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Abstract Protein–protein interactions (PPIs) are of great importance to understand genetic mech-

anisms, delineate disease pathogenesis, and guide drug design. With the increase of PPI data and

development of machine learning technologies, prediction and identification of PPIs have become

a research hotspot in proteomics. In this study, we propose a new prediction pipeline for PPIs based

on gradient tree boosting (GTB). First, the initial feature vector is extracted by fusing pseudo amino

acid composition (PseAAC), pseudo position-specific scoring matrix (PsePSSM), reduced sequence

and index-vectors (RSIV), and autocorrelation descriptor (AD). Second, to remove redundancy and

noise, we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset.

Finally, GTB-PPI model is constructed. Five-fold cross-validation showed that GTB-PPI achieved

the accuracies of 95.15% and 90.47% on Saccharomyces cerevisiae and Helicobacter pylori datasets,

respectively. In addition, GTB-PPI could be applied to predict the independent test datasets for

Caenorhabditis elegans, Escherichia coli, Homo sapiens, and Mus musculus, the one-core PPI net-

work for CD9, and the crossover PPI network for the Wnt-related signaling pathways. The results

show that GTB-PPI can significantly improve accuracy of PPI prediction. The code and datasets of

GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.
Introduction

Knowledge of protein–protein interactions (PPIs) can help to

probe the mechanisms underlying various biological processes,
nces and
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such as DNA replication, protein modification, and signal
transduction [1,2]. The accurate understanding and analysis
of PPIs can reveal multiple functions at the molecular and pro-

teome levels, which has become a research hotspot [3,4]. How-
ever, web-lab identification methods suffer from incomplete
and false prediction problems [5]. Alternatively, employing

reliable bioinformatics methods for PPI prediction could pro-
vide candidates for subsequent experimental validation in a
cost-effective way.

Compared with structure-based methods, sequence-based
methods are straightforward and do not require a priori infor-
mation, which have been widely used. Martin et al. [6] pro-
posed the signature kernel method to extract protein

sequence feature information, but they did not use physico-
chemical property information. Subsequently, Guo et al. [7]
employed seven physicochemical properties of amino acids to

predict PPIs by combining autocovariance and support vector
machine (SVM).

Different feature extraction methods can complement each

other, and prediction accuracy can be improved by effective
feature fusion [8,9]. For instance, Du et al. [8] constructed a
PPI prediction framework called DeepPPI, which employed

deep neural networks as the classifier. They fused amino acid
composition information-based features and physiochemical
property-based sequence features. However, presence of infor-
mation redundancy, noise, and excessively high dimensionali-

ties after feature fusion would affect the classification
accuracy. You et al. [10] used the minimum redundancy max-
imum relevance (mRMR) to determine important and distin-

guishable features to predict PPIs based on SVM.
Ensemble learning systems can achieve higher prediction

performance than a single classifier. To our knowledge, Jia

et al. [11] combined seven random forest (RF) classifiers
according to voting principles. As an ensemble learning
method, gradient tree boosting (GTB) has been widely applied

in miRNA–disease association [12], drug–target interaction
[13], and RNA-binding residue prediction [14]. GTB outper-
forms SVM and RF, showing superior model generalization
performance.

Although a large number of algorithms have been proposed
and developed, challenges remain for sequenced-based PPI
predictors currently available. First, the sequence-only-based

information of PPIs is not fully represented and elucidated,
and satisfactory results cannot be obtained by merely adjusting
individual parameters. Multi-information fusion is a very use-

ful strategy through fusing multiple descriptors, such as
pseudo amino acid composition (PseAAC) and pseudo
position-specific scoring matrix (PsePSSM), which have been
widely applied in PPI prediction [15], Gram-negative protein

localization prediction [16], identification of submitochondrial
locations [17], and apoptosis protein localization prediction
[18]. Secondly, there is a severe data imbalance problem in

PPI prediction. The number of non-interacting protein pairs
is much higher than that of interacting protein pairs. Cur-
rently, machine learning methods cannot deal with such prob-

lems well and could result in poor overall performance when
dealing with imbalanced data [19].

To overcome the aforementioned limitation of machine

learning methods, this study proposes a new PPI prediction
pipeline called GTB-PPI. First, we fuse PseAAC, PsePSSM,
reduced sequence and index-vectors (RSIV), and autocorrela-
tion descriptor (AD) to extract amino acid composition-
based information, evolutionary information, and physico-
chemical information. To retrieve effective details representing
PPIs without losing important and reliable characteristic infor-

mation, L1-regularized logistic regression (L1-RLR) is first uti-
lized for PPI prediction to eliminate redundant features. At the
same time, we employ GTB as a classifier to bridge the gap

between the extracted PPI features and class label. Our data
show that the PPI prediction performance of GTB is better
than that of SVM, RF, Naı̈ve Bayes (NB), and K nearest

neighbors (KNN) classifiers. The linear combination of deci-
sion trees can fit the PPI data well. When applied to the net-
work prediction, GTB-PPI obtains the accuracy values of
93.75% and 95.83% for the one-core PPI network for CD9

and the crossover PPI network for the Wnt-related signaling
pathways, respectively.
Method

Data source

The Saccharomyces cerevisiae PPI dataset was obtained from

the Database of Interacting Proteins (DIP) (DIP: 20070219)
[7]. Protein sequences consisting of < 50 amino acid residues
or showing sequence identity � 40% via CD-HIT [20] were
removed. Thus, 5594 interacting protein pairs are considered

as positive samples; 5594 protein pairs with different subcellu-
lar location information are selected as negative samples, and
their location information is obtained from Swiss-Prot. The

Helicobacter pylori PPI dataset was constructed before [6],
which contains 2916 samples (1458 PPI pairs and 1458 non-
PPI pairs).

Four independent PPI datasets [21] were also used to test
the performance of GTB-PPI. These datasets are obtained
from Caenorhabditis elegans (4013 interacting pairs), Escheri-
chia coli (6954 interacting pairs), Homo sapiens (1412 interact-

ing pairs), and Mus musculus (313 interacting pairs). The
number of unique proteins in each dataset is shown in
Table S1.
Feature extraction

We fuse PseAAC, PsePSSM, RSIV, and AD to extract the PPI

feature information, including sequence-based features, evolu-
tionary information features, and physicochemical property
features. The detailed descriptions of methods are presented

in File S1.

L1-RLR

L1-RLR is an embedded feature selection method. Given the

sample dataset D ¼ fðx1; y1Þ; ðx2; y2Þ; � � �; ðxm; ymÞg, L1-RLR
can be transformed into an unconstrained optimization
problem.

min
w

fðxÞ ¼ k x k1 þ Cð
Xl

i¼1

logð1þ e�xTxiÞ þ
X

i:yi¼�1

xTxiÞ ð1Þ

where k � k1 represents the L1 norm; l is the number of sam-

ples; x represents the weight coefficient; and C represents pen-
alty term, which determines the number of selected features.
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We use the coordinate descent algorithm in LIBLINEAR [22]

to solve Equation (1).

GTB

GTB can be used to aggregate multiple decision trees [23,24].
Different from other ensemble learning algorithms, GTB fits
residual of the regression tree at each iteration using negative
gradient values of loss.

GTB can be expressed as the relationship between the label
y and the vector of input variables x, which are connected via a
joint probability distribution pðx; yÞ. The goal of GTB is to

obtain the estimated function F̂ðxÞ through minimizing
Lðy;FðxÞÞ:
F̂ ¼ arg min

F
Ex;y½Lðy;FðxÞÞ� ð2Þ

Let hmðxÞ be the m - th decision tree and Jm indicates num-
ber of its leaves. The tree partitions the input space into Jm dis-
joint regions R1;m;R2;m; � � �;RJm ;m and predicts a numerical

value bjm for each region Rjm. The output of hmðxÞ can be

described as:

hmðxÞ ¼
XJm

j¼1

bjm1Rjm
ðxÞ

Then the value of cm can be obtained using steepest descent
to fulfill the GTB model:

cm ¼ arg min
c

Xn

i¼1

Lðyi;Fm�1ðxiÞ þ chmðxiÞÞ ð3Þ

where Fm�1ðxÞ represents an estimated function.
The iterative criterion of GTB is shown using Equation (4).

FmðxÞ ¼ Fm�1ðxÞ þ cmhmðxÞ ð4Þ
where iterations are set as M, and GTB model is

F̂ðxÞ ¼ FMðxÞ.
GTB can complement the weak learning ability of decision

tree, thus improving the ability of representation, optimization,

and generalization. GTB can capture higher-order information
and is invariant to scaling of sample data. GTB can effectively
avoid overfitting condition by weighting combination scheme.

GTB-PPI uses the GTB algorithm of Scikit-learn [25].

Performance evaluation

In GTB-PPI pipeline, recall, precision, overall prediction accu-
racy (ACC), and Matthews correlation coefficient (MCC) are
used to evaluate the model performance [8]. The definitions

are as follows:

Recall ¼ TP

TP þ FN
ð5Þ

Precision ¼ TP

TP þ FP
ð6Þ

ACC ¼ TP þ TN

TP þ TN þ FN þ FP
ð7Þ

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTNþ FNÞðTPþ FNÞðTNþ FPÞp ð8Þ
TP indicates the number of predicted PPI samples found in

PPI dataset; TN indicates the number of non-PPI samples cor-
rectly predicted; FP and FN indicate false positive and false
negative, respectively. Receiver operating characteristic

(ROC) curve [26], precision–recall (PR) curve [27], area under
ROC curve (AUROC), and area under PR curve (AUPRC)
are also used to evaluate the generalization ability of GTB-
PPI.

Results and discussion

GTB-PPI pipeline

The pipeline of GTB-PPI for predicting PPIs is shown in
Figure 1, which can be implemented using MATLAB 2014a
and Python 3.6. There are five steps of GTB-PPI as described
below.

Data input

The input values of GTB-PPI are PPI samples, non-PPI sam-

ples, and the corresponding binary labels.

Feature extraction

PseAAC, PsePSSM, RSIV, and AD are fused to transform the

protein character signal into numerical signal. 1) Amino acid
sequence composition and sequence order information are
obtained using PseAAC to construct the 20þ k dimensional
vectors. 2) PSSM matrix of the protein sequence is obtained

and 20þ 20� n features are extracted based on PsePSSM. 3)
Feature information is extracted using RSIV according to
the six physicochemical properties. Each protein sequence is

constructed as 120 + 77 = 197 dimensional vectors. 4) Protein
sequence is transformed into 3� 7� lag dimensional vectors
by Morean-Broto autocorrelation (MBA), Moran autocorrela-

tion (MA), and Geary autocorrelation (GA). k, n, and lag are
the hyperparameters of GTB-PPI, and their detailed meaning
can be seen in File S1.

Dimensionality reduction

L1-RLR is first employed to remove redundant features by
adjusting the penalty parameters in logistic regression. The

performance of L1-RLR is then compared with that of semi-
supervised dimension reduction (SSDR), principal component
analysis (PCA), kernel principal component analysis (KPCA),

factor analysis (FA), mRMR, and conditional mutual infor-
mation maximization (CMIM) on S. cerevisiae and H. pylori
datasets.

PPI prediction based on GTB

According to step 2 for feature extraction and step 3 for
dimensionality reduction, L1-RLR is used to better capture
the sequence representation details. In this way, GTB-PPI

model can be constructed using GTB as the classifier.

PPI prediction on independent test datasets and network

datasets

The optimal feature set representing PPIs can be obtained
through feature encoding, fusion, and selection. GTB is
employed to predict the binary labels on four independent test

datasets and two network datasets.



Figure 1 Overall framework of GTB-PPI for PPI prediction

First, the benchmark datasets are collected. Second, PseAAC, PsePSSM, RSIV, and AD are used for feature extraction. Third, the L1-

RLR is employed for dimensionality reduction. Fourth, we use GTB to predict PPIs and GTB-PPI model is constructed. Finally, five-fold

cross-validation, independent test, and PPI network are employed to evaluate GTB-PPI. PseAAC, pseudo amino acid composition;

PsePSSM, pseudo-position-specific scoring matrix; RSIV, reduced sequence and index-vectors; AD, autocorrelation descriptor; GTB,

gradient tree boosting; PPI, protein–protein interaction; ACC, overall prediction accuracy; MCC, Matthews correlation coefficient; L1-

RLR, L1-regularized logistic regression.
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Parameter optimization of PseAAC, PsePSSM, and AD

It is essential to optimize parameters of PseAAC, PsePSSM,
and AD for GTB-PPI predictor construction. We implement
the hyperparameter optimization through five-fold cross-

validation.
Figure 2 Prediction results of different parameters k, n, and lag on th

The k, n, and lag are the parameters that need to be adjusted in PseA
To extract features from the sequence, the values for k of
PseAAC, n of PsePSSM, and lag of AD should be deter-

mined. We set the values of k as 1, 3, 5, 7, 9, and 11; simi-
larly, values for n and lag are also set as 1, 3, 5, 7, 9, and
11 in order. GTB is then used to predict the binary labels

(Tables S2–S4). As shown in Figure 2, the prediction perfor-
e S. cerevisiae and H. pylori datasets

AC, PsePSSM, and AD, respectively.
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mance on S. cerevisiae and H. pylori datasets changed with
the alteration in the values of the respective parameters.
For the parameter k in PseAAC, the highest prediction per-

formance for these two datasets was obtained at different k
values: the optimal k value for S. cerevisiae is 9, while the
optimal k value of H. pylori is 11. Considering that PseAAC

generates fewer dimensional vectors than the other three fea-
ture extraction methods (PsePSSM, RSIV, and AD), we
choose the optimal parameter k ¼ 11 to mine more PseAAC

information. The parameter selection of n and lag can be
found in File S2. In summary, for each protein sequence,
PseAAC extracts 20þ 11 ¼ 31 features, PsePSSM obtains
20 þ 20� 9 ¼ 200 features, the dimension of RSIV is 197,

and AD encodes 3� 7� 11 ¼ 231 features. We can obtain
659-dimensional vectors by fusing all four coding methods.
Then the 1318-dimensional feature vectors are constructed

by concatenating two sequences of protein pairs.

Effect of dimensionality reduction

L1-RLR can effectively improve prediction performance with
higher computational efficiency. The process of parameter
Figure 3 Prediction performance of different dimensionality reduction

A. ROC curves of L1-RLR, SSDR, PCA, KPCA, FA, mRMR, and

SSDR, PCA, KPCA, FA, mRMR, and CMIM for theH. pylori dataset

CMIM for the S. cerevisiae dataset. D. PR curves of L1-RLR, SSDR,

ROC, receiver operating characteristic; SSDR, semi-supervised dimens

principal component analysis; FA, factor analysis; mRMR, minimu

information maximization; PR, precision–recall.
selection is described in File S3. To evaluate the performance
of L1-RLR (C ¼ 1), we compared its prediction performance
with SSDR [28], PCA [29] (setting of contribution rate is

shown in Table S5), KPCA [30] (adjustment of contribution
rate is shown in Table S6), FA [31], mRMR [32], and CMIM
[33] (Table S7). ROC and PR curves of different dimensional-

ity reduction methods are shown in Figure 3. The AUROC and
AUPRC are shown in Table S8. The numbers of raw features
and optimal features can be obtained in Figures S1 and S2.

As shown in Figure 3A and B, ROC curves for both the S.
cerevisiae and H. pylori datasets show that the L1-RLR has
superior model performance. For the S. cerevisiae dataset,
the AUROC value of L1-RLR is 0.9875, which is 4.55%,

4.83%, 6.13%, 3.21%, 1.07%, and 1.09% higher than that
of SSDR, PCA, KPCA, FA, mRMR, and CMIM, respectively
(Table S8). For theH. pylori dataset, the AUROC value of L1-

RLR is 0.9559, which is 3.47%, 9.80%, 8.59%, 8.33%, 1.04%,
and 9.55% higher than that of SSDR, PCA, KPCA, FA,
mRMR, and CMIM, respectively (Table S8). As shown in Fig-

ure 3C and D, in PR curves, L1-RLR almost obtains the high-
est precision value at corresponding recall value. The AUPRC
values of L1-RLR are 1.22%–6.21% and 0.36%–11.94%
methods

CMIM for the S. cerevisiae dataset. B. ROC curves of L1-RLR,

. C. PR curves of L1-RLR, SSDR, PCA, KPCA, FA, mRMR, and

PCA, KPCA, FA, mRMR, and CMIM for the H. pylori dataset.

ion reduction; PCA, principal component analysis; KPCA, kernel

m redundancy maximum relevance; CMIM, conditional mutual
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higher than the other six dimensionality reduction methods on
the S. cerevisiae and H. pylori datasets, respectively (Table S8).
These results indicate that L1-RLR can effectively remove the

redundant features without losing important information. The
effective features related to PPIs could be fed into a GTB clas-
sifier, generating a reliable GTB-PPI prediction model.
Selection of classifier algorithms

GTB is used as a classifier with the number of iterations set to

1000 and loss function set as ‘‘deviance”. The prediction
results of other four classifiers are also provided via five-fold
cross-validation, including KNN [34] (number of neigh-

bors = 3) (Table S9), NB [35], SVM [36] (recursive feature
elimination as the kernel function), and RF [37] (number of
the base decision trees = 1000) (Table S10). The prediction
results of KNN, SVM, NB, RF, and GTB on the S. cerevisiae

and H. pylori datasets are shown in Table S11 and Figures S3
and S4. We also obtain the ROC and PR curves (Figure 4) and
AUROC and AUPRC values for different classifiers

(Table S12).
As shown in Figure 4A and B, ROC curves for both the S.

cerevisiae and H. pylori datasets show that the GTB classifier

outperforms than KNN, NB, SVM, and RF. The AUROC
values of GTB are 1.16%–24.65% and 0.53%–22.95% higher
Figure 4 Comparison of GTB with KNN, NB, SVM, and RF classifie

A. ROC curves of KNN, NB, SVM, RF, and GTB for the S. cerevisiae

H. pylori dataset. C. PR curves of KNN, NB, SVM, RF, and GTB for t

GTB for the H. pylori dataset. KNN, K nearest neighbors; NB, Naı̈ve
than the other four classifier methods on the S. cerevisiae and
H. pylori datasets, respectively (Table S12). As shown in
Figure 4C and D, the prediction performance of GTB is supe-

rior to KNN, NB, SVM, and RF. The AUPRC values of GTB
are 1.42%–24.32% and 0.22%–24.56% higher than the other
four classifier methods on the S. cerevisiae and H. pylori data-

sets, respectively (Table S12). These results demonstrate that
GTB-PPI can accurately indicate whether a pair of proteins
interact with each other within the S. cerevisiae or H. polyri

dataset. GTB is an ensemble method using boosting algorithm
that can achieve superior generalization performance over a
single learner. Specially, RF achieves worse performance than
GTB, because all the base decision trees of RF are treated

equally. If the base classifier’s prediction performance is
biased, the final ensemble classifier may get the unreliable
and biased predicted results. GTB can utilize steepest descent

step algorithm to bridge the gap between the sequence and
PPI label information.

Comparison of GTB-PPI with other PPI prediction methods

To verify the validity of the GTB-PPI model, we compare
GTB-PPI with ACC+SVM [7], DeepPPI [8], and other

state-of-the-art methods on the S. cerevisiae and H. pylori
datasets.
rs

dataset. B. ROC curves of KNN, NB, SVM, RF, and GTB for the

he S. cerevisiae dataset. D. PR curves of KNN, NB, SVM, RF, and

Bayes; SVM, support vector machine; RF, random forest.



Table 1 Performance comparison of GTB-PPI with other state-of-the-art predictors on the S.

cerevisiae dataset

Note: N/A means not available. Data are presented as mean ± SD. ACC, overall prediction accuracy;

MCC, Matthews correlation coefficient; SVM, support vector machine; Code4, feature concatenation;

KNN, K nearest neighbors; MCD, multi-scale continuous and discontinuous feature extraction; MLD,

multi-scale local feature representation; RF, random forest; MIMI, multivariate mutual information;

NMBAC, normalized Morean-Broto autocorrelation; LRA, low-rank approximation; DeepPPI, deep

neural network for protein–protein interaction prediction; GTB-PPI, gradient tree boosting for protein–

protein interaction prediction. Holdout validation is adopted in the previous report [7].
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As shown in Table 1, for the S. cerevisiae dataset, compared
with other existing methods, the ACC of GTB-PPI increases

by 0.14%–9.00%; the recall of GTB-PPI is 0.15% higher than
DeepPPI [8] and 1.54% higher than MCD+SVM [10]; the pre-
cision of GTB-PPI is 1.32% higher than DeepPPI [8] and

0.81% higher than MIMI+NMBAC+RF [41].
As shown in Table 2, for the H. pylori dataset, the perfor-

mance of GTB-PPI is better than other tested predictors. In

terms of ACC, GTB-PPI is 2.88%–7.07% higher than other
methods (7.07% higher than SVM [6], 4.24% higher than
DeepPPI [8], and 3.73% higher than DCT+WSRC [45]). At
the same time, the recall of GTB-PPI is 1.71%–12.15% higher

than other methods (4.72% higher than DCT+WSRC [45]
and 7.91% higher than MCD+SVM [10]). The precision of
GTB-PPI is 1.76%–5.67% higher than other methods

(4.29% higher than SVM [6] and 5.67% higher than DeepPPI
[8]).
Table 2 Performance comparison of GTB-PPI w

pylori dataset

Note: N/A means not available. Data are presented

HKNN use ten-fold cross-validation. WSR, weighted

weighted sparse representation classifier.
PPI prediction on independent test datasets

The performance of GTB-PPI can also be evaluated using
cross-species datasets. After the feature extraction, fusion,
and selection, the S. cerevisiae dataset is used as a training

set to predict PPIs of four independent test datasets.
As shown in Table 3, for the C. elegans dataset, the ACC

of GTB-PPI is 0.26% higher than MIMI+NMBAC+RF

[41], 4.71% higher than MLD+RF [39], and 11.23% higher
than DCT+WSRC [45], but 2.42% lower than DeepPPI [8].
For the E. coli dataset, the ACC of GTB-PPI (94.06%) is

1.26%–27.98% higher than DeepPPI (92.19%) [8], MIMI
+NMBAC+RF (92.80%) [41], MLD+RF (89.30%) [39],
and DCT+WSRC (66.08%) [45]. For the H. sapiens dataset,

the ACC of GTB-PPI (97.38%) is 3.05%–15.16% higher
than DeepPPI (93.77%) [8], MIMI+NMBAC+RF
(94.33%) [41], MLD+RF (94.19%) [39], and DCT+WSRC
ith other state-of-the-art predictors on the H.

as mean ± SD. SVM, WSR, and Ensemble of

sum rule; DCT, discrete cosine transform; WSRC,



Table 3 Performance comparison of GTB-PPI with other state-of-the-art predictors on independent

datasets
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(82.22%) [45]. For the M. musculus dataset, the ACC of
GTB-PPI (98.08%) is 2.23%–18.21% higher than DeepPPI

(91.37%) [8], MIMI+NMBAC+RF (95.85%) [41], MLD
+RF (91.96%) [39], and DCT+WSRC (79.87%) [45]. The
Figure 5 Prediction results of one-core and crossover networks using

The prediction performance of one-core network for CD9. CD9 is the

are predicted successfully. B. The prediction performance of crossover

AXIN1, and CTNNB are linked in this work, which are of great impor

are identified. The blue and red lines represent true and false predictio

and Shen et al. [48].
findings indicate that the hypothesis of mapping PPIs from
one species to another species is reasonable. We can conclude

that PPIs in one organism might have ‘‘co-evolve” with other
organisms [41].
GTB-PPIA

core protein, and the others are satellite proteins. 15 of all 16 PPIs

network for the Wnt-related signaling pathways. WNT9A, DVL1,

tance to the Wnt-related signaling pathways. 92 of the 96 PPI pairs

n of PPIs, respectively. The two networks are from Ding et al. [41]
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PPI network prediction

The graph visualization of the PPI network can provide a

broad and informative idea to understand the proteome and
analyze the protein functions. We employ GTB-PPI to predict
the simple one-core PPI network for CD9 [46] and crossover

PPI network for the Wnt-related signaling pathways [47] using
the S. cerevisiae dataset as a training set.

As shown in Figure 5A, only the interaction between CD9
and Collagen-binding protein 2 is not predicted successfully

based on GTB-PPI, which was not predited by Shen et al.
[48] either. Compared with Shen et al. [48] and Ding et al.
[41], GTB-PPI achieves the superior prediction performance.

The ACC is 93.75%, which is 12.50% higher than Shen
et al. (81.25%) [48] and 6.25% higher than Ding et al.
(87.50%) [41]. As shown in Figure 5B, 92 of the 96 PPI pairs

are identified based on GTB-PPI. The ACC is 95.83%, which
is 19.79% higher than Shen et al. (76.04%) [48] and 1.04%
higher than Ding et al. (94.79%) [41].

The palmitoylation of CD9 could support CD9 to interact
with CD53 [49]. In the one-core network for CD9, we can see
that the interaction between CD9 and CD53 is predicted suc-
cessfully based on GTB-PPI. In the crossover PPI network

for the Wnt-related signaling pathways, ANP32A, CRMP1,
and KIAA1377 are linked to the Wnt signaling pathway via
PPIs. The ANP32A has been demonstrated as a potential

tumor suppressor [50], and GTB-PPI could predict its interac-
tions with the corresponding proteins. However, the interac-
tion between ROCK1 and CRMP1 is not predicted. It is

likely because we use the S. cerevisiae dataset as a training
set, and ROCK1 and CRMP1 are different organism genes
from S. cerevisiae. At the same time, ROCK1 is part of the
noncanonical Wnt signaling pathway [47], GTB-PPI may not

be very effective in this case. A previous study has reported
that AXIN1 could interact with multiple proteins [51]. Here,
we find that GTB-PPI can predict the interactions between

AXIN1 and its satellite proteins, which provides new insights
to elucidate the biological mechanism of PPI network.

Conclusion

The knowledge and analysis of PPIs can help us to reveal the
structure and function of protein at the molecular level, includ-

ing growth, development, metabolism, signal transduction, dif-
ferentiation, and apoptosis. In this study, a new PPI prediction
pipeline called GTB-PPI is presented. First, PseAAC,

PsePSSM, RSIV, and AD are concatenated as the initial fea-
ture information for predicting PPIs. PseAAC obtains not only
the amino acid composition information but also the

sequence order information. PsePSSM can mine the evolution-
ary information and local order information. RSIV can obtain
the frequency feature information using the reduced sequence.

AD reflects the physicochemical property features on global
amino acid sequence. Second, L1-RLR can obtain effective
information features related to PPIs without losing accuracy
and generalization. Simultaneously, the performance of L1-

RLR is superior to SSDR, PCA, KPCA, FA, mRMR, and
CMIMs (Figure 3). Finally, the PPIs are predicted based on
GTB whose base classifier is a decision tree, which can bridge

the gap between amino acid sequence information features and
class label. Experimental results show that the PPI prediction
performance of GTB is better than that of SVM, RF, NB,
and KNN. Especially, in the field of binary PPI prediction,
the L1-RLR is used for dimensionality reduction for the first

time. The GTB is also first employed as a classifier. In a word,
GTB-PPI shows good performance, representation ability, and
generalization ability.

Availability
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