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Abstract

The granzyme B/perforincytotoxic pathway is a well established mechanism of initiating target cell apoptosis.
Previous studies have suggested a role for the granzyme B/perforin cytotoxic pathway in vulnerable atherosclerotic
plaque formation. In the present study, granzyme B deficiency resulted in reduced atherosclerotic plaque
development in the descending aortas of apolipoprotein E knockout mice fed a high fat diet for 30 weeks while
perforindeficiency resulted in greater reduction in plaque development with significantly less plaque area than
granzyme Bdeficient mice. In contrast to the descending aorta, no significant change in plaque size was observed in
aortic roots from either granzyme Bdeficient or perforindeficient apolipoprotein E knockout mice. However,
atherosclerotic plaques in the aortic roots did exhibit significantly more collagen in granzyme B, but not perforin
deficient mice. Together these results suggest significant, yet separate roles for granzyme B and perforin in the
pathogenesis of atherosclerosis that go beyond the traditional apoptotic pathway with additional implications in
plaque development, stability and remodelling of extracellular matrix.
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Introduction

The granzyme B (GzmB)/perforin (Prf1) apoptotic pathway
and its role in cytotoxic lymphocyte-mediated apoptosis has
been extensively studied since its discovery in the
mid-1980’s[1-3]. GzmB is a member of the granzyme serine
protease family and has, until recently, been thought to function
primarily in CD8+ cytotoxic T cell or natural killer cell mediated
apoptosis through a Prf1-dependent mechanism.In this
process, upon target cell recognition, GzmB and Prf1 are
released towards the target cell whereby GzmB enters the
cytoplasm through a mechanism that requires Prf1. GzmB then
initiates apoptosis by cleaving multiple different substrates
inside of the target cell[1].However, an alternative extracellular,
Prf1-independent role for GzmB has been proposed in recent
years[1].This is in part due to recent studies showing that
GzmB can also be expressed in many other types of
immune(macrophages, mast cells, CD4+ T cells, T-regulatory

cells, basophils, neutrophils and dendritic cells)and non-
immune cells (keratinocytes, pneumocytes and chondrocytes)
[4-15]. Therefore, if GzmB-secreting cells do not form
immunological synapses with target cells and/or Prf1 is not
expressed (eg. mast cells[15], basophils[10]), GzmB may be
unable to enter into the cytoplasm and instead accumulate
extracellularly. It is this previously underappreciated
extracellular activity that is attracting increasing scientific and
therapeutic interest. Beginning with observations
thatextracellular GzmB is present in elevated amounts in bodily
fluidsof patients with chronic inflammatory diseases (eg.
plasma[16], bronchoalveolar lavage[17,18], synovial fluid[19],
cerebrospinal fluid [20,21]) its extracellular activity is now
thought to play an important rolein addition to apoptosis insuch
pathologies [1].GzmB can degrade several extracellular matrix
(ECM) substrates includingvitronectin, laminin,
fibronectin,aggrecan, fibrillin-1, decorin,biglycan and
betaglycan[22-28]. GzmB-mediated cleavage of ECMmay
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contribute to pathology via many mechanisms such asanoikis,
altered cell migration, altered endothelial function, enhanced
TGF-β bioavailability and loss of tissue architecture and
structural integrity [5,23,24,26,29].

Atherosclerosis has been described as a chronic
inflammatory disease, whereby excessive inflammation,
apoptosis and ECM degradation contributes to the progression
and destabilization of atherosclerotic plaques[30,31]. GzmB-
mediated apoptosis has therefore been suggested to play a
pathological role in atherosclerosis[32,33]. Additionally, plaque
destabilization is characterized by extensive plaque ECM
degradation and remodelling. Therefore, as many of these
ECM proteinsare well-described GzmB substrates, it is
possible that the role of GzmB in atherosclerosis pathogenesis
is not limited exclusively to Prf1-dependant intracellular
apoptosis, but could potentially include ECM remodelling
events as well. Indeed this is supported by numerous clinical
studies in which elevated levels of extracellular GzmB have
been correlated with disease severity[16,34,35].

In this study, we investigated the role of both GzmB and Prf1
in the pathogenesis of atherosclerosis. To do so, we made use
of the apolipoprotein E (ApoE) knockout (KO) mouse. These
mice are known to spontaneously develop atherosclerosis,even
when fed a regular chow diet. The development and severity of
atherosclerosis in these mice is increased further when they
are fed a high fat diet, making the high fat diet-fed ApoE KO
mouse a useful model to study advanced atherosclerotic
plaque development. We also generated GzmB/ApoE double
knockout (DKO) mice and Prf1/ApoE DKO mice to investigate
the potential roles of these twoproteins in atherosclerosis.

Results

GzmB and perforin is present in atherosclerotic
plaques in ApoE KO mice

Increased GzmB levels are observed in human
atherosclerotic lesions [33,34]. To determine if GzmB and Prf1
are present in plaques from ApoE KO mice, we performed
immunohistochemistry on plaques found in the aortas of wild
type (WT) and ApoE KO mice that had been fed a high fat diet
for 30 weeks (Figure 1A). As expected, aortas from WT mice
fed a high fat diet for 30 weeks exhibited no evidence of
atherosclerotic plaque development and minimal GzmB/Prf1
staining (Figure 1A). Conversely, ApoE KO mice possessed
numerous atherosclerotic lesions within the aorta that stained
strongly for GzmB and also for Prf1 (Figure 1A).

Neither GzmB nor Prf1 deficiency affects lipid levels in
ApoE KO mice

To further investigate the role of GzmB and Prf1 in the
development of atherosclerosis in ApoE KO mice, we
generated GzmB/ApoE DKO and Prf1/ApoE DKO mice. Total
cholesterol and triglycerides were quantified to determine if
GzmB or Prf1 deficiency affected levels of circulating lipids in
ApoE KO mice.Plasma isolated from GzmB/ApoE DKOand
Prf1/ApoE DKO mice exhibited similar levels of cholesterol and
triglycerides to that of ApoE KO mice (Figure 1B), suggesting

GzmB and Prf1 do not influence lipid levels in ApoEKO mice
when fed a high fat diet for 30 weeks.

GzmB and Prf1 do not influence plaque size in the
aortic roots of ApoE KO mice

To determine if GzmB and/or Prf1 influence plaque size, we
first investigated the aortic roots of WT, ApoE KO, GzmB/ApoE
DKO and Prf1/ApoE DKO mice. As expected, aortic roots from
WT mice showed no evidence of plaque development while
ApoE KO mice showed clear atherosclerotic lesions when fed a
high fat diet for 30 weeks (Figure 2A). Both GzmB/ApoE DKO
mice and Prf1/ApoE DKO mice showed no significant
difference in the amount of plaquein the aortic roots when
compared to ApoE KO mice as measured ether by the percent
neointimal plaque area (Figure 2A) or by the ratio of intimal to
medial thickness (Figure 2B).

Reduced plaque area in the descending aorta in GzmB
and Prf1 deficient ApoE KO mice

To further investigate the effect of GzmB and Prf1 on overall
atherosclerotic plaque development in the entire aorta, we
analysed plaques found in the descending aortas en face
stained with sudan IV (Figure 3A). In contrast to our
observations in the aortic root sections, we observed a
significant decrease in total plaque area in GzmB/ApoE DKO
mice compared to ApoE KO mice (Figure 3B). Interestingly, the
reduction of plaque area observed in Prf1 deficient mice was
also significantly less than that of GzmB deficient mice (Figure
3B).

Increased collagen in plaques from GzmB, but not Prf1,
deficient ApoE KO mice

Collagen plays a critical role in maintaining atherosclerotic
plaque stability (reviewed in 30). To investigate collagen in the
plaques of ApoE KO mice, and the affect of GzmB and Prf1 on
collagen content, aortic root sections were stained with
picrosirius red. Stained sections were visualized under bright
field and polarized light (Figure 4A). Compared to ApoE KO
mice, GzmB/ApoE DKO mice had significantly greater collagen
content in atherosclerotic lesions (Figure 4B). Prf1/ApoE DKO
mice, on the other hand,exhibited no significant difference in
collagen content compared to ApoE KO mice and had
significantly less collagen than GzmB/ApoE DKO mice. Taken
together, these results suggest GzmB, but not Prf1, contributes
to reduced collagen in atherosclerotic plaques in ApoE KO
mice when fed a high fat diet for 30 weeks.

Altered decorin content in plaques from GzmB and Prf1
deficient ApoE KO mice

One possible explanation for the difference in collagen
content seen in the GzmB/ApoE DKO mice but not the Prf1/
ApoE DKO mice is that GzmB is contributing to remodelling of
the ECM through a Prf1-independant extracellular mechanism.
It has been shown in other models that GzmB contributes to
collagen remodelling through the degradation of the
proteoglycan, decorin [25,28]. Decorin staining was noticeably
weak in the plaques seen in ApoE KO mice (Figure 5). By
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Figure 1.  Granzyme B and perforin are present in atherosclerotic plaques from apolipoprotein E knockout
mice.  (A)Representative images of aorta cross sections from high fat diet-fed wild type (WT),apolipoprotein E knockout(ApoE KO),
Granzyme B (GzmB)/ApoE double knockout (DKO) and perforin (Prf1)/ApoE DKOmice stained for GzmB and Prf1. Black scale
bars = 400 µm, white scale bars = 100 µm.(B)Neither GzmB nor Prf1 deficiency resulted in a significant difference in circulating
levels of cholesterol (n = 4) and triglycerides (n = 7) in ApoE KO mice when fed a high fat diet for 30 weeks.
doi: 10.1371/journal.pone.0078939.g001
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Figure 2.  Plaque area in aortic roots from granzyme B or perforin deficient apolipoprotein E knockout mice.  (A)
Representative images of aortic root cross sections from high fat diet-fed wild type (WT), apolipoprotein E knockout (ApoE KO),
granzyme B (GzmB)/ApoE double knockout (DKO) and perforin (Prf1)/ApoE DKO mice stained with Movat’spentachrome. Scale
bars = 500 µm. No significant difference in the size of plaque was observed in GzmB/ApoE DKO (n = 9) or Prf1/ApoE DKO mice (n
= 8) compared to ApoE KO mice (n = 10). (B) Example images of plaques from aortic roots stained with Movat’spentachrome. The
same number of animals were used for these measurements as in panel A. Arrows indicate boundaries of the intimal plaque. Scale
bars = 100 µm. No significant difference was detected in the ratio of intimal/medial thickness. ns = not significant (One-way ANOVA
with bonferronipost test). Error bars represent SEM.
doi: 10.1371/journal.pone.0078939.g002
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comparison, plaques from GzmB/ApoE DKO mice exhibited
greater decorinimmunopositivity, including areas near the cap
region of the plaque (Figure 5, black arrowheads). Interestingly,
Prf1/ApoE DKO mice also had increased decorin content in
their plaques compared to the ApoE KO mice (Figure 5). Upon
closer examination, decorin content appeared tobe differentially
distributed in the plaques of Prf1/ApoE DKO mice when
compared to GzmB/ApoE DKO mice with reduced decorin in
the fibrous capand a more diffuse staining pattern (Figure 5,
white arrowheads).

GzmA, T cells and macrophages in plaques from GzmB
and Prf1 deficient ApoE KO mice

Granzyme A (GzmA), similar to GzmB can be expressed
during chronic inflammation and is capable of Prf1-dependant
and independent activity that can potentially influence ECM

remodelling [36-38] as well as cytokine processing and release
[39-42]. We investigated the presence and localization of
GzmAin the plaques of mice to see if ApoE, GzmB or Prf1
deficiency influenced the levels of GzmA in the aortic wall. As
shown in Figure 6, WT mouse aortas exhibited minimal positive
staining for GzmA in the aortic wall compared to the plaques in
ApoE KO mice which demonstrated noticeablestaining for
GzmA (Figure 6).Staining was observed throughout the plaque
in all groups of mice and no obvious differences were observed
in the composition and localization of GzmA.Plaques from
GzmB/ApoE DKO and Prf1/ApoE DKO mice also stained
positive for GzmA. These results suggest that GzmB and/or
Prf1do not affect the expression of GzmA in plaques from
ApoE KO mice and that the phonotypic differences observed in
these mice is not due to altered expression of GzmA. Similarly,
CD3 positive T cells and F4/80 positive macrophages were

Figure 3.  Granzyme B and perforin contribute to plaque development in the descending aorta of apolipoprotein Eknockout
mice.  (A) Representative images on the descending aorta from high fat diet-fed apolipoprotein E knockout (ApoE KO), granzyme B
(GzmB)/ApoE double knockout (DKO) and perforin (Prf1)/ApoE DKO mice stained en face with sudan IV. (B) When plaque area
was quantified, GzmB/ApoE DKO mice (n = 22) had significantly reduced plaque area compared to ApoE KO mice (n = 16). Prf1/
ApoE DKO mice (n = 14) had significantly less plaque than both the ApoE KO mice and the GzmB/ApoE DKO mice. *P<0.05,
***P<0.005 (One-way ANOVA with bonferonnipost test). Error bars represent SEM.
doi: 10.1371/journal.pone.0078939.g003
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Figure 4.  Granzyme B, but not perforin deficiency results in increased collagen content in atherosclerotic plaques.  (A)
Representative images of aortic root sections stained for collagen using picrosirius red and visualized under bright field or polarized
light. Bright field images were used to define the area of plaque and collagen was quantified using the images taken under polarized
light. Scale bars = 500 µm. (B) Compared to the high fat diet-fed apolipoprotein E knockout (ApoE KO) mice (n = 4), granzyme B
(GzmB)/ApoE double knockout (DKO) mice (n = 6) exhibited increased collagen content in atherosclerotic plaques of the aortic root.
Perforin (Prf1)/ApoE DKO mice (n = 5) on the other hand, showed no difference in collagen content compared to ApoE KO mice
and significantly less collagen compared to GzmB/ApoE DKO mice. *P<0.05, ***P<0.005 (One-way ANOVA with bonferronipost
test). Error bars represent SEM.
doi: 10.1371/journal.pone.0078939.g004
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also detected in the plaques from all groups of mice (Figure 6).
Plaques from ApoE KO mice exhibited positive staining for
F4/80 in the area in and around the adventitia while all groups
contained macrophage foam cells in the intimal plaque that
stained lightly for F4/80. CD3 immunopositivitywas similar in all
groups of mice containing plaques with no obvious differences
in staining patterns observed.

Discussion

The role of GzmB in cardiovascular diseases has been a
topic of increasing attention in recent years [32,43,44].Prf1-
dependant, GzmB-mediated apoptosis has been the primary
mechanism investigated in this regard and recent studies have
suggested evidence of this pathway as an important
mechanism in vulnerable plaque formation[32-34].While absent
in the normal vessel and vessels with mild atherosclerosis,
GzmB is abundant in vessels with advanced disease and

GzmB expression is associated with increased disease severity
and plaque instability[34]. Macrophages, cytotoxic cells and
smooth muscle cells display GzmB positivity and GzmB co-
localizes to TUNEL-positive foam cells undergoing apoptosis
[33,34]. The intracellular GzmB inhibitor, protease inhibitor 9, is
decreased in atherosclerotic lesions, suggesting an increased
susceptibility of resident cells to GzmB-induced cell death [33].
High plasma GzmB levels have also been linked to plaque
instability and increased cerebrovascular events as soluble
GzmB levels are highest in individuals with thin, rupture-prone
fibrous caps[16]. In the present study, both GzmB and
Prf1were found to exert pathological roles in the ApoE KO
mice. The data suggests that GzmB and Prf1exert differential
roles in atherosclerosis, influencing plaque composition and
plaque development, respectively.

The role of Prf1 in GzmB internalization followed by the
initiation and execution of apoptosis is well-described[1].
However, more recently it has become clear that granzymes

Figure 5.  Increased decorin in plaques from granzyme B and perforin deficient apolipoprotein Eknockout
mice.  Representative images of aortic root sections fromapolipoprotein E knockout (ApoE KO), granzyme B (GzmB)/ApoE double
knockout (DKO) and perforin (Prf1)/ApoE DKO mice stained for decorin. Decorin in the GzmB deficient animals was observed near
the surface of the plaque in concentrated pockets (black arrowheads) while decorin in Prf1 deficient animals stained more diffusely
throughout the plaque (white arrowheads). White scale bars = 50 µm, black scale bars = 500 µm.
doi: 10.1371/journal.pone.0078939.g005
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are more than pro-apoptotic proteases and many additional
Prf1-independent, extracellular roles for GzmB including the
ability to degrade the ECM have been identified
[22,23,25-27,29,45]. In this study, consistent with previous
studies [28], GzmB was associated with reduced collagen
birefringence. This observation appeared to be Prf1-
independent as we did not observe this phenomenon in the
Prf1 deficient mice. Only GzmB deficiency, not Prf1 deficiency,
resulted in increased collagen content in plaques found in the
aortic roots of ApoE KO mice, suggesting that Prf1-
independent, extracellular GzmB activity contributes to ECM
remodelling in atherosclerotic plaques. These results are
similar to that observed in a mouse model of abdominal aortic
aneurysm, where GzmB deficiency, but not Prf1 deficiency was
protective against mortality due to aneurysm rupture [23].

Similarly, the use of an extracellular GzmB inhibitor, serpina3n,
also protected against aneurysm rupture due to increased
adventitial collagen [28].

While multiple reports have confirmed the inability of GzmB
to degrade collagen [22,26,29], other ECM
componentssusceptible to GzmB-mediated cleavage
caninfluence collagen remodelling[22,23,25-29,45]. The
proteoglycan decorininteracts with collagen and has a profound
influence on collagen organization, spacing and tissue tensile
strength [46]. Previous work also showed that decorin
overexpression reduced atherosclerosis development in ApoE
KO mice, supporting a protective role for decorin in vascular
diseases[47]. Decorin degradation by GzmB has been shown
to contribute to a loss of collagen density in the adventitia of
the aorta during abdominal aortic aneurysm, contributing to

Figure 6.  Expression of granzyme A, T cells and macrophages in atherosclerotic plaques.  Representative images of wild
type (WT), apolipoprotein E knockout (ApoE KO), granzyme B (GzmB)/ApoE double knockout (DKO) and perforin(Prf1)/ApoE DKO
mouse aortas stained for (A) granzyme A, (B) CD3 and (C) F4/80. Scale bars = 100 µm.
doi: 10.1371/journal.pone.0078939.g006
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aneurysm rupture, exsanguination and mortality in mice[28].
GzmB also degrades decorin in the skin, where it is believed to
contribute to age-related skin frailty and a loss of collagen
organization[25].In the present study, increased decorin was
observed in plaques from GzmB/ApoE DKO mice compared to
ApoE KO mice, supporting the hypothesis that GzmB degrades
decorin in vivo. Interestingly, when compared to ApoE KO
mice, Prf1/ApoE DKO mice also showed greater staining for
decorin.The absence of Prf1 may have a number of currently
unknown consequences that could account for this observation
including effects on immune regulation, recruitment of immune
cells, proteases and other granzymes into the plaque. It is
known that multiple granzymes can influence cytokine release
and processing both intracellularly and
extracellularly[39-41,48-52]. Although beyond the scope of this
study, the absence of Prf1 during chronic inflammatory
diseases such as atherosclerosis may have a considerable
impact on any processed/expressed pro-inflammatory
cytokinesthat are activated intracellularly by granzymes and
could conceivably influence the nature of
inflammation(including further granzyme expression) in
atherosclerotic plaques further affecting ECM remodelling.
While staining for CD3 positive T cells and F4/80 positive
macrophages failed to demonstrate clear differences between
the GzmB and Prf1 deficient mice, other factors including the
activation and/or subset of these cells could potentially be
affected by Prf1 deficiency although this remains speculation. It
is unknown if differences in immune mediators accounts for the
decorin observations made in the Prf1/ApoE DKO mice
however future studies on the effects of Prf1 deficiency on
inflammation during chronic inflammatory disease is warranted.
As other proteases may also degrade decorin, it is possible
that Prf1 deficiency also affects the expression of other
immune-secreted proteases which could impact decorin levels.
Altered decorin expression in plaques from Prf1 deficient mice
is another possible explanation. Nevertheless, differences in
staining patterns were observed between the GzmB and Prf1
deficient animals, suggesting a specific GzmB-mediated effect
on decorin in the plaques of ApoE KO mice during
atherosclerosis development.Further work is required to better
understand the pro-inflammatory and proteolytic mechanisms
involved in decorin/collagen remodelling in the plaques of ApoE
KO mice and the ultimate effects of these events on
atherosclerosis disease progression.

The current study also provides evidence thatPrf1contributes
to the incidence and development of atherosclerosis in the
descending aorta through mechanisms that are independent of
GzmB. While GzmB deficiency resulted in significantly reduced
plaque area in the descending aorta of ApoE KO mice, Prf1-
deficient micehad an even greater reduction that showed
significantly less plaque area than the GzmB deficient animals.
One possible explanation for this is the action of other
granzymes. Cytotoxic granules contain not only GzmB and Prf1
but a number of other granzymes as well. In humans there are
5 different granzymes while 11 exist in mice. GzmB deficiency
would therefore not affect Prf1-mediated entry of other
granzymes into the cytoplasm of target cells where they could
continue to perform their alternative functions. These functions

may include and are not necessarily limited to apoptosis,
cytokine processing and cytokine release. While there is still
much to be discovered concerning the possible intracellular
roles of these other granzymes, any intracellular contribution to
disease development would presumably remain in GzmB
deficient mice, but abolished when Prf1 is absent. In the
present study, we observed similar staining for GzmA in the
plaques of ApoE KO, GzmB/ApoE DKO and Prf1/ApoE DKO
mice.The exact role of GzmA and its influence on inflammation
and plaque development in atherosclerosis remains to be
investigated. However, given the well-documented role for
IL-1β in inflammation and atherosclerosis combined with the
known role for GzmA in the production of this cytokine and
others, it is plausible that GzmA could be contributing to
atherogenesisas well [39-42].

Other studies have also investigated the role of GzmB and
Prf1 in atherosclerosis.One study by Viswanathanet al showed
that GzmB/ApoE DKO mice exhibit a trend towards reduced
plaque development compared to ApoE KO mice in a model of
aortic allograft vasculopathy[53]. On the other hand, a different
study using the low density lipoprotein receptor (LDLr) KO
model showed that Prf1/LDLr DKO mice were not protected
against atherosclerosis pathogenesis compared to LDLrKO
controls [54]. This appears contradictory to our study but the
discrepancies may be indicative of the different models used,
differencesin age and time spent on a high fat diet (reviewed in
55). For example,diet, sex, genotype and agehave been shown
to influence atherosclerotic plaque size in mice [56]. Our
studies were carried out with mice being fed a high fat diet for
30 weeks compared to the LDLrKO study where mice were fed
a high fat diet for only 16 weeks.Age is known to be an
important risk factor for atherosclerosis and the influence of
both GzmB and Prf1 may be greater when examining a more
severe plaque such as those seen in aged mice[57]. This is
also consistent to that observed in the clinic where the highest
levels of GzmB are associated with plaque instability and
immediately after plaque rupture[16,34,35]. As such, GzmB-
mediated ECM degradation may play a more profound role in
advanced atherosclerosis and plaque rupture compared to the
early stages of the disease. This is certainly true for aneurismal
rupture whereby extracellular GzmB inhibition is protective
while Prf1-deficiency had no effect on rupture or
survival[23,28]. Improved models of plaque rupture would also
aid greatly in furtherexamining this hypothesis.

In conclusion, both Prf1 and GzmB contribute to the
pathogenesis of atherosclerosis in ApoE KO mice. The present
study suggests that Prf1 and GzmB exert unique roles in the
onset and progression of atherosclerosis.

Materials and Methods

Ethics statement
All research studies involving the use of animals were

conducted with the approval of the University of British
Columbia (UBC) Animal Care Committeeand in compliance
with The Canadian Council on Animal Care.Animals were
monitored continuously for signs of illness or distress which
would occasionally arise in the form of severe skin lesions [25].
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Any animal deemed to exhibit signs of suffering were
euthanized for humane reasons as per UBC guidelines.

Mice
GzmBKO, ApoEKO and Prf1 KO mice were purchased from

The Jackson Laboratory (Bar Harbor, ME). GzmB/ApoEDKO
and Prf1/ApoEDKO mice where then bred in house at the
Genetically Engineered Models facility at the UBC James Hogg
Research Centre (Vancouver, BC).At 6-8 weeks of age WT,
ApoEKO, GzmB/ApoEDKO and Prf1/ApoEDKO mice began a
high fat diet (21.2% fat, 0.2% cholesterol, Harlan Teklad,
Madison, WI) for 30 weeks. At the time of harvest, mice were
weighed and euthanized by isofluorane/CO2 inhalation. Blood
was then collected by cardiac puncture. Vessels were perfused
with saline at a constant pressure of 100mmHg using a
pressurized tubing system for 5min or until no blood was
observed at the incisionin the right atria. Hearts and aortas
were then collected and fixed in 10% formalin.

Total Cholesterol and Triglyceride Quantification
To determine total cholesterol levels in mouse plasma, the

Cholesterol E Enzymatic ColormetricAssay (Wako, Richmond
VA) was utilized. In brief, a 1:100 dilution of mouse plasma and
appropriate cholesterol standards were added to a colour
reagent containing cholesterol ester hydrolase, cholesterol
oxidase, peroxidise, 4-aminoantipyrine 3,5-Dimethoxy-N-ethyl-
N-(2-hydroxy-3-sulfopropyl)-aniline sodium salt and ascorbate
oxidase. Cholesterol esters were converted to free cholesterol
and fatty acids and cholesterol was oxidized to generate
hydrogen peroxide which then reacts to form a blue pigment.
After a 5min incubation at 37°C, the blue pigment was
measured at an absorbance of 600nm.Four mice per group
were used for these experiments.

To determine total triglycerides in mouse plasma the
Triglyceride Colormetric Assay Kit was utilized (Cayman
Chemical Company, Ann Arbor MI). A triglyceride enzyme
mixture was added to a sodium phosphate assay buffer which
then reacts to form a purple pigment to be read at 540nm.
Plasma was added to the plate at a 1:16 ratio.Seven mice per
group were used for these experiments.

Aortic root and en face quantification of plaque area
Fixed aortic root sections cut 5 µm thick were stained with

Movat’spentachrome and images were taken at
10Xmagnification. The area of the plaque was quantified and
expressed as the percent occlusion of the vessel lumen (vessel
lumen area was calculated by tracing the base of the plaque
above the media around the entire vessel). Lesion area was
traced and quantified using the imaging software
ImageProPlus® version 4.5.0.29 for Windows (Media
Cybernetics Inc, Rockville MD). The intimal / medial thickness
measurements were performed as described previously [58] by
measuring the mean intimal thickness and normalizing to the
mean medial thickness. These measurements were performed

on ApoE KO (n = 10), GzmB/ApoE DKO (n = 9) and Prf1/ApoE
DKO mice (n = 8). For en face analysis, aortas were trimmed
for the removal of excess fat and tissue surrounding the aorta.
Vessels were then pinned to a paraffin tray and tissue was
covered in staining solution (0.5% sudan IV (Fisher Scientific,
Waltham, MA), 35% ethanol and 50% acetone) for 15min.
Solution was removed and replaced with 80% ethanolfor 5 min
for decolourization. Aortas were then washed in dH2O for 1h,
photographed and plaque area traced using
ImageProPlus®.These measurements were done on ApoE KO
(n = 16), GzmB/ApoE DKO (n = 22) and Prf1/ApoE DKO mice
(n = 14).

Collagen Quantification
To examine collagen content, 5 µm aortic root sections were

stained in picrosirius red solution and images were taken at
10X magnification under bright field and polarized light. The
area of interest was identified using bright field images and
then applied to the images taken under polarized light, where
collagen was then quantified by colour segmentation.The
imaging software ImageProPlus® was used for these
analyses.These measurements were done on ApoE KO (n =
4), GzmB/ApoE DKO (n = 6) and Prf1/ApoE DKO mice (n = 5).

Immunohistochemistry
Paraffin sections (5 µm) were treated with xylene and

rehydrated with ethanol and PBS. The tissues were treated in
boiling citrate buffer and endogenous peroxidase was
quenched in 3% H2O2. Ten percent rabbit serum or 10% goat
serum was used for blocking after which rabbit anti-GzmA (kind
gift from Dr. Julian Pardo, Zaragoza, Spain and Dr. Markus
Simon,Freiburg, Germany),goat anti-GzmB (Abcam,
Cambridge, MA),rabbit anti-perforin (Cell Signaling, Boston
MA), rabbit anti-CD3 (Abcam), rat anti-F4/80 (AbDSerotec,
Raleigh, NC), goat anti-decorin (R&D Systems, Minneapolis
MN) in 10% serum was incubated overnight at 4°C. The
secondary antibody biotinylatedrabbit anti-goat, goat anti-rabbit
or goat anti-rat(Vector Laboratories, Burlingame, CA) was
incubated at room temperature for 30 minutes in 5% serum.
ABC reagent was used as directed (Vectastain Elite ABC kit,
PK-6100, Vector Laboratories) and was visualized with DAB
(Vector Laboratories). Tissue was then counterstained with
hematoxylin.
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