different loading and environmental conditions [163]. Nguyen [164,165] proposes a 

Fig. 10. Example results for XFEM SCC crack growth in Ref. [117], crack shape of alloy 600 in the middle plane at 30 MPa√m.  
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new model to simulate anodic dissolution induced by stress corrosion fracture growth at the microstructural level. The proposed model 
is illustrated through several numerical examples involving a full prediction of complex crack network growth induced by stress 
corrosion cracking within 2D polycrystalline models. The method is applied to an aluminum alloy in a saline medium, allowing for the 
consideration of both electrochemical and mechanical processes. The numerical results are compared to experimental data obtained by 
in situ microtomography [146]. presents a new phase field model for simulating stress corrosion cracking (SCC) in metallic materials. 
The model incorporates the effect of mechanical stresses and investigates the effects of pit morphology, mechanical loading, and the 
metal microstructure on SCC evolution. Lin [166] proposes a new model to investigate stress-corrosion cracking (SCC) in materials. 
The model shows that pit-to-crack transition occurs when stress-induced degradation occurs faster than electrochemical dissolution 
and provides insights into the effect of mechanical loading and initial geometry on promoting SCC. Emilio [147,167,168] This paper 
presents a new theoretical and numerical framework for modeling mechanically-assisted corrosion in elastic-plastic solids. The model 
can capture both pitting and stress corrosion cracking, as well as the pit-to-crack transition. Fig. 12 shows two plots providing in-
formation on how the initial geometry of the material, mechanical loading, and electrochemical environment affect stress-corrosion 

Fig. 11. Czm modeling for ct specimens including the geometry and the mesh model [158].  

Fig. 12. (a) The Contour Plot of Crack and (b) the Evolution of Variable, κv, with Time for the Samples Subjected to the Traction, Fx = 160/MPa, 
Having the Different initial pit a = 7.5/μm and b = 0–7.5/μm [166]. 

H. Hamdan et al.                                                                                                                                                                                                      



Heliyon 10 (2024) e25276

14

cracking. The first plot (Fig. 12a) is a contour plot of a crack, which is a visual representation of the crack’s shape and size. The second 
plot (Fig. 12b) shows the evolution of a variable called κv with time for samples subjected to traction (a force that pulls or stretches the 
material) of 160 MPa. The samples have different initial pit sizes, with one being 7.5 μm and the other ranging from 0 to 7.5 μm. The 
variable κv is a relative-rate parameter that characterizes the critical scenario where stress-induced degradation occurs faster than 
electrochemical dissolution. In simpler terms, it measures the rate at which the material is being degraded due to stress and corrosion. 

5.2.4. Peridynamics 
The peridynamic model is a non-local and non-linear computational method that can simulate crack propagation and material 

failure at multiple scales, making it suitable for studying SCC phenomena [169]. Unlike traditional continuum mechanics approaches, 
the peridynamic model describes the material behavior in terms of interactions between points (or particles) within a material, rather 
than relying on differential equations. This allows for a more accurate representation of crack initiation, propagation, and branching, 
as well as the ability to capture the influence of stress fields around the crack tip [170]. Dennj [171] presents a numerical Multiphysics 
peridynamic framework for modeling adsorbed-hydrogen stress-corrosion cracking (SCC) in a polycrystalline AISI 4340 high-strength 
low-alloy (HSLA) thin, pre-cracked steel plate. The model is based on the adsorption-induced de-cohesion mechanism and uses 
microstructural data to simulate the material at the microscopic scale. The results show good agreement with experimental data for 
crack propagation speed and branching behavior. Shi [172] uses the peridynamics method in corrosion pitting. The simulation is 
implemented on carbon steel pipes with different corrosion types and loading conditions. The results guide structural design and 
engineering practice. Moreover, Chen [173] studies pit-to-crack transition problems using the peridynamic model and the extended 
model considers mechanical damage produced by both corrosion and mechanical strains. Tan [145] proposes an atmospheric stress 
corrosion model based on peridynamics, which considers the role of hydrogen and stress in anodic-dissolution-dominated stress 
corrosion cracking. The model characterizes atmospheric corrosion by the change in liquid film thickness on the metal surface in the 
atmospheric environment. 

5.2.5. Molecular dynamics (MD) 
To gain insights into the underlying mechanisms of SCC at the atomic level, molecular dynamics (MD) simulations have emerged as 

a powerful computational tool [174]. MD is a simulation technique that models the behavior of atoms and molecules based on their 
interactions, allowing for the study of materials at the atomic scale [175]. In recent years, MD simulations have been extensively used 
to investigate the initiation, propagation, and interactions of cracks in materials under corrosive environments, providing valuable 
insights into the fundamental processes that govern SCC. MD simulations can capture the dynamic behavior of atoms, including bond 
breaking and formation, as well as the effect of stress fields around the crack tip [176]. Zhang [177] uses molecular dynamics sim-
ulations to study the stress corrosion process of strained a-quartz in liquid water. The results suggest that crack growth is primarily 
induced by the hydrolysis of strained SiAO bonds located at the crack tip. However, Liu [148] modeled reactive molecular dynamics 
simulations to study the atomistic initiation of stress corrosion cracking (SCC) of Alloy 690. The study explores the impact of cold work, 
tensile strain, and grain boundary structures on SCC initiation behaviors. Moreover, Elapolu [178] uses MD simulations to study the 
subcritical crack growth of graphene in the presence of oxygen molecules. The study investigates the mechanism of 
environment-assisted cracking of graphene occurring as an interplay between mechanical loading and chemical reactions. Das [179] 
simulates quantum chemical molecular dynamics to study the oxidation of bare Fe and Fe–Cr surfaces with strain in high-temperature 

Fig. 13. Describes the Process of Dislocation Emission and Crack Propagation Shows Three Stages of the Process: (a) When the Stress Intensity is 
0.58 MPa m1/2, (b) When the Stress Intensity is 0.74 MPa m1/2, (c) When the Stress Intensity is 1.0 MPa m1/2. 
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water. The results show that the surface morphologies differ between Fe and Fe–Cr due to the strong bond between oxygen and 
chromium atoms. 

Fig. 13 describes the process of dislocation emission and crack propagation in a Cu3Au crystal with a dealloyed layer under mode I 
loading. The figure shows three stages of the process (Fig. 13a): when the stress intensity is 0.58 MPa m1/2, the first edge dislocation is 
emitted (Fig. 13b); when the stress intensity is 0.74 MPa m1/2, large amounts of screw dislocations are emitted (Fig. 13c); when the 
stress intensity is 1.0 MPa m1/2, the crack begins to propagate. 

Table 2 below offers a comprehensive survey of simulation methods applied to diverse alloys and environmental conditions, 
thereby enriching our understanding of SCC prognosis. However, it’s important to note that the reliability and accuracy of these 
models may be compromised due to the disparate testing conditions and evaluation metrics employed across the studies. A more 
uniform testing methodology would facilitate a more reliable and direct comparison of these prognosis methods. Although, these 
studies offer rich data that can help predict SCC in various cases of different conditions. 

5.2.6. Machine learning 
Machine learning is a technology that helps users and researchers predict future outcomes and results based on past and present 

patterns. It is a programming technology in which the creator programs a “model” based on a certain structure or architecture to make 
what is known as an Artificially Intelligent system. The maker would train and teach the model and system on a large set of data, which 
can be tables, numbers, graphs, or images/videos, and the model would understand that certain future outcomes can happen based on 
the pattern it notices from the training set. The trained model is then tested on different metrics to ensure that the accuracy of the 
predictions is as high as possible to avoid false predictions and results. For stress corrosion cracking, machine learning can be used to 
effectively predict multiple data and parts of the SCC process in its entirety, which can be the prediction of certain mechanical or 
electrochemical properties and values, the time-to-failure prediction which tells the researcher exactly when the material or part that is 
being studied would fail, prediction of the cracks in the material and exactly how they will propagate in the future, and many other 
possibilities. Machine learning is not limited to one type or method, and in the following sections, the different machine learning 
methodologies are explored. 

5.3. Supervised learning methods 

Supervised learning is a machine learning method in which the algorithm learns from already labeled data to make predictions and 
decisions [180]. The goal of this algorithm, as evident in Fig. 14, is to train a model that can generalize and provide accurate pre-
dictions or classifications for new unseen data based on provided learning examples, thus the process inside this model is a pattern and 
relationship-finding process, as also explored in Fig. 15, between the input features and corresponding output labels [181]. Supervised 
learning can be classified into two different types, one is called Regression, while the other is called Classification learning models. 

Fig. 14. The Supervised Learning Process [179].  
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5.3.1. Regression 
Regression is a supervised learning task that involves the prediction of numerical values, where the algorithm learns the rela-

tionship between input features and a target variable, and the goal is to predict or estimate the target variable based on given inputs 
[183]. Regression models are used in SCC to predict future outcomes for variables, as in Ref. [184], where the corrosion potential and 
current density are predicted based on input data of electrochemical and mechanical properties of the specimen or material used and 
the corrosion cell employed. 

5.3.2. Classification 
Classification is a supervised learning task that involves assigning input data into predefined categories or classes, where the al-

gorithm learns a mapping pattern between the input features and the output labels, thus the goal is to correctly classify new instances 
of data into one of a set of classes based on the given inputs [185]. In SCC, this learning task can be used to identify SCC defects and 
cracks on structures and parts and classify them correctly as in Ref. [186]. 

5.4. Unsupervised learning methods 

Unsupervised learning is a machine learning methodology where the algorithm learns the patterns and relationships in the data 

Fig. 15. General model of supervised machine learning [182].  

Fig. 16. General model of unsupervised machine learning [182].  
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without any guidance, training, or labeled examples, which is quite contrary to the supervised learning method, which has target labels 
or output variables to guide the learning process [187]. Unsupervised learning is used for data analysis, as evident in Fig. 16, in simple 
terms, it helps researchers eliminate errors and mistakes in the data, helps in processing it, and helps in cleaning it. This can be 
achieved by utilizing different techniques of unsupervised learning, which include A- Clustering: where similar groups of data are 
grouped, B- Dimensionality Reduction: where the number of variables or input features are reduced while preserving the important 
information of the data C- Anomaly Detection: where rare or unusual or deviated data points are identified and D- Association Rule 
Mining: where interesting associations or relationships between data points are discovered, hence why this method is intensively used 
for data analysis [188]. 

5.5. Deep learning methods 

Deep learning is a more popular and recent approach to machine learning and artificial intelligence. It focuses on the development 
and training of deep neural networks, in which multiple layers of interconnected nodes or neurons are used to automatically learn and 
extract hierarchical representations from the data [189–191]. The human brain inspires deep learning technology and methodology. 
The general architecture of any deep learning model is an input layer, one or multiple hidden layers, and an output layer, where each 
layer is made of numerous interconnected nodes or neurons, and each neuron performs mathematical operations on the input data to 
generate an output. The layers are also densely connected, where each node in one layer is connected to all nodes in the next layer. 
Additionally, deep learning employs a technique called backpropagation, in which the network iteratively adjusts its internal pa-
rameters and values, which are the weights and biases, to minimize the difference between the predictions and true values in the 
training data [192]. Fig. 17 shows an example for a multi-layer deep learning model, which can be as simple as the inclusion of a couple 
of layers to give an output (Fig. 17a), or as complex as including multiple multi-node layers to provide accurate predictions and 
evaluations (Fig. 17b). 

There are many methods and types of deep learning with different architectures and for different applications, and usually, these 
different methods and types are mixed to create a new type for a certain cause, this can be as simple as the reduction of computational 
power, enhancing the accuracy and efficiency, or other reasons. The following is a sample of the well-known methods and the use of 
each for the prognosis of SCC in metals and mechanical parts. 

5.5.1. Convolutional neural networks (CNNs) 
CNNs are a type of deep learning neural network, it is generally used for grid-structured data, which can be images or time-series 

data, and they have been widely employed in computer vision applications and achieved success in image classification, object 
detection, and image segmentation applications [194]. It is made of convolutional layers, which perform filtering on the inputs, which 
is done by taking the dot-product between the filter and a small portion of the input data at a time to capture local patterns and 
features, and activation functions which are used to introduce element-wise non-linearities to the CNN, and pooling layers which are 
employed to down-sample the feature maps obtained from the convolutional layers, and fully connected layers which are similar to the 
layer architecture of a tradition deep learning model. CNNs can be applied in the prognosis of SCC by analyzing image-based or visual 
data on the material surface or microstructure, where the propagation pattern or initiation of the cracks can be studied and predicted, 
or ultrasonic testing data can be analyzed to identify and determine the extent of SCC damage on materials [195]. 

5.5.2. Recurrent neural networks (RNNs) 
RNNs are a type of deep neural network designed to process data with temporal dependencies, such as time-series data, where 

unlike typical CNNs (which are called feedforward) they can process data in a feedback manner, allowing them to persist and flow in a 
loop [196]. Thus, RNNs are the choice when the data available is sequential with time dependencies. In SCC, this type of neural 
network (NN) model is best used to predict numerical data based on history, such as the corrosion rate, current density, or corrosion 
potential, and it can be used with ultrasonic test results to analyze the history of the data and results and predict the crack propagation 
behavior in the future [197]. Lastly, RNNs can be mixed with CNNs to employ a spatio-temporal model, which can be used to predict 
the crack propagation behavior and pattern based on an input sequence of images of the crack over time, taking into consideration the 
crack length and crack propagation rate. 

5.5.3. Generative adversarial networks (GANs) 
GANs are a class of deep learning NNs, that are used to create synthetic data using two sub-neural networks that work together 

competitively, the first sub-network is called the generator network, while the second is the discriminator network, and the two 
networks are trained together to generate realistic data samples and the discriminator tries to distinguish between the real and fake 
data samples [198]. This model can be used to generate realistic synthetic data for SCC cases to train other artificial intelligence 
models, such as creating synthetic images or synthetic time-series data. 

5.5.4. Long short-term memory (LSTM) 
This model is a type of RNN architecture that addresses the vanishing gradient problem in the traditional RNN models and enables 

the model to capture long-term dependencies in the sequential data, hence this model is crucial in tasks where understanding the 
context of the data and remembering past information is needed, which is why it is generally employed and successful in time-series 
cases [199]. This is all achieved by a key feature called the memory cell which allows the model to remember and retain long-term past 
information in the data. This model can be used in the same manner as RNNs for the prognosis of SCC but with better performance and 
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higher accuracy due to the long-term memory factor. 
Table 3 outlines an array of AI techniques, each tailored to specific applications and materials for SCC prognosis. While these 

methods offer innovative approaches, the inconsistency in accuracy metrics across the studies calls for a more standardized evaluation 
process to reliably gauge their effectiveness. However, as for the other comparisons, the works done toward SCC prognosis using AI 
provide rich data and frameworks to be used for the prediction of different conditions and natures. 

6. Conclusions and future directions for SCC prognosis 

It is evident from Table 1, we note that non-destructive techniques are viable to detect and predict SCC flaws in materials and parts 
during and after real-life working conditions, we note that they are mostly used to detect corrosion pits and cracks, which would lead 
eventually to failure of the parts and materials. However, we see that machine learning and artificial intelligence techniques are 
becoming increasingly viable and accurate in predicting SCC defects and material failures. We note from Table 3 that classical AI 
techniques are the most used among the discussed options, with regression, supervised, and unsupervised techniques leading the way 
in the prognosis process of SCC, so we can conclude that intensive use of deep learning techniques, including the ones with past 
correlative capabilities (such as LSTM, RNN, and Gated Recurrent Units) would be the systems to take the lead in the future, and this 
would be a positive due to the lower interference of human workers and inspection personnel, which would protect them from 
environmental risks, reduce overall time (since the AI model would operate on readily available data), and reduce overall costs (since a 
computer-based system is what the user or researcher would only need). Hence, we can deduce that intensive studies and the use of AI 
in predicting, detecting, and studying SCC should be the future direction and point of interest for corrosion and material researchers. 

Fig. 17. An Example of a Multi-Layer Deep Learning Model with a Single Output for Quantification Tasks. a) Shows a Simple Model, and b) Shows a 
Model Proposed by Aslam et al. [193]. 

Table 3 
Comparison of artificial intelligence techniques.  

Ref Artificial Intelligence 
Model Used 

Application for SCC Prognosis Environment and Material 
Case 

Accuracy Metrics and/or Results 

Xinyu et al. 
(2020) [200] 

Regression Learning SCC resistance Optimization Al 7XXX Series Alloy in 
Simulated Soil Solution 

MSE: ±3 
Confidence: 99.7 % 

Smets & Bogaerts 
(1992) [201] 

Backpropagation CNN Prediction of SCC Risk in 
Materials 

Austenitic Stainless-Steel 
Series in a Chloride Solution 

The SCC Risk as a Function of the Solution 
Parameters and Material Treatment 
(Graphical) 

De Masi et al. 
(2014) [202] 

Artificial Neural 
Network (ANN) 

Prediction of Metal Loss and 
Corrosion Rate Inside a Pipeline 

Pipeline Steel Unde H2S 
Influence 

RMSE: 52 % 
Correlation Coefficient (R): 0.66 
MAE: 31 % 

Qian et al. (2022) 
[203] 

CNN & NARX Prediction of Pitting Corrosion 
Based on a Phase Field Model 

Structural Steel (Building 
Infrastructure Case) 

Within 90 % Confidence Interval 

Dourado & Viana 
(2019) [204] 

RNN Corrosion Fatigue Prognosis for 
Aircraft 

Al 2024-T3 Alloy with Saline 
Corrosion 

Crack Propagation and Damage 
Assessment and Prognosis 

Spanner et al. 
(2000) [205] 

Classification NN Detection of SCC Flaws Using C- 
Scans and NN 

Austenitic Pipeline Steel Automation of Ultrasonic Test Data 
Analysis 

Lajevardi et al. 
(2009) [206] 

ANN Time-to-Failure Prediction 304 Stainless Steel in 
Chloride Solution 

Average Correlation Coefficient: 0.741 
Effect of Changing Different Parameters on 
the Time-to-Failure  
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Future studies can focus on refining XFEM models to accurately simulate SCC behavior and its interaction with complex micro-
structures and heterogeneous materials. Moreover, PFM has gained attention for simulating crack dynamics and evolution. Future 
directions can involve refining PFM techniques to incorporate the influence of environmental factors, such as corrosive species, to 
capture SCC mechanisms accurately. 

To conclude, this research conducted a deep overview of the past, present, and possible future methods in the prognosis and 
prediction of stress corrosion cracking in materials and parts used in industrial applications. Different methodologies were studied 
including the non-destructive testing techniques that are currently used, which include ultrasonic testing, eddy current testing, and 
direct current potential drop testing, which all aim to detect material SCC defects, and a summary table was given to describe research 
done in this area. Additionally, the electrochemical testing techniques were discussed, including the electrochemical impedance 
spectroscopy and potentiodynamic polarization techniques, which aim to study the electrochemical properties of the SCC system and 
how they change with differing cases and conditions. Integrating these simulation techniques with more realistic environmental 
conditions and material properties will contribute to the development of more accurate predictive models and aid in the design of 
materials and structures with enhanced resistance to SCC. Nevertheless, the machine learning techniques and algorithms used for the 
prognosis of SCC have been thoroughly discussed, including the supervised and unsupervised learning algorithms, and the different 
deep learning algorithms, in addition to a table of summary to describe the different AI algorithms used to predict SCC defects and 
failures in materials. SCC is a common issue in different industries and to study or simulate it, careful treatments should be taken to 
consider the accuracy of obtained data, this is true for all of the techniques described in this paper, and the fact remains that with minor 
inaccuracies, huge variations in the predictions and prognosis can occur, leading to false conclusions and estimation for the SCC 
failure, which would lead to huge losses to the industries. It is noted that future research is moving in the direction of AI, which would 
help us conclude that machine learning technology would be the main research focus for different applications and areas of interest, 
including SCC, in the coming years. 
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[175] G. Szefer, D. Jasińska, Modeling of strains and stresses of material nanostructures, Bull. Pol. Acad. Sci. Tech. Sci. 57 (2009) 41–46, https://doi.org/10.2478/ 
v10175-010-0103-6. 

[176] Q.K. Li, Y. Zhang, W.Y. Chu, Molecular dynamics simulation of stress corrosion cracking in Cu3Au, Comput. Mater. Sci. 25 (2002) 510–518, https://doi.org/ 
10.1016/S0927-0256(02)00328-2. 

[177] Y.-A. Zhang, J. Tao, X. Chen, B. Liu, Mixed-pattern cracking in silica during stress corrosion: a reactive molecular dynamics simulation, Comput. Mater. Sci. 82 
(2014) 237–243, https://doi.org/10.1016/j.commatsci.2013.09.045. 

[178] M.S.R. Elapolu, A. Tabarraei, An atomistic study of the stress corrosion cracking in graphene, J. Phys. Chem. A 124 (2020) 7060–7070, https://doi.org/ 
10.1021/acs.jpca.0c04758. 

[179] N.K. Das, K. Suzuki, Y. Takeda, K. Ogawa, T. Shoji, Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe–Cr 
surfaces, Corrosion Sci. 50 (2008) 1701–1706, https://doi.org/10.1016/j.corsci.2008.01.032. 

[180] S. Kotsiantis, Supervised machine learning: a review of classification techniques, Informatica 31 (2007) 249–268. 
[181] A.I. Kadhim, Survey on supervised machine learning techniques for automatic text classification, Artif. Intell. Rev. 52 (2019) 273–292, https://doi.org/ 

10.1007/S10462-018-09677-1. 
[182] H.A. Al-Jamimi, S. Al-Azani, T.A. Saleh, Supervised machine learning techniques in the desulfurization of oil products for environmental protection: a review, 

Process Saf. Environ. Protect. 120 (2018) 57–71, https://doi.org/10.1016/j.psep.2018.08.021. 
[183] A.H. Alamri, Application of machine learning to stress corrosion cracking risk assessment, Egyptian Journal of Petroleum 31 (2022) 11–21, https://doi.org/ 

10.1016/j.ejpe.2022.09.001. 
[184] N. Narimani, B. Zarei, H. Pouraliakbar, G. Khalaj, Predictions of corrosion current density and potential by using chemical composition and corrosion cell 

characteristics in microalloyed pipeline steels, Measurement 62 (2015) 97–107, https://doi.org/10.1016/j.measurement.2014.11.011. 
[185] Z. Fan-Zi, Q. Zheng-Ding, A survey of classification learning algorithm, in: Proceedings 7th International Conference on Signal Processing, ICSP ’04, 2004. 
[186] M. Smith, A. Blenkinsop, M. Capewell, B. Kerrigan, Now you SCC me, now you don’t: using machine learning to find stress corrosion cracking, International 

Pipeline Conference (2020), https://doi.org/10.1115/IPC2020-9624. 
[187] G. Hinton, T.J. Sejnowski, Unsupervised Learning: Foundations of Neural Computation, MIT Press, The, 1999, https://doi.org/10.7551/mitpress/ 

7011.001.0001. 
[188] N. Li, M. Shepperd, Y. Guo, A systematic review of unsupervised learning techniques for software defect prediction, Inf. Software Technol. 122 (2020) 106287, 

https://doi.org/10.1016/J.INFSOF.2020.106287. 
[189] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, The, 2016. 
[190] Y. LeCun, Y. Bengio, G.E. Hinton, Deep learning, Nature 521 (2015) 436–444, https://doi.org/10.1038/nature14539. 
[191] J. Schmidhuber, Deep learning in neural networks, Neural Network. 61 (2015) 85–117, https://doi.org/10.1016/J.NEUNET.2014.09.003. 
[192] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533–536, https://doi.org/10.1038/ 

323533a0. 
[193] M. Aslam, J.-M. Lee, S. Hong, A multi-layer perceptron based deep learning model to quantify the energy potentials of a thin film a-Si PV system, Energy Rep. 6 

(2020) 1331–1336, https://doi.org/10.1016/j.egyr.2020.11.025. 
[194] W. Rawat, Z. Wang, Deep convolutional neural networks for image classification: a comprehensive review, Neural Comput. 29 (2017) 2352–2449, https://doi. 

org/10.1162/NECO_A_00990. 
[195] T. Papamarkou, H. Guy, B. Kroencke, J. Miller, P. Robinette, C.S. Schultz D, Automated detection of corrosion in used nuclear fuel dry storage canisters using 

residual neural networks, Nucl. Eng. Technol. 53 (2021) 657–665, https://doi.org/10.1016/j.net.2020.07.020. 
[196] M. Schuster, K.K. Paliwal, Bidirectional recurrent neural networks, IEEE Trans. Signal Process. 45 (1997) 2673–2681, https://doi.org/10.1109/78.650093. 
[197] Z. Li, Y. Lu, X. Wang, Modeling of stress corrosion cracking growth rates for key structural materials of nuclear power plant, J. Mater. Sci. 55 (2020) 439–463, 

https://doi.org/10.1007/s10853-019-03968-w. 
[198] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative adversarial networks: an overview, IEEE Signal Process. Mag. 35 

(2018) 53–65, https://doi.org/10.1109/MSP.2017.2765202. 
[199] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735–1780, https://doi.org/10.1162/NECO.1997.9.8.1735. 
[200] C. Xinyu, Z. Yingbo, L. Jiaheng, C. Hui, Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning, 

Mater. Res. Express 7 (2020) 46506, https://doi.org/10.1088/2053-1591/ab8492. 
[201] H.M. Smets, W.F. Bogaerts, SCC analysis of austenitic stainless steels in chloride-bearing water by neural network techniques, Corrosion 48 (1992) 618–623, 

https://doi.org/10.5006/1.3315981. 
[202] Giulia De Masi, Roberta Vichi, Manuela Gentile, Roberto Bruschi, A neural network predictive model of pipeline internal corrosion profile, in: 2014 First 

International Conference on Systems Informatics, Modelling and Simulation, IEEE, 2014, pp. 18–23. 
[203] G. Qian, K. Tantratian, L. Chen, Z. Hu, M.D. Todd, A probabilistic computational framework for the prediction of corrosion-induced cracking in large 

structures, Sci. Rep. 12 (2022) 1, https://doi.org/10.1038/s41598-022-25477-8. 
[204] A. Dourado, F.A.C. Viana, PHYSICS-INFORMED neural networks for corrosion-fatigue prognosis, in: Annual Conference of the, PHM Society, 2019, pp. 1–12. 
[205] J. Spanner, L. Udpa, R. Polikar, P. Ramuhalli, Neural Networks for Ultrasonic Detection of Intergranular Stress Corrosion Cracking, vol. 409, American Society 

of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP, 2000, pp. 215–221. 
[206] S.A. Lajevardi, T. Shahrabi, V. Baigi, S.M. A, Prediction of time to failure in stress corrosion cracking of 304 stainless steel in aqueous chloride solution by 

artificial neural network, Protect. Met. Phys. Chem. Surface 45 (2009) 610–615, https://doi.org/10.1134/S2070205109050207. 

H. Hamdan et al.                                                                                                                                                                                                      

https://doi.org/10.1016/j.compositesb.2019.04.003
https://doi.org/10.1016/j.polymdegradstab.2009.01.016
https://doi.org/10.1007/s11661-010-0373-5
https://doi.org/10.1007/s11661-010-0373-5
https://doi.org/10.1016/j.ijhydene.2016.02.154
https://doi.org/10.1016/j.engfracmech.2019.106604
https://doi.org/10.1016/j.jmps.2020.104203
https://doi.org/10.1007/s13369-018-3605-4
https://doi.org/10.2478/v10175-010-0103-6
https://doi.org/10.2478/v10175-010-0103-6
https://doi.org/10.1016/S0927-0256(02)00328-2
https://doi.org/10.1016/S0927-0256(02)00328-2
https://doi.org/10.1016/j.commatsci.2013.09.045
https://doi.org/10.1021/acs.jpca.0c04758
https://doi.org/10.1021/acs.jpca.0c04758
https://doi.org/10.1016/j.corsci.2008.01.032
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref180
https://doi.org/10.1007/S10462-018-09677-1
https://doi.org/10.1007/S10462-018-09677-1
https://doi.org/10.1016/j.psep.2018.08.021
https://doi.org/10.1016/j.ejpe.2022.09.001
https://doi.org/10.1016/j.ejpe.2022.09.001
https://doi.org/10.1016/j.measurement.2014.11.011
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref184
https://doi.org/10.1115/IPC2020-9624
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.7551/mitpress/7011.001.0001
https://doi.org/10.1016/J.INFSOF.2020.106287
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref189
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/J.NEUNET.2014.09.003
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.egyr.2020.11.025
https://doi.org/10.1162/NECO_A_00990
https://doi.org/10.1162/NECO_A_00990
https://doi.org/10.1016/j.net.2020.07.020
https://doi.org/10.1109/78.650093
https://doi.org/10.1007/s10853-019-03968-w
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1162/NECO.1997.9.8.1735
https://doi.org/10.1088/2053-1591/ab8492
https://doi.org/10.5006/1.3315981
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref202
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref202
https://doi.org/10.1038/s41598-022-25477-8
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref204
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref205
http://refhub.elsevier.com/S2405-8440(24)01307-0/sref205
https://doi.org/10.1134/S2070205109050207

	Prognosis methods of stress corrosion cracking under harsh environmental conditions
	1 Introduction
	2 Harsh environmental conditions that exacerbate SCC
	2.1 Environmental factors
	2.2 Mechanical factors
	2.3 Material factors
	2.4 Electrochemical factors

	3 Non-destructive testing (NDT) techniques
	3.1 Ultrasonic testing
	3.1.1 Through transmission
	3.1.2 Pulse echo
	3.1.3 Resonance

	3.2 Radiography
	3.3 Eddy current testing
	3.4 DCPD

	4 Electrochemical techniques
	4.1 Electrochemical impedance spectroscopy
	4.1.1 Bode plot
	4.1.2 Nyquist plot
	4.1.3 Equivalent circuit fitting

	4.2 Potentiodynamic polarization

	5 Numerical modeling
	5.1 SCC mechanisms
	5.1.1 Film rupture dissolution repassivation model
	5.1.2 The surface mobility mechanism model
	5.1.3 Coupled environment fracture model
	5.1.4 Internal oxidation model
	5.1.5 Film-induced cleavage mechanism

	5.2 Computational modeling
	5.2.1 Extended finite element modeling (XFEM)
	5.2.2 Cohesive zone modeling (CZM)
	5.2.3 Phase field modeling (PFM)
	5.2.4 Peridynamics
	5.2.5 Molecular dynamics (MD)
	5.2.6 Machine learning

	5.3 Supervised learning methods
	5.3.1 Regression
	5.3.2 Classification

	5.4 Unsupervised learning methods
	5.5 Deep learning methods
	5.5.1 Convolutional neural networks (CNNs)
	5.5.2 Recurrent neural networks (RNNs)
	5.5.3 Generative adversarial networks (GANs)
	5.5.4 Long short-term memory (LSTM)


	6 Conclusions and future directions for SCC prognosis
	Author contributions
	Funding statement
	Data availability
	Declaration of competing interest
	References


