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Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from
bats-to-humans with almost annual regional outbreaks characterized by documented
human-to-human transmission and high fatality rates. Currently, no vaccine against NiV
has been approved. Structure-based design and protein engineering principles were
applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to
improve expression and increase immunogenicity. We covalently linked the stabilized pre-
F through trimerization domains at the C-terminus to three attachment protein (G)
monomers, forming a chimeric design. These studies detailed here focus on mRNA
delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design
elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera
elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other
effector T cell response compared to G alone across both the mRNA and protein
platforms. These findings enabled final candidate selection of pre-F/G Fd for
clinical development.

Keywords: Nipah virus (NiV), mRNA, vaccine, Pre-F/G, structure-based immunogen design, pandemic
preparedness and response, T cell responses
HIGHLIGHTS

• Pre-F and G elicit potent neutralizing antibody responses as mRNA vaccines
• F is the immunodominant antigen eliciting (H2d/b)-restricted T cell responses
• Coupling precise immunogen design with the mRNA vaccine platform enabled final selection of

pre-F/G Fd chimeric design for clinical development
org December 2021 | Volume 12 | Article 7728641

https://www.frontiersin.org/articles/10.3389/fimmu.2021.772864/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.772864/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.772864/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:bgraham@nih.gov
mailto:rebecca.loomis@nih.gov
https://doi.org/10.3389/fimmu.2021.772864
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.772864
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.772864&domain=pdf&date_stamp=2021-12-08


Loomis et al. Pre-F/G mRNA as Candidate Nipah Vaccine
INTRODUCTION

Nipah virus (NiV) is an enveloped non-segmented negative-
strand RNA virus in the Henipavirus genus of the
Paramyxoviridae family (1). Since its emergence in Malaysia in
1998 (1–3), near-annual outbreaks of NiV have occurred in
Bangladesh and India (4–10). NiV outbreaks begin with zoonotic
exposure to the natural reservoir, fruit bats of the Pteropodidae
family, or infected intermediate hosts (11–13) as NiV has broad
species tropism and can cause disease in a wide range of
domestic animals (1, 6, 14–20). NiV infection results in
primarily respiratory symptoms with potential neurological
manifestations, documented human-to-human transmission
and a high mortality rate (60-70%) in recent outbreaks (3, 5, 8,
21–29).

NiV is listed as a high priority pathogen by the World Health
Organization (WHO), Centers for Disease Control and
Prevention (CDC) and the Coalition of Epidemic Preparedness
Innovations (CEPI) (30), and there is a need for medical
countermeasures, particularly vaccines. As part of pandemic
preparedness efforts, we selected NiV as a prototype
paramyxovirus pathogen to optimize antigen design, dissect
the humoral and cellular immune responses to vaccination and
identify mechanisms of protection. An effective and rapid
vaccine response strategy for outbreaks or pandemics requires
both precise antigen design and a method for rapid
manufacturing and deployment.

Members of the Paramyxoviridae and Pneumoviridae virus
family have two membrane-anchored glycoproteins that are
targets for neutralizing antibodies (31), the attachment protein
(G, H or HN) and the fusion (F) protein (32). Nipah’s
attachment protein is a type II membrane protein that
facilitates binding of the NiV virions to the host cells through
the ephrin B2/B3 receptors (33–38). The fusion (F) protein
utilizes a class I fusion glycoprotein, transitioning from a
metastable prefusion conformation (pre-F) to a stable
postfusion conformation (post-F) to fuse viral and cellular
membranes (39–43) and initiate viral entry, as demonstrated
for other class I fusion glycoproteins such as parainfluenza virus
(PIV) (44–46) and respiratory syncytial virus (RSV) (47, 48).
Based on experience with related paramyxoviruses and
pneumoviruses, both the NiV F and G proteins are considered
relevant protective antigens and targets for vaccine-elicited
neutralizing antibodies. Several recently isolated and
characterized monoclonal antibodies have shown F-binding
neutralizing antibodies to be pre-F specific (49–52) and five
major antigenic sites have been identified on HeV G that inhibit
virus by multiple mechanisms and are cross-reactive with NiV G
(53, 54). The neutralizing humoral response primarily targets G,
which has been the primary focus of vaccine development. A
soluble Hendra G recombinant subunit candidate vaccine
for Nipah is currently in Phase I clinical evaluation
(ClinicalTrials.gov NCT04199169).

Previously, we demonstrated that structure-based antigen
design could be used to develop a highly-immunogenic NiV
subunit protein vaccine (55). Structure-based design and protein
engineering of RSV (47, 48) and PIV (44), specifically to stabilize
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the fusion protein in its prefusion conformation thereby eliciting
a more potent neutralizing antibody response than the post-F
conformation and more broadly, stabilization of betacoronavirus
spike proteins with the S-2P mutation (56–58) have informed
our approach with NiV. Considering prior reports that the
henipavirus attachment protein, G, is an important target for
humoral response during natural infection, our goal was to
design a chimeric vaccine antigen that included both F and G.
We focused on stabilizing the fusion protein in its prefusion
conformation, designing multimeric forms of G and combining
pre-F and G antigens to produce a covalently linked polyprotein.
Stabilized pre-F trimer and hexameric G (Hex G) immunogens
both induced serum neutralizing activity in mice, while the post-
F trimer immunogen did not elicit detectable neutralizing
activity. The pre-F trimer covalently linked to three G
monomers (pre-F/G) induced responses to both major NiV
surface glycoproteins and potent neutralizing activity, making
it the lead candidate for clinical development.

Here, we focused on how to rapidly deliver optimized
henipavirus immunogens when a pandemic threat arises.
Establishing cell lines to express a selected protein and
developing purification protocols for clinical-grade subunit
protein often takes years, whereas manufacturing nucleic acid
vaccines as a platform technology can be achieved in a matter of
weeks, as demonstrated with SARS-CoV-2 vaccine, mRNA-1273,
an mRNA vaccine developed by Moderna in partnership with
NIAID (56, 59). mRNA vaccines have an advantage in
manufacturing speed and versatility, potently elicit both
humoral and cellular immunity (60–62), have a favorable safety
and tolerability profiles (63) and are efficacious (64–67). Two
mRNA-based vaccines, mRNA-1273 (Moderna/NIAID) and
BNT162b2 (Pfizer/BioNTech), received emergency use
authorization at record pace and have been administered to
hundreds of millions of people globally. The objectives for these
studies include evaluation of mRNA encoding NiV immunogens
formulated in lipid nanoparticles (mRNA-LNP), optimization of
mRNA immunogen-specific design elements and refinement of
the selected candidate for clinical development. We demonstrate
how structure-guided antigen design coupled with the mRNA
vaccine platform to enable rapid manufacturing forms a
strategy to expedite medical countermeasures for future
pandemic threats.
MATERIALS AND METHODS

Protein Expression and Purification
NiV F, G, or F/G glycoproteins [described in (55)] were expressed
by transfection of 293 Freestyle (293F) cells (Thermo Fisher
Scientific, MA) with Turbo293 transfection reagent (SPEED
BioSystem, MD) according to the manufacturer’s protocol.
Transfected cells were incubated in shaker incubators at 120
rpm, 37°C, 9% CO2 overnight. The following day, one tenth
culture volume of Cell Booster medium (ABI Scientific, VA) was
added to each flask and flasks were incubated for an additional
four days in the shaker incubators. Five days post-transfection,
cell culture supernatants were harvested and proteins were
December 2021 | Volume 12 | Article 772864
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purified from the supernatants using tandem Ni2+ (Roche) and
Strep-Tactin (IBA) affinity purification. The C-terminal
purification tags were removed by thrombin digestion at room
temperature overnight. Proteins were further purified by SEC in a
Superdex 200 column (GE) in 1x phosphate-buffered saline
(PBS). The strategy for how antigen designs were evaluated and
selected was previously reported (55). Briefly, we evaluated
expression level, how well and efficiently the protein purified
and structural integrity by negative-stain EM.

Research-Grade Pre-Clinical mRNA and
LNP Production Process
A sequence-optimized mRNA encoding Nipah proteins was
synthesized in vitro using an optimized T7 RNA polymerase-
mediated transcription reaction with complete replacement of
uridine by N1-methyl-pseudouridine (68). All mRNA
immunogens were codon-modified using Moderna ’s
proprietary codon algorithms designed to improve protein
expression and mRNA manufacturability. The reaction
included a DNA template containing the immunogen open
reading frame flanked by 5′ untranslated region (UTR) and 3′
UTR sequences and was terminated by an encoded polyA tail.
After transcription, the Cap 1 structure was added to the 5′ end
using vaccinia capping enzyme (New England Biolabs) and
Vaccinia 2′ O-methyltransferase (New England Biolabs). The
mRNA was purified by oligo-dT affinity purification, buffer
exchanged by tangential flow filtration into sodium acetate, pH
5.0, sterile filtered, and kept frozen at –20°C until further use.

The mRNA was encapsulated in a lipid nanoparticle through
a modified ethanol-drop nanoprecipitation process as described
previously (60). In brief, ionizable, structural, helper and
polyethylene glycol lipids were mixed with mRNA in acetate
buffer, pH 5.0, at a ratio of 2.5:1 (lipids:mRNA). The mixture was
neutralized with Tris-Cl pH 7.5, sucrose was added as a
cryoprotectant, and the final solution was sterile filtered. Vials
were filled with formulated LNP and stored frozen at –70°C until
further use. The drug product underwent analytical
characterization, which included the determination of particle
size and polydispersity, encapsulation, mRNA purity, double
stranded RNA content, osmolality, pH, endotoxin and
bioburden, and the material was deemed acceptable for
in vivo study.

Negative-Stain Electron Microscopy
Proteins were diluted to approximately 0.02 mg/mL with buffer
containing 10 mM HEPES, pH 7.0 and 150 mM NaCl, adsorbed
to a freshly glow-discharged carbon-coated copper grid, washed
with the same buffer, and stained with 0.7% uranyl formate.
Datasets were collected using SerialEM (69) on an FEI Tecnai
T20 microscope equipped with a 2k x 2k Eagle CCD camera and
operated at 200 kV. The nominal magnification was 100,000,
corresponding to a pixel size was 0.22 nm. Particles were selected
from micrographs automatically using in-house written software
(YT, unpublished), followed by manual correction using EMAN2
(70), when necessary. Reference-free 2D classifications were
performed with Relion 1.4 (71).
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Thermal Unfolding Transition by Dynamic
Light Scattering (DLS)
Samples were diluted in PBS to concentration of 1 mg/mL and
filtered with a 0.1 µm, 10 mm diameter PES syringe filter prior to
evaluation by Dynamic Light Scattering (DLS) when subjected to a
thermal ramp using the DynaPro Plate Reader II (Wyatt
Technology, Santa Barbara, CA). Samples were assayed (n = 3)
in a 384 well plate; each sample well was filled with 30 µL sample
and topped with 10 µL high-purity paraffin oil (Sigma-Aldrich, St.
Louis, MO) to prevent evaporation. The wells surrounding the
samples were filled with paraffin oil to mitigate edge effects. Each
datapoint was generated from 5 readings (5 s acquisition time) for
each well during a continuous thermal ramp from 25°C to 80°C @
0.12°C min-1. Particle data were reported for cumulant Rh values
in the range of 2 – 5000 nm. The thermal transition onset (Tonset)
for each sample was determined using the onset function in
Dynamics Software, version 7.8.0 (Wyatt Technology, Santa
Barbara, CA). Data was not viscosity corrected.

Differential Scanning Calorimetry (DSC)
Samples were diluted in PBS to concentration of 0.5 mg/mL and
Differential Scanning Calorimetry (DSC) thermograms were
acquired at 0.5 mg/mL sample concentration using a MicroCal
VP-Capillary DSC (Malvern Panalytical, Westborough, PA).
Heat differential was monitored as the sample cell temperature
was increased from 5°C to 100°C (110°C for the postfusion F
protein) at a rate of 60°C/h. Thermograms were subjected to
mathematical deconvolution using the MicroCal LLC DSC plug-
in for Origin Software (ver. 7.0) to resolve underlying peaks and
determine transition midpoints (59). Buffer-subtraction and
baseline correction were applied.

Animal Immunizations
All animal experiments were reviewed and approved by the
Animal Care and Use Committee of the Vaccine Research
Center, NIAID, NIH and all animals were housed and cared
for in accordance with local, state, federal and institute policies in
an American Association for Accreditation of Laboratory
Animal Care (AAALAC)-accredited facility at the NIH.
Groups of 10 CB6F1/J female mice (Jackson Laboratory) were
immunized twice at weeks 0 and 3 intramuscularly with 10 mg of
recombinant NiV post-F, pre-F, G or pre-F/G chimeric designs
combined with 100 mg aluminum hydroxide (alum) in a volume
of 100 mL (50 mL/leg) or 0.1 mg, 1 mg, 3 mg or 10 mg mRNA in a
volume of 50 mL in the right leg. Serum was collected at weeks 2/
3, 5/6 and/or 9 following immunization (no more than 100 mL/
tail bleed). Week 5/6 or 9 sera was assessed for immunogenicity
in enzyme-linked immunosorbent assays and for neutralization
in VSVDG-luciferase pseudovirus neutralization assay in vitro.

Endpoint ELISA to Measure Pre-F and
Monomeric G-Specific Responses
Immulon 4HBX 384-well ELISA plates (Thermo Scientific) were
coated with 40 ng/well of NiV Pre-F or NiV monomeric G
protein in BupH buffer (Pierce) at 4°C for 16h. The NiV pre-F
protein used to coat ELISA plates is the same antigen used in
December 2021 | Volume 12 | Article 772864
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immunization studies (also contains thrombin-his-strep tag) while
the NiV monomeric G protein has the thrombin-his-strep tag and
no multimerization domain, differing from the antigen used in
immunization studies. After standard washes and blocks, plates
were incubated with 4xfold serial dilutions of heat-inactivated sera
for 30-45 min at room temperature. Following washes, anti-mouse
IgG-horseradish peroxidase conjugates (Sigma) were used as
secondary antibody and 3,5,3’,5’-tetramethylbenzidine (TMB)
(KPL) was used as the substrate to detect antibody responses.
Endpoint titers were calculated as the dilution that emitted an
optical density exceeding background (secondary antibody alone)
with apredeterminedabsorbance cut-off of 0.2 (approximately 3-4x
average background value).

Generation of NiV Pseudovirus
To obtain VSVDG-luciferase pseudotyped with NiV FWT and
NiV GWT proteins, BHK21 cells were first co-transfected with
VRC8400 NiV FWT and VRC8400 NIV G. Transfected cells
showing extensive cell-to-cell fusion were infected with VSV-G
complemented with VSVDG-luciferase at an MOI of 4, about 24
hours post-transfection. At 1 hour post-infection, input virus was
removed, cells were washed with 1xPBS and DMEM with 10%
FBS, 1% Pen/Strep, 1% GlutaMax was added to the cells.
Medium/cells containing VSVDG-luciferase pseudotyped with
NiV FWT and G was collected after 24 hours and sonicated,
before being clarified. Stock pseudovirus was confirmed to have
incorporated both NiV F and NiV G by demonstrating h5B3
mAb and m102.4 mAb were able to neutralize pseudovirus
infectivity individually in a luciferase assay.

Imunogenicity of NiV F, G, and F/G
Chimeric Designs in Mice
A pseudovirus neutralization assay is used because NiV is
classified as a BSL-4 pathogen. Neutralizing antibody titers
were determined using a microneutralization assay using
VSVDG-luciferase expressing NiV F and NiV G in Vero E6
cells as previously described (72). NiV F/G VSVDG-luciferase
pseudovirus was first incubated with anti-VSV G 8G5monoclonal
antibody (Kerafast) for 15 min to neutralize any trace infection
due to residual VSV G that may have been incorporated into the
particles pseudotyped with NiV F and G proteins. Serum samples
were heat-inactivated at 55°C for 30min. Serum samples or pooled
serum samples from each immunization group were serially
diluted in DMEM with 10% FBS, 1% Pen/Strep, 1% GlutaMax
and mixed with equal volume of pseudotyped particles with anti-
VSV G 8G5 monoclonal antibody, incubated for 30 min at room
temperature before addition to Vero E6 cells. After 24 hours,
medium was removed by aspiration, plates were washed with 300
mL 1xPBS/well. Cell lysis and detection of firefly luciferase were
performed according to the protocol recommended by the
manufacturer (Promega Inc). Briefly, firefly luciferase assay lysis
buffer was thawed to room temperature, diluted 1:5 with ddH2O
and 20 mL was added to each well. Plates were placed on an orbital
shaker for 20-30 min. Following lysis, 50 mL of luciferase assay
reagent was added to each well and read at 570 nm on the
SpectraMax L luminometer (Molecular Devices). Percent
Frontiers in Immunology | www.frontiersin.org 4
neutralization was normalized considering uninfected cells as
100% neutralization and cells infected with only pseuodvirus as
0% neutralization. The 80% inhibitory concentration (IC80) was
calculated by curve fitting and non-linear regression (log(agonist)
vs normalized response (variable slope) ECAnything) in triplicate
wells using GraphPad Prism v8.

T Cell Peptide Libraries
Peptides spanning the ectodomain of F and G (15-mers
overlapping by 11 amino acids) were synthesized by JPT (F
and G peptide pools, 85% pure). The F pool has 123 peptides and
the G pool has 108 peptides.

Activation-Induced Marker Assay (AIM)
Mononuclear single cell suspensions from whole mouse
spleens were generated using a gentleMACS tissue dissociator
(Miltenyi Biotec) followed by 70 µm filtration and density
gradient centrifugation using Fico/Lite-LM medium (Atlanta
Biologicals). Antigen-specific CD8+ and CD4+ T cells, including
Tfh cells were examined using an activation induced marker (AIM)
assay. Splenocytes were resuspended in R10media containing BDFc
Block and anti CD154/CD40L antibody conjugated to APC (BD,
clone: MR1) and incubated for 6 hr at 37°C under three conditions:
no peptide (DMSOonly) stimulation, and stimulationwith the F and
G peptide pools. Peptide pools were used at a final concentration of
2 µg/ml each peptide. Cells from each group were pooled for
stimulation consisting of a 6 hr incubation with 1x eBiosience cell
stimulation cocktail containing PMA and ionomycin (Invitrogen),
according to manufacturer’s instructions as a positive control.
Following stimulation, cells were washed with PBS prior to staining
with LIVE/DEAD Fixable Blue Dead Cell Stain (Invitrogen) for 20
min at RT. Cells were then washed in FC buffer (PBS supplemented
with 2%HI-FBS and 0.05%NaN3) and resuspended in BD Fc Block
(clone 2.4G2) for 5 min at RT prior to staining with a surface stain
cocktail containing the following antibodies purchased fromBD and
Biolegend: CD3 (17A2) BUV737, CD4 (RM4-5) BV480, CD8 (53-
6.7) BUV805, I-A/I-E (M5/114.15.2) PE, CD44 (IM7) BUV395,
CD62L (MEL-14) PE-Cy7, CXCR5 (2G8) PE-CF594, PD-1 (J43)
BV421,CD69(H1.2F3)BV605.After15minatRT, cellswerewashed
in FC stain buffer solution and resuspended in 0.5% PFA-FC stain
buffer prior to running on a Symphony A5 flow cytometer (73).
Analysis was performed using FlowJo software, version 10.6.2
according to the gating strategy outlined in Supplemental
Figure 6. Background cytokine expression in the no peptide
condition (DMSO) was subtracted from that measured in the F
and G peptide pools for each individual mouse, with representative
upregulation of activation markers (CD69 and CD40L) shown in
Supplemental Figure 7.
RESULTS

Evaluation of mRNA Dose Response
We first evaluated the dose response to mRNA-LNP encoding
NiV antigens. CB6F1/J mice (H2d/b) were immunized
intramuscularly with either 1 mg, 3 mg or 10 mg mRNA
December 2021 | Volume 12 | Article 772864
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expressing pre-F, post-F, Hex G or pre-F/G or 10 mg protein,
adjuvanted with aluminum hydroxide (alum) at weeks 0
and 3 (Supplemental Figure 1). Three weeks post-second
immunization, sera were assessed for binding to pre-F or
monomeric G antigens by enzyme-linked immunosorbent
assay (ELISA). Mice immunized with pre-F, post-F or pre-F/G
mRNA had robust F-specific antibody responses (Figure 1A)
regardless of mRNA dose, while mice immunized with Hex G
protein did not elicit detectable F-specific antibodies. Consistent
with our observations with protein immunogens (55), mRNA
designs incorporating pre-F demonstrated superior elicitation of
F-specific antibodies compared to those expressing post-F. The
F-specific antibody response measured by ELISA in post-F
mRNA immunized mice was dose-dependent with a ELISA
endpoint geometric mean titer (GMT) of 1:22,000 in the 10 mg
mRNA dose group compared to 1:1,600 in the 1 mg mRNA dose
group. In contrast, pre-F and pre-F/G mRNA immunized mice
had uniformly high F-specific endpoint GMT (greater than
1:65,000 at all mRNA doses).

A similar outcome was noted for G-specific antibody
responses in mice immunized with Hex G or pre-F/G mRNA
(Figure 1B) with ELISA endpoint GMT of 1:28,000 at 10 mg and
1:30,000 at 1 mg mRNA dose groups or 1:16,000 at 10 mg and
1:14,000 at 1 mg mRNA dose groups, respectively. The difference
in G-specific antibody levels between Hex G and pre-F/G may be
related to the molar ratio of G in each design and G monomer
valency; Hex G is composed of six G monomers while pre-F/G
has three G monomers.

Next, we measured the ability of NiV mRNA-LNP vaccines to
elicit neutralizing antibodies using a NIV F/G VSVDG-luciferase
pseudovirus system, described previously (74). Mouse sera were
serially diluted for the 1 mg mRNA and 10 mg alum adjuvanted
protein immunized groups (Figure 1C). No detectable
neutralizing activity was observed in sera from mice
immunized with post-F (mRNA or protein) while mice
immunized with pre-F, Hex G or pre-F/G (mRNA or protein)
all had neutralizing activity. For each mRNA/protein antigen
design, the 1 mg mRNA group reciprocal IC80 neutralization
GMT was 40-60% higher than 10 mg of the corresponding
protein. While there is no statistically significant difference in
the measured neutralizing activity between Hex G and pre-F/G,
they both elicit ten-fold more neutralizing antibodies than pre-F
alone (Figure 1C). Our results demonstrate that both pre-F and
G-specific antibodies contribute to neutralizing activity and
confirm that G is the primary target for neutralization.

mRNA-Immunogen Design Elements Like
Signal Peptide and Protein Solubility Does
Not Affect Immunogenicity
Historically, immunogen design elements like signal peptide and
protein solubility have played a role in immunogenicity. We
asked whether we could improve immunogenicity by altering the
signal peptide (IL-2 vs native) or protein solubility (secreted vs
membrane-anchored) of our pre-F and G mRNA immunogens.
CB6F1/J mice (H2d/b) were immunized intramuscularly with 1
mg mRNA or 10 mg protein, adjuvanted with alum expressing
Frontiers in Immunology | www.frontiersin.org 5
various pre-F or G designs at weeks 0 and 3 (Supplemental
Figure 2). Six weeks post-second immunization, we assessed
binding to pre-F or monomeric G antigens by ELISA and
pseudovirus neutralization (Figure 2). There was no
statistically significant difference in pre-F specific antibodies
(Figure 2A) or neutralizing antibody titers (Figure 2B) elicited
by pre-F mRNA designs with different signal peptides (native vs
IL-2) or with secreted vs membrane-anchored designs.
Membrane-anchored NiV G mRNA with the native signal
peptide (wild type G, Stalk G TM nat) elicited more
neutralizing antibodies than secreted NiV G mRNA with the
IL-2 signal peptide (Stalk G IL-2 sol) with reciprocal IC80

neutralization GMT for Stalk G TM nat of 85,000 and for
Stalk G sol IL-2 of 36,000 in the 1 mg mRNA dose groups
(Figure 2D). Although the difference in G-specific binding
antibodies was not statistically significant between the two
mRNA designs (Figure 2C), binding antibodies elicited with
the Stalk G TM nat mRNA trended higher than the Stalk G sol
IL-2 mRNA with ELISA endpoint GMT for Stalk G TM nat of
1:68,000 and for Stalk G sol IL-2 of 1:31,000 in the 1 mg mRNA
dose group.

Next, we examined the role of signal peptide and codon
usage on our pre-F/G chimeric design. All mRNA immunogens
were codon-modified using Moderna’s proprietary codon
algorithms designed to improve protein expression and
mRNA manufacturability. CB6F1/J mice (H2d/b) were
immunized intramuscularly with 1 mg or 0.1 mg mRNA or 10
mg protein, adjuvanted with alum expressing various pre-F/G
designs at weeks 0 and 3 (Supplemental Figure 3). Six weeks
post-second immunization, we assessed immunogenicity
(Figure 3). All mice had robust F-specific (Figure 3A) and G-
specific (Figure 3B) binding and neutralizing antibody responses
(Figure 3C). Pre-F/G mRNA induced dose-dependent binding
and neutralizing antibody response, but no statistically
significant difference between the two mRNA designs was
observed suggesting that neither the signal peptide nor the
codon optimization algorithm affected immunogenicity
(Figures 3A–C).

Trimerization Domain Does Not Affect
Immunogenicity of Pre-F/G Chimera
mRNA
We set out to further refine the pre-F/G chimeric design for
clinical development. The initial pre-F/G immunogen included
both GCN4 and T4-phage fibritin (Fd) trimerization domains.
Previously, DS-Cav1 protein, an RSV stabilized pre-F trimerized
using the Fd trimerization domain, was evaluated in a Phase I
clinical trial (VRC 317) (75, 76). Therefore, we aimed to evaluate
immunogens that incorporated only GCN4 or Fd for stability
and immunogenicity.

We assessed the conformational and colloidal stability
of the pre-F/G GCN4-Fd protein compared to pre-F/G
GCN4 and pre-F/G Fd proteins. Analysis by negative-stain
electron microscopy showed similar protein conformation and
architecture composed of clearly defined pre-F and G globular
head components (Figure 4A). Differential scanning calorimetry
December 2021 | Volume 12 | Article 772864
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thermograms (Figures 4B, D) were similar for all three variants.
Two transition midpoints were observed at approximately
61°C and 66°C, corresponding to the primary transition
midpoints of pre-F and G proteins, respectively, suggesting
minimal interaction between the two domains within the
chimera and thermal stability of the covalent interaction, as
previously described (55). Colloidal stability of the three
proteins, as assessed by dynamic light scattering analysis
(Figures 4C, D), was also similar, with transition onset (Tonset)
values of ~ 59°C-61°C) suggesting that the first DSC Tm coincides
with a heat-induced aggregation event. The biophysical
characterization of the three pre-F/G chimeric proteins with
different trimerization domains indicate identical conformational
and colloidal stability properties.

Next, we examined the role of the trimerization domain in pre-
F/G on immunogenicity. CB6F1/J mice (H2d/b) were immunized
with either 1 mg or 0.1 mg mRNA or 10 mg protein, adjuvanted
with alum at weeks 0 and 3 (Supplemental Figure 4). At week 6,
binding to pre-F and monomeric G antigens (Figures 5A, B) as
well as neutralization (Figure 5C) were assessed. All animals had
robust F- and G-specific antibody responses and elicited
neutralizing antibodies. There was no difference in the antibody
binding or neutralizing antibody titers between the pre-F/G
Frontiers in Immunology | www.frontiersin.org 6
GCN4-Fd and pre-F/G Fd chimeric immunization groups
(Figures 5A–C). However, mRNA encoding the pre-F/G
chimera using GCN4 only elicited three-fold lower antibody
responses than pre-F/G GCN4-Fd or pre-F/G-Fd at the 0.1 mg
mRNA dose Figures 5A–C). We found no difference in the
biophysical properties or immunogenicity between the original
pre-F/G GCN4-Fd chimera and pre-F/G Fd design.

Pre-F/G Chimera Demonstrates Superior
Elicitation of NiV-Specific T Cell
Responses Compared to G
We hypothesized that the pre-F/G chimera would elicit broader
and more diverse T cell responses than either pre-F or Hex G
alone, suggesting an advantage to including F in the lead
candidate design. We analyzed antigen-specific T cell responses
elicited by pre-F/G vaccination compared to pre-F or Hex G
alone, employing an activation-induced marker (AIM) assay in
conjunction with peptide pool restimulation over a 6 hour
culture period. The AIM assay detects antigen-specific T cells
from the endogenous, polyclonal repertoire that upregulate
the act ivat ion markers CD40L(CD154) and CD69
in response to peptide stimulation (63, 77). Peptide libraries
(15-mers overlapping by 11 amino acids) spanning the entire
A

B C

FIGURE 1 | mRNA Dose-Response Study. (A, B) Serum samples were assessed for NiV pre-F specific IgG (A) or monomeric G-specific IgG (B) by enzyme-linked
immunosorbent assay (ELISA). Line represents mean of all animals in each group +/- standard deviation. (C) VSVDG-luciferase pseudovirus neutralization assays
were performed on individual mouse sera collected at week 6. The log10 reciprocal IC80 neutralization titers for each sample was calculated by curve fitting and non-
linear regression using GraphPad Prism. Line represents mean of log10 reciprocal IC80 dilution +/- standard deviation. P values were calculated using two-way
ANOVA with Tukey’s multiple comparisons test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). Dotted lines represent assay limits of detection.
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ectodomain of the F or G coding regions were used to quantify
the F and G-specific responses, not to map specific epitopes. The
AIM assay gating strategy, antibody panel, and representative
data are shown in Supplemental Figures 6, 7.

CB6F1/J mice (H2d/b) were immunized intramuscularly with
either 1 mg mRNA or 10 mg protein, adjuvanted with alum
expressing pre-F, Hex G or pre-F/G GCN4-Fd at weeks 0 and 3
(Supplemental Figures 5A, B). Week 6 sera was assessed for
binding to pre-F or monomeric G antigens and neutralizing
antibody activity. Hex G and pre-F/G mRNA immunogens
elicited equivalent neutralizing antibody responses at 1 mg
mRNA dose (Supplemental Figures 5C–E), similar to
previous studies. Four weeks post-boost, spleens from 5 mice/
group were harvested for T cell analyses. The pre-F/G chimera
vaccine elicited CD4+ T cell responses to F and G independent of
vaccine delivery platform (Supplemental Figure 8A). CD4+ T
follicular helper cells (Tfh) specific to F and G were also induced
(Supplemental Figure 8B). CD8+ T cell responses were also
detected only in mRNA immunized groups (Supplemental
Figure 8C). F-specific T cell responses were dominant
Frontiers in Immunology | www.frontiersin.org 7
compared to G-specific responses irrespective of T cell subset
(CD4+ vs CD8+) when delivered by mRNA (Supplemental
Figures 8A-C). Immunization with 1 µg pre-F/G mRNA
resulted in significantly more F-specific CD4+ T cells,
including Tfh (Supplemental Figures 8A, B) and increased
CD8+ T cell responses (Supplemental Figure 8C) compared to
immunization with Hex G.

The pre-F/G chimera demonstrates a superior elicitation of
NiV-specific Tfh and other effector T cells compared to G alone
across both the mRNA and protein platforms. To further
evaluate the T cell responses to pre-F/G chimera compared to
Hex G, CB6F1/J mice (H2d/b) were immunized intramuscularly
with either 1 mg or 10 mg mRNA or 10 mg protein, adjuvanted
with alum expressing Hex G or pre-F/G Fd at weeks 0 and 3
(Supplemental Figures 9A, B). Week 5 sera was assessed for
binding to pre-F or monomeric G antigens and neutralizing
antibodies. Again, Hex G and pre-F/G mRNA immunogens
el ici ted equivalent neutral iz ing antibody responses
(Supplemental Figures 9C–E). Two weeks post-boost, spleens
were harvested to evaluate T cell responses. The pre-F/G chimera
A B

DC

FIGURE 2 | Immunogenicity of mRNA Immunogen-Specific Design Elements. (A, C) Serum samples 6 weeks post-boost were assessed for NiV pre-F specific IgG
(A) or monomeric G-specific IgG (C) by ELISA. Line represents mean of all animals in each group +/- standard deviation. (B, D) VSVDG-luciferase pseudovirus
neutralization assays were performed on individual mouse sera collected 6 weeks post-boost. The log10 reciprocal IC80 neutralization titer for each sample was
calculated by curve fitting and non-linear regression using GraphPad Prism. Line represents mean of log10 reciprocal IC80 dilution +/- standard deviation. P values
were calculated using one-way ANOVA with Tukey’s multiple comparisons test (**p < 0.01). Dotted lines represent assay limits of detection.
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elicited CD4+ T cell responses, CD8+ T cells and induced CD4+

Tfh cells to both F and G in a mRNA dose-dependent manner
(Figures 6A–C). Immunization with either dose of pre-F/G
mRNA resulted in significantly more CD8+ T cells than the 10
µg of the same protein (Figure 6C), in agreement with other
reports demonstrating stronger CD8+ T cell induction via
nucleic acid immunization than subunit protein (78, 79). The
increased breadth and frequency of T cell responses elicited by
pre-F/G immunogens combined with neutralizing antibody
response to both glycoproteins indicate an advantage of
including both in the selected immunogen.
DISCUSSION

Coupling structure-based precision antigen design with the
rapid, adaptable and scalable mRNA vaccine platform provides
a powerful tool to respond quickly and effectively to pandemic
Frontiers in Immunology | www.frontiersin.org 8
threats. The value of this approach is increased if antigen design
strategies can be applied to other strains within a virus family or
genus as previously demonstrated for coronaviruses (56) and
henipaviruses (55). The studies presented here demonstrate that
mRNA is a robust and viable vaccine platform for NiV
immunogens. While Hex G and pre-F/G both elicit potent
humoral responses, inclusion of pre-F in the pre-F/G chimeric
design increases the breadth of antibody and T cells responses
(CD4+, Tfh, CD8+), decreasing the potential for immune escape.
Elements of both the protein and mRNA were refined to enable
selection of the pre-F/G Fd candidate mRNA vaccine for
clinical development.

Our findings with mRNA antigen delivery were consistent
with previous findings with protein delivery; NiV pre-F induced
more potent neutralizing activity than post-F and Hex G elicited
similar neutralizing activity as the pre-F/G chimera (55). We did
not see a dose-response in binding antibodies or neutralizing
activity for mRNA doses between 10 mg and 1 mg for pre-F, Hex
A B

C

FIGURE 3 | Immunogenicity of mRNA Pre-F/G Chimeric Design Elements. (A, B) Serum samples 6 weeks post-boost were assessed for NiV pre-F specific IgG
(A) or monomeric G-specific IgG (B) ELISA. Line represents mean of all animals in each group +/- standard deviation. (C) VSVDG-luciferase pseudovirus
neutralization assays were performed on individual mouse sera collected 6 weeks post-boost. The log10 reciprocal IC80 neutralization titer for each sample was
calculated by curve fitting and non-linear regression using GraphPad Prism. Line represents mean of log10 reciprocal IC80 dilution +/- standard deviation. P values
were calculated using two-way ANOVA with Tukey’s multiple comparisons test (*p < 0.5, ***p < 0.001, ****p < 0.0001). Dotted lines represent assay limits of
detection. All mRNA immunogens were codon-modified using Moderna’s proprietary codon algorithms designed to improve protein expression and mRNA
manufacturability. In this figure, we specifically evaluated mRNA preparations that had used two different codon algorithms, referred to as “old” and “new”.
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G or pre-F/G immunogens, however, as the dose was dropped to
0.1 mg in subsequent experiments, the immunogenicity was
diminished suggesting that the dose threshold for inducing a
maximum antibody response in mice is <1 mg. Mice immunized
with post-F mRNA, which is inherently less immunogenic,
showed a dose-response from 3 mg to 1 mg in F-specific
binding antibody. Optimization studies for pre-F and G design
elements were tested at 1 mg mRNA dose and while evaluating
those designs at levels above the dose-threshold may not allow
for detection of small immunogenic differences, detection of
substantial enhancing or detrimental differences would be
possible. Other mRNA studies in mice have shown a dose-
response for IC50 neutralization titers for mRNA-1273 (56)
and in HAI titer for A/Cal09 HA mRNA-LNP (80) in the 1 mg
range whereas mRNA encoding ZIKV IgEsig-prM-E (81) or
MERS-CoV spike (56) based on EC50 neutralizing activity did
not show a significant decrement in immunogenicity until the
0.1 mg dose range.
Frontiers in Immunology | www.frontiersin.org 9
Several aspects of mRNA design features can affect vaccine
immunogenicity. Here, we explored modifications of the signal
peptide and transmembrane domain. Unlike prior studies
demonstrating that the IL-2 signal peptide could improve
protein expression when the native signal peptide efficiency
was low or unknown (82), use of the IL-2 signal peptide did
not confer an advantage over the native signal peptide for the
pre-F, G or pre-F/G mRNA. Similarly, retention of the
transmembrane domain has been shown to improve
immunogenicity for other class I fusion proteins, such as the
spike protein of MERS-CoV (56), but did not improve
immunogenicity of NiV F and marginally, improved the
immunogenicity of the NiV G. Protein stability and retention
of the prefusion conformation and maintenance of the
neutralization-sensitive epitopes may be an important
determinant of secreted protein immunogenicity. The NiV pre-
F structural integrity was maintained over a large thermal range
(55) and may explain the equivalent immunogenicity of secreted
A

B

D

C

FIGURE 4 | Biophysical Properties of Pre-F/G Chimeric Proteins with Different Trimerization Domains. (A) Negative-stain EM analysis of NiV pre-F/G chimeric
proteins. (B, C) Thermodynamic and colloidal stability assessment of pre-F/G chimeric trimerization domains assessed by (B) differential scanning calorimetry (DSC)
and (C) dynamic light scattering (DLS). (D) Summary of DSC and DLS data.
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and membrane-anchored versions. Our findings support
empirically testing each antigen for optimal design
characteristics and immunogenicity profiles.

These studies focused on vaccine immunogenicity, and
subsequent studies will evaluate efficacy. Several well-
characterized animal models exist for testing vaccine efficacy
against NiV, including Syrian golden hamsters, ferrets and
African green monkeys which most accurately recapitulate the
neurological and respiratory pathology seen with NiV infection
in humans (18, 83–85). Efficacy studies are challenging because
NiV is classified as a BSL-4 pathogen and a limited number of
facilities have capabilities to perform such studies. As mentioned
previously, mRNA delivery of vaccine antigens has been well
Frontiers in Immunology | www.frontiersin.org 10
tolerated in humans (64–66). The NiV pre-F antigen has not
been tested in humans but extensive testing of a prefusion
stabilized RSV F protein containing the foldon trimerization
domain (DS-Cav1) has been evaluated in a Phase I clinical trial
with no toxicity reported from the protein antigen (75, 76). A
Hendra soluble G protein is currently under evaluation in a
Phase I clinical trial, but data on toxicity has not yet been
reported. Additionally, Soltan et al. analyzed the whole Nipah
proteome using immunoinformatic and computational
prediction tools to design a multitope vaccine that predicted
neither NiV F nor G proteins were toxic or allergenic (86).

A complicated but critical aspect of vaccine development is
delineating correlates of protection. Currently, no clear correlates
of protection have been defined in either animal models or
humans for Nipah or other henipaviruses. Humoral responses
are clearly important in animal models such as hamster, ferret
and non-human primates where passive transfer of immune
serum or administration of virus-specific monoclonal antibodies
provides protection from NiV challenge (87–90) but few animal
studies have assessed T cell responses. In two human survivors
from the 2018 Kerala outbreak, longitudinal analysis of cell-
mediated and humoral immune responses to NiV infection
during the acute and convalescent phases showed absolute B-
and T-cell counts remained largely within normal limits.
However, significant activation of CD8+ T lymphocytes was
observed, coinciding with viral clearance (91) suggesting a role
for CD8+ T cells. While our studies have shown that both Hex G
and pre-F/G chimera elicit comparable levels of neutralizing
activity, the inclusion of F increases the number of neutralizing
epitopes and in H2d/b mice substantially increases the elicitation
of both CD4+ and CD8+ T cell responses. There are multiple
mechanisms reported by which NiV infection antagonizes innate
immune responses, but to date, none have been attributed to F or
G. Henipaviruses encode several proteins that block innate
immune responses and that these proteins likely serve as
virulence factors (92–94). NiV M, P, V, W and C proteins
have all demonstrated the ability to interfere with type I
interferon induction and effector functions (94–98).

Selection of the pre-F/G Fd chimeric mRNA design as the
lead candidate for clinical development is based on increased
antigenic breadth for both neutralizing antibodies and Tfh when
both F and G antigens are included and the induction of both
robust neutralizing activity and CD8+ T cell responses when
delivered by mRNA. Additionally, inclusion of F as well as G in
the lead candidate is also supported by work from Stroh et al.
They showed VLPs composed of the NiV surface glycoproteins G
and F and the matrix protein of the closely related Hendra virus
(HeVM) included to promote the formation of the VLP, induced
both neutralizing antibodies and antigen-specific CD8+ T cell
responses in C57BL/6 mice. The combination of all three
proteins (NiV G, NiV F and HeV M) was important for
increasing CD8+ T cell responses in C57BL/6 mice, suggesting
that VLPs with greater antigenic content may provide better
immunity (99).

We have focused on Nipah virus as a prototype for
paramyxoviruses. This is part of a larger pandemic preparedness
A

B

C

FIGURE 5 | Immunogenicity of Pre-F/G Chimeric mRNA Trimerization
Domain Designs. (A, B) Serum samples 3 weeks post-boost (week 6) were
assessed for NiV pre-F specific IgG (A) or monomeric G-specific IgG (B) by
ELISA. Line represents mean of all mice/group +/- standard deviation.
(C) VSVDG-luciferase pseudovirus neutralization assays were performed on
individual mouse sera collected at week 6. The log10 reciprocal IC80 titer for
each sample was calculated by curve fitting and non-linear regression using
GraphPad Prism. Line represents mean of log10 reciprocal IC80 dilution +/-
standard deviation. P values were calculated using two-way ANOVA with
Tukey’s multiple comparisons test (*p < 0.05, ***p < 0.001, ****p < 0.0001).
Dotted lines represent assay limits of detection.
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strategy involving the development of generalizable vaccine
antigen design solutions for prototype pathogens from each
virus family known to infect humans (100). We used our
previous knowledge of protein engineering approaches for
stabilizing class I fusion proteins of RSV and PIV and applied
them to NiV F protein. As the primary target for neutralizing
antibodies against members of the Paramyxoviridae family may be
either the fusion protein (F) or the attachment protein (G, H, or
HN), an immunogen that includes both antigens is important for a
generalizable design that could be applied to other family
members as needed. For NiV, the primary target for
neutralizing antibody is G, but as shown here, the addition of F
stabilized in its prefusion conformation provides several potential
advantages over a vaccine with G only.

A pandemic response requires both a precision-designed
antigen and a delivery platform that is safe and can be rapidly
manufactured at large-scale such as mRNA. Several elements of
the National Institute of Allergy and Infectious Diseases (NIAID)
Prototype Pathogen Approach for Pandemic Preparedness and
Response Program were applied to Nipah vaccine development
combining structure-based immunogen design at the Vaccine
Research Center and mRNA vaccine platform technology from
Moderna. This work was done in parallel with the pre-clinical
studies demonstrating the utility of delivering a stabilized
coronavirus spike protein by mRNA delivery, providing the
Frontiers in Immunology | www.frontiersin.org 11
basis for the successful development of a SARS-CoV-2 mRNA-
1273 vaccine (56, 59, 64–66). These studies provide a template
and proof-of-concept for how combining technologies through
public-private partnerships can provide solutions for future
pandemic threats.
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