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Texture analysis (TA) is a newly arisen field that can detect the invisible MRI signal changes

among image pixels. Myocardial infarction (MI) is cardiomyocyte necrosis caused by

myocardial ischemia and hypoxia, becoming the primary cause of death and disability

worldwide. In recent years, various TA studies have been performed in patients with MI

and show a good clinical application prospect. This review briefly presents the main

pathogenesis and pathophysiology of MI, introduces the overview and workflow of

TA, and summarizes multiple magnetic resonance TA (MRTA) clinical applications in

MI. We also discuss the facing challenges currently for clinical utilization and propose

the prospect.

Keywords: magnetic resonance imaging, myocardial infarction, texture analysis (TA), machine learning,

stratifying risk

INTRODUCTION

Myocardial infarction (MI) is myocardial necrosis caused by ischemia and hypoxia of
cardiomyocytes, an imbalance between oxygen offering and myocardial requirement. It belongs
to a part of the clinical manifestation of the acute coronary syndrome (ACS) (1). MI is a major
cause of death and disability worldwide and brings about approximately one-third of all deaths in
patients over 35 years old (2, 3).

The European Society of Cardiology (ESC) has conducted the fourth universal definition of MI
from cardiac troponin values (cTn) and clinical myocardial ischemia evidence that is ranging from
symptoms of myocardial ischemia, ECG abnormalities, and new imaging evidence (4). However,
clinical ischemic symptoms are not specific for myocardial ischemia and may be misdiagnosed as
other medical conditions (5). Early mortality andmorbidity can be decreased by accurate diagnosis,
better prevention, andmanagement, then life expectancy and quality of life will be enhanced (6). So,
more sensitive, precise, and specific techniques are required for the diagnosis and characterization
of MI.

As the imaging techniques evolve, it plays a more and more important role in MI. Cardiac
magnetic resonance (CMR) has advantages, such as non-Radiative, multiparameters and sequences,
multiplanar reconstruction capabilities, and high tissue resolution, which composes the “gold
standard” tool for evaluating the cardiac structure and function non-invasively and becomes
the best available imaging technique for detection of MI (7, 8). Meanwhile, CMR has essential
significance in stratifying risk, predicting prognosis, predicting response to therapy, detecting
complications, etc., in MI (8). Nevertheless, the traditional visual inspection of images may not
recognize subtle differences and detect invisible signal changes (9, 10). Magnetic resonance texture
analysis (MRTA), which belongs to radiomics, includes extensive technologies modeling the spatial
distribution of pixel grayscale for data recognition, classification, and segmentation based on the
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latent texture. Furthermore, MRTA is capable of detecting subtle
signal changes and obtaining underlying image information that
remains imperceptible to eyes to provide tissue characteristics
(9, 11–13). More importantly, MRTA has the potential further
to strengthen the diagnostic and prognostic value of imaging
(14, 15).

This article concentrates on the role of MRTA in MI. In this
study, we review the major pathogenesis and pathophysiology
of MI, the basic concepts and types of MRTA, the clinical
applications of MRTA in MI, current challenges, and
potential prospects.

PATHOGENESIS AND PATHOPHYSIOLOGY
OF MI

Myocardial infarction is most commonly owing to coronary
thrombosis from the rupture of an atherosclerotic plaque (16).
When the blood is exposed to the thrombogenic lipids, the
platelets and coagulation factors are activated, which become
the precipitating factor of the plaque disruption (3). The
coronary plaques with lipid-rich core and thin fibrous cap
occupy the highest risk of rupture (17). However, in addition
to atherosclerosis, there are several etiologies of MI, such
as intracardiac thrombus or valvular vegetation that led to
coronary artery embolism, cocaine use, coronary dissection,
hypotension, anemia, Kawasaki’s syndrome, trauma, metabolic
disease, congenital coronary anomalies, and complications of
angiography (3, 17).

In MI, once the onset of myocardial ischemia, there is a
subsequent decrease in myocardial perfusion, bringing about the
reduction of tissue oxygenation, which transforms the hypoxia
cardiomyocytes from aerobic to anaerobic metabolism, bringing
about edema of cardiomyocyte and ultimately tissue necrosis (5).

The myocardial necrosis process resembles a “wavefront”
phenomenon that is ranging from the endocardium to
the epicardium (18) (Figure 1). Within about 15min, the
myocardium shows ischemia with no infarct. At approximately
40min, it appears subendocardial infarction. Roughly at 3 h, the
subendocardial infarct extends to the mid myocardium. Beyond
6 h, the infarction extends to subepicardial layers and develops
into transmural. After approximately 2 months, scar tissues
replace the piece, inflammatory cells, and edema, leading to
shrinking of the necrotic tissue and myocardial thinning (5, 19).

TEXTURE ANALYSIS

Texture analysis (TA) is a part of radiomics. Through image
post-Processing technology, the distribution and relationship of
pixel or voxel gray are analyzed to extract many quantitative
texture features that are not visible by the naked eyes in medical
images (20). The image texture represents the gray-level variation
rule of pixels in images (21). Changes in image intensity owing
to persistent ischemia and hypoxia may be reflected as textural
patterns near or after cardiomyocyte death (Figure 2). Figure 3
exhibits a simplified workflow about the clinical application of
MRTA. A schematic diagram illustrating the whole TA applied

on CMR is shown in Figure 4. In the light of the means applied
to assess the inter-relationships of the pixels, the forms of texture
analyses can be classified as below: statistical, structural, model-
based, and transform methods (13, 14).

Types of TA
With high gray and spatial resolution, MRI images possess
extensive and similar image information. Therefore, the
statistical method becomes the most commonly used method
in MRTA. For statistical-based TA, various properties control
the distribution and relations of gray-scale values in images to
represent texture (14). First-order statistical TA, also called a
histogram, extracts the image intensity values from the region
of interest (ROI). A histogram can be derived by calculating
the frequency count of the number of pixels of each gray value
(22). Second-order statistics analyze the spatial relationship
or co-occurrence of the pixel intensity values. The two most
commonly used methods are gray-level co-occurrence matrix
(GLCM) and gray-level run-length matrix (GLRLM). Through
the calculation of the neighborhood gray difference matrix,
high-order statistics study the spatial relationship among three
or more pixels and reflect the change of intensity in a specific
area or the distribution of homogeneous areas. The common
calculation method includes neighborhood gray-tone difference
matrix (NGTDM) and gray-level size zone matrix (GLSZM) (23).

Structural-based TA catches intensity changes between the
central and adjacent voxels. Local binary patterns (LBP) are a
non-Parametric algorithm and also the most frequently used
method that depicts the local features of gray-scale connection
between image pixels and neighboring pixels (24).

Model-based TA explicates texture in an image with
sophisticated mathematical models, for example, stochastic
or fractal models. The model parameters are estimated
and applied to image analysis. Due to a lack of direction
selectivity, this method is unsuited for depicting local image
structures (13).

Transform-based TA enables the spatial information of images
to convert into spatial frequencies. It contains Gabor, Fourier,
andWavelet transform. As themost widespreadmethod,Wavelet
transform can analyze the frequency content of images in
different spatial frequency resolutions (25).

Machine Learning
Artificial intelligence (AI) is rapidly gaining importance in
the medical imaging field and is likely to gradually turn into
clinical practice in the next few years (26, 27). According to the
data derived from AI, machine learning is a rapidly growing
area that concentrates on building systems that make accurate
predictions according to the data (28). Machine learning is
mainly applied to establish the diagnosis of MI and assists
differential diagnosis of acute mesenteric ischemia (AMI) and
chronic mesenteric ischemia (CMI) that cannot be identified by
the naked eyes (15, 29, 30). The application of machine learning
in medical imaging can be briefly summarized into three
types: supervised, unsupervised, and semisupervised learning
(31). Supervised learning intends to recognize the relationship
between characteristics relevant to the learning objectives and
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FIGURE 1 | The “wavefront” of myocardial ischemic necrosis, necrosis of cardiomyocytes progresses from the subendocardium to the subepicardium over time if

ischemia persists and ultimately becoming transmural infarct.

FIGURE 2 | Schematic illustration of the texture working hypothesis in myocardial infarction (MI). Top row: ischemia and hypoxia may cause cardiomyocyte at risk or

death; (1), (2), and (3) represent normal cardiomyocyte, cardiomyocyte at risk, and cardiomyocyte death, respectively. Bottom row: changes in the statistical properties

of the image intensities due to the persistent ischemia and hypoxia of cardiomyocytes may be reflected as certain textural patterns.

FIGURE 3 | Overview of the MRTA simplified workflow. MRTA, magnetic resonance texture analysis.

the expected result indicators in a dataset for classification.
Unsupervised learning intends to identify and establish
potential patterns through the use of unlabeled data from a

computer. By combining supervised and unsupervised learning,
semisupervised learning utilizes the amount of unlabeled data
and few labeled data for training. At present, the most relevant
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FIGURE 4 | A schematic diagram illustrating the whole texture analysis (TA) applied on CMR. The myocardium in a CMR image was convolved by a bandpass

Gaussian filter to enhance the image and highlight the variance. The histogram of the enhanced myocardium was computed to obtain a couple of statistic parameters,

such as mean, SD, skewness, kurtosis, entropy, and mean positive pixel. These parameters were furthermore analyzed among different patients for evaluation,

classification, differentiation, and prediction. CMR, Cardiac magnetic resonance.

to cardiovascular imaging are supervised and unsupervised
learning (32).

MRTA CLINICAL APPLICATIONS IN MI

Magnetic resonance texture analysis clinical applications in MI
emerge as a promising research domain, and many findings
have presented encouraging results. The series of studies can be
divided into three broad categories: establishing the diagnosis,
determining the age of infarct, stratifying risk (Table 1).

Establishing Diagnosis
Despite the relative importance of various MRI technologies
vary, MRI plays a significant role in establishing a diagnosis
for both AMI and CMI (7). The rapid application of TA
in medical imaging provides a new method for diagnosing
MI. Baessler et al. (15) performed TA in 120 patients
with MI using histogram, GLCM, GLRLM, absolute gradient,
autoregressive model, and wavelet transform. Taking late
gadolinium enhancement (LGE) as a reference standard,
five texture features [Teta1, WavEnHH.s-3, Perc.01, S (5,5)
Sum Entrp, and Variance] enabled distinguishing scarred
myocardium from normal myocardium on non-Enhanced cine
MRI independently. Moreover, multiple logistic regression
showed that Teta1 and Perc.01 achieved the highest diagnostic
performance for small and sizeable myocardial scars with the
area under the curve (AUC) were 0.92 and 0.93, respectively.
Therefore, MRTA may provide an extra mean for the diagnosis
of MI with gadolinium-free enhancement imaging, which may
be helpful for patient groups with accompanying chronic
kidney disease who have an added risk of gadolinium-
related complications.

Determining the Age of Infarct
Apart from being a useful diagnostic tool, MRI can also be
applied for differentiation between acute and chronic infarction,
which is especially helpful when the patient has multi-infarct
in different vascular areas or when an infarct occurs with no
clinical symptoms. Distinguishing AMI from CMI has vital
clinical significance for treatment and follow-up, especially in
patients with pre-Existing CMI, and the probability of locating
acute lesions by ECG or coronary angiography is limited. The
management of two types of infarcts differs. It is crucial to
determine the infarct age, especially when both infarction entities
coexist, complicating that will complicate the therapeutic plan
and follow-up after treatment. Several imaging features involving
the identification of AMI and CMI in previous studies, such
as wall thickening and thinning (40), microvascular obstruction
(MVO) (41), edema on T2-weighted images (42, 43), and hyper-
enhancement in contrast-enhanced MRI (44). However, some of
these imaging features lack insufficient sensitivity and specificity,
and technical limitations still exist (7, 29).

Compared with those current technologies that rely on
image visual evaluation, the quantitative character of TA is
a unique advantage. Edema of AMI and fibrosis of CMI
hold the most essential characteristics of cardiac pathological
changes correspondingly and affect the internal structure of
tissues, which indicates there may be some inherent texture
discrepancy in the images of tissues influenced by AMI and
CMI. Larroza et al. (29) performed TA in 44 patients with
MI (22 with AMI and 22 with CMI) by using histogram,
GLCM, GLRLM, absolute gradient, autoregressive model, and
wavelet transform, 279 texture features extracted from cine,
and LGE MRI were used to distinguish AMI from CMI
alone. A nested cross-validation approach combining a feature
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TABLE 1 | Magnetic resonance texture analysis (MRTA) clinical applications in myocardial infarction (MI).

Clinical

application

References Study size Acquisition Type of TA Modeling methods Results

Establishing

diagnosis

Baessler

et al. (15)

120 CMR, 1.5T Histogram, GLCM,

GLRLM, absolute

gradient, wavelet

autoregressive model,

Multiple logistic

regression

Combining the texture features

Teta1 and Perc.01 obtain the highest

accuracy for diagnosing large and

small MI on CMR with an area under

the curve of 0.93 and 0.92

respectively

Determining age of

infarct

Larroza

et al. (29)

44 LGE, CMR, 1.5T Histogram, GLCM,

GLRLM, absolute

gradient, wavelet

autoregressive model,

Random

forest algorithm

SVM

The polynomial SVM yielded the best

classification performance

(AUC = 0.86 ± 0.06 on LGE and

AUC = 0.82 ± 0.06 on cine MRI)

Chen

et al. (33)

70 T1 mapping, LGE,

CMR, 3.0T

Histogram, GLCM

Difference entropy,

GLRLM

Random forest

algorithm

GLRLM features (horizontal fraction)

extracted from of ECV demonstrated

a significantly higher AUC (0.91) than

other texture features in differentiation

of unsalvageable infarction and

salvageable myocardium

Risk stratification Larroza

et al. (34)

50 Cine, CMR,1.5T GLCM, GLRLM,

GLSZM, NGTDM, LBP

SVM Evaluation of myocardial segmental

viability based on transmural

extension: LBP features using a 2D +

t approach achieved high

discrimination (AUC > 0.8) of

non-Viable, viable and remote

segments, with sensitivity 92, 72, and

85%, respectively

Ma

et al. (35)

68 T1 mapping,

CMR, 3.0 T

Histogram, GLCM,

wavelet

Multiple logistic

regression

The combination of TA and T1

mapping native T1 values could

provide high diagnostic accuracy for

transmurality (AUC = 0.84) and MVO

(AUC = 0.86)

Kotu

et al. (36)

22 LGE, CMR, 1.5T Dictionary-based

texture,

dc-values

MLE-Bayes TA aided with intensity values gives

better segmentation of scar from

myocardium with high sensitivity

(82.32%) and specificity (89.05%)

Kotu

et al. (37)

44 LGE, CMR,1.5T Dictionary-based

texture

FTCM Pixel with larger Rp values is more

likely to be the border area of scar

Engan

et al. (38)

24 LGE, CMR GLCM MLE-Bayes Combination of image texture and

statistical features on scar may have

potential discriminative power

between high and low risk of serious

ventricular arrhythmias groups

Gibbs

et al. (39)

76 LGE, CMR, 1.5 T Histogram Kaplan-Meier analysis Patients suffering arrhythmic events

with significantly higher kurtosis and

lower skewness compared with those

suffering no arrhythmic events

CMR, cardiac magnetic resonance; LGE, late gadolinium enhancement; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone

matrix; NGTDM, neighborhood gray-tone difference matrix; SVM, support vector machine; MLE, maximum likelihood estimator; LBP, local binary patterns; ECV, extracellular volume;

MVO, microvascular obstruction; AUC, area under the curve; TA, texture analysis; FTCM, Frame texture classification method.

selection technology called multiple support vector machine
recursive feature elimination (MSVM-RFE) was applied to test
the diagnosis efficiency, the results showed that the polynomial
SVM achieved the optimum classification performance (AUC
= 0.86 ± 0.06 on LGE MRI and AUC = 0.82 ± 0.06 on cine
MRI). However, the discrimination is not straightforward and
demands the use of machine learning, especially in cases where
the infarction is not readily visually perceptible in standard
cine MRI.

Stratifying Risk
In recent years, MRTA plays a new role in identifying multiple
prognostic indicators that guide risk stratification and prognosis
prediction in patients with MI. The applications mainly
involve five sub-aspects: (1) differentiation of reversible
from irreversible myocardial injury; (2) evaluation of
transmurality; (3) detection of MVO; (4) assessment of
scar size combined with segmentation; and (5) identification of
scar heterogeneity.
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Differentiation of Reversible From Irreversible Injury
Differentiating reversible from irreversible myocardial damage
is valuable for prognosis prediction. The salvaged myocardium
is an independent predictor of prognosis and is associated with
mortality, representing the risk area but can be rescued or rescued
through revascularization (45). The myocardial salvage index
(formula: T2-weighted edema area-delayed enhanced area/T2-
weighted edema area) (45), T1 mapping techniques (46, 47),
blood oxygen-level dependent (BOLD) (48), etc., have been
studied to evaluate the severity of the ischemic myocardial injury.
Nevertheless, the traditional visual quantification of the average
intensity level for ROI is insufficient because it easily ignores
subtle changes and remains subjective (49). TA may overcome
some of the above limitations by utilizing specific imaging
information to obtain tissue features and quantitatively analyze
the relationship between pixels and gray patterns in images.

One promising result about the differentiation of reversible
from irreversible myocardial injury based onMRTAwas reported
by Bing-Hua Chen et al. (33). They examined TA of extracellular
volume (ECV) mapping from the calculation of native and post-
Contrast T1mapping images in 70 patients with ST-elevationMI.
Five texture features [one co-occurrence matrix features S (0,1)
difference entropy, two histogram indexes (mean and perci.99%),
and run-length matrix features (horizontal fraction and vertical
fraction)] were selected for analysis. The results showed that
the horizontal fraction demonstrated a significantly higher AUC
(0.91) than other texture features in identifying unsalvageable
and salvageable myocardium.

Evaluation of Transmurality
The transmurality of infarction possesses an independent
prognostic value in measuring the recovery of contractile
function after treatment, and a greater transmural extent is
related to poorer recovery (50, 51).

Magnetic resonance texture analysis shows several promising
results in the evaluation of transmurality. Ma et al. (35) combined
T1 mapping and TA for the assessment of myocardial segmental
transmurality in 68 patients with AMI, the combination of native
T1 values and four features {histogram (mean), GLCM [S(0,1)
Correlat, S(1,-1) SumEntrp, and S(2,0) Correlat]} achieved good
diagnostic performance (AUC = 0.84). In addition, taking the
transmural extension on LGE as the standard judgment of
infarcted segmental viability, Larroza et al. (34) applied MRTA
to distinguish infarcted viable, non-Viable, and remote segments
in 50 patients suffering CMI. Features derived from four matrix-
based TA (GLCM, GLRLM, GLSZM, and NGTDM) and LBP
methods were extracted from the segments on cine MRI, by
combining SVM classifier, LBP using a 2D + t method achieved
high discrimination (AUC > 0.8), with sensitivity 92% (non-
Viable), 72% (viable), and 85% (remote), respectively. Hence,
MRTA may have the potential to provide a new way to detect
the myocardial segmental transmurality and assess myocardial
segmental viability by the gadolinium-free method.

Detection of MVO
Microvascular obstruction appears in severe microcirculation
damage caused by myocyte death, overflow of intracellular

substances, severe stasis, and occlusion of end arteries and
capillaries (7). Moreover, MVO often indicates transmural MI
and correlates with adverse remodeling and poor prognosis (52).

Ma et al. (35) applied MRTA for the detection of MVO in
68 patients with AMI. Through combination of native T1 values
and eight texture features {[histogram(Perc. 90%), GLCM [S(1,0)
Entropy, S(0,1) Correlation, S(4,0) SumVarnc, S(5,0) DifEntrp],
and wavelets (WavEnLL_s-1, WavEnLL_s-2, WavEnLL_s-3)]}
that are extracted from T1 mapping, it reached a high diagnostic
performance (AUC= 0.86) for MVO. Thus, MRTA may provide
a more accurate means for diagnosing the severity of the acute
myocardial injury.

Assessment of Scar Size Combined With

Segmentation
The extent of infarct can predict left ventricular adverse
remodeling (LVAR) and correlates negatively with prognosis (53–
55). Besides that, since the scar is a cause of arrhythmia, infarct
size is a better predictor of ventricular tachycardia than left
ventricular (LV) ejection fraction (EF) or LV volumes (56, 57).
Previous reports suggest the scar size assessed by MRI has the
potential to predict survival and mortality independent of LVEF
(58–60). Thus, segmentation of scar is a first step to explore the
internal information in the scar.

Magnetic resonance texture analysis-combined segmentation
can better provide the signal intensity features of the scar,
then to help better segment the scar and assess scar size. Kotu
et al. (36) segmented scar from normal myocardium on LGE
MRI using intensity-based TA in 22 post-MI patients. Through
maximum likelihood estimator (MLE)-based Bayes classification,
the dictionary-based texture features and dc-values were applied
to segment scarred and normal myocardium. Compared with
manual segmentation by cardiologists, TA aided with intensity
values achieved better segmentation of scar with high sensitivity
(82.32%) and specificity (89.05%), thus may be helpful to reduce
small missed infarcts that not even affect LVEF but can lead to
arrhythmic events (61–63).

Identification of Scar Heterogeneity
After MI, the necrotic tissue is gradually replaced by granulation
and fibrous tissue and finally, develops into scar tissue. The
myocardium presents heterogeneous nature owing to scarring,
and the scar tissue is complex on a histopathological level. In
addition, numerous studies have shown that the degree of scar
heterogeneity correlates directly with the risk of arrhythmia
events, thereby, better guide the implantation of an implantable
cardioverter defibrillator (ICD) (64, 65). In previous research,
the myocardial heterogeneity visualization is mainly based on
thresholds that are defined at intensity levels corresponding to
the percentage of the max intensity level in scar area (57, 66).
TA allows for quantization of patterns and relations among
pixels inside images occasionally invisible to human eyes, thus,
acquiring an additional measure of heterogeneity.

The scar can be described as two areas: (1) the core area, which
consists of fibrous tissue and the myocardial fibers which are in a
state of complete death, does not respond to the electrical signals
transmitted by the myocardium to tell the heart to contract;
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(2) the border area, also known as peri-infarct area or gray
zone area, contains heterogeneous tissue composed of necrotic
tissue mix with bundles of viable cardiomyocytes; the electrical
signals in these areas will be disturbed, which may lead to
reentry and sometimes arrhythmias (37, 39, 57). It is believed
that accurately defining and visualizing border areas may be
helpful to give insight into better risk stratification for patients
with MI. A probability mapping technique based on texture and
intensity features was proposed by Kotu et al. (37) to describe
the heterogeneity of myocardial scar in CMR images after MI.
On dictionary-based textural features, the result showed that the
pixel with larger Rp values was more likely to be the border
area of the scar but not necessarily in scar core, which may offer
an additional valuable means to identify border areas in scarred
myocardium to help predict arrhythmia events.

Some studies reveal that MRTA helps to identify arrhythmias
events for patients with previous MI. Engan et al. (38) performed
data analysis of image texture (based on GLCM) and statistical
features on 24 implanted ICD patients with myocardial scars
in CMR. Using maximum likelihood estimation (MLE)-based
Bayes classifiers, the results showed that a combination of texture
and statistical features might have potential discriminative power
between the high and low risk of severe ventricular arrhythmias
groups. Similar findings were reported by Gibbs et al. (39) who
applied MRTA by using filtration histogram technique to assess
LGE images in 76 patients with previous MI and evaluated the
characteristics of the scar heterogeneity. The average follow-
up time was 371.5 days to observe the ventricular arrhythmic
events. The results suggested that patients who are suffering
from arrhythmia presented higher kurtosis and lower skewness
compared with those suffering no arrhythmia; furthermore,
Kaplan-Meier analysis revealed that higher coarse kurtosis and
lower fine skewness possessed a particular ability to forecast the
increased incidence of ventricular arrhythmic events.

DISCUSSION

Challenges of MRTA
Despite these superiorities, extensive clinical application of
MRTA in MI remains challenging. First, most of the studies are
small sample pilot exploration in a single center, and almost
all of them are retrospective studies. The conclusions obtained
lack extensive verification support, and the clinical evidence
is not sufficient. Therefore, prospective, multicenter, and large
sample studies are needed. Second, at present, medical imaging
equipment lacks the same image acquisition and imaging
algorithm standard, and different acquisition times of the same
MRmachine and acquisition of different MRmachines can affect
the stability of radiomics features, and the reproducibility is low.
Consequently, strict protocols and standardized methodologies
should be followed to maximize the validity of future research.
Third, there are many feature parameters in TA, and the
prediction accuracy is affected by feature parameters, feature
selection methods, and classifiers. In addition, MRTA software
is manifold, and there is no evidence to show which software
is superior at present. However, 3D TA includes more spatial
information and is superior to 2D TA but applies less due to

increased complexity. Thus, more accurate and widely applicable
feature selection and pattern recognition methods will become
the development direction of MRTA.

Comparison of MRTA and CMR
In the era of big data, TA has become a research hotspot in
the field of precision medicine and AI (25). Compared with
CMR, MRTA has many advantages as follows. First, MRTA
can detect tissue changes that are not easily perceptible to
the naked eyes by quantifying gray-level patterns and pixel
interrelationships in images, thus can compensate the deficiency
of traditional image analysis methods and strengthen the
utilization value of CMR images simultaneously (10). Second,
MRTA can recognize subtle differences in textural information
and further strengthen the diagnostic, prognostic, and predictive
values of CMR imaging (67). In addition, MRTA has several
shortcomings when compared with CMR, lack of standardization
has become the main reason that limits its widespread clinical
application (68); besides, TA software needs to be purchased for
an additional fee and thus causes increased costs. Although the
development of MRTA is still at an early stage and faces many
challenges, MRTA shows good clinical application prospects in
the cardiovascular field.

Prospects
Although multiple MRTA clinical applications in MI have shown
encouraging results, some aspects are not or rarely referred to and
may become future developments.

In traditional imaging, the following factors are also related
to risk stratification and prognosis in patients with MI that
may be helpful for MRTA clinical application, for instance, (1)
hemorrhage in the core of infarct has been demonstrated as
an adverse prognostic indicator that is relevant to LVAR, large
infarct size, and increased LV end-systolic volume (69); (2)
ischemia may help to identify the individuals at high risk of non-
Fatal MI; moreover, compared with patients with no peri-infarct
ischemia, the existence of peri-infarct ischemia correlates with
a higher incidence of cardiovascular events (70); (3) the right
ventricle (RV) function evaluated late after MI is also a significant
prognostic indicator (71). In the future study,MRTA applications
in evaluating hemorrhage in the core of infarct, ischemia, and the
RV function, etc., may be of potential value for risk stratification
and prognosis prediction in MI. Besides, predicting response
to therapy and detecting complications are also a new clinical
application aspect of MRTA in MI.

In addition to the above future developments that MRTA
has potential in risk stratification and prognosis prediction in
MI, the combined application with MRTA also has a certain
prospect. First, except for the cine, mapping, and LGE, applying
MRTA to other CMR quantitative techniques, such as strain,
diffusion tensor imaging (DTI), perfusion-weighted imaging
(PWI), and intravoxel incoherent motion (IVIM), can enrich
the clinical research methods of MI. Second, MRTA combined
with other imaging techniques, such as ECG, echocardiography,
and myocardial radionuclide tomographic imaging may improve
early MI diagnosis and prognosis. Third, cTn is the most
diagnostic biochemical marker forMI, the combination ofMRTA
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and cTn will increase the understanding of the connection
between texture change and progression of MI. Fourth, the
combination of radiomics characteristics and genomic data
is described as radiogenomics (11). Gene regulation plays an
important role in the occurrence of MI and cardiac remodeling
after MI (72, 73). In the future, combinations of TA features
and genomic data may have potential clinical application
value in MI.

CONCLUSION

At present, the inferential diagnosis of MI is based on the
combination of biochemical markers, ischemic symptoms, or
ECG changes. We are entering an era of combined imaging and
clinical assessment in disease detection and diagnosis. MRTA can
detect the invisible signal changes, thus, provides an additional
non-Invasive method to establish the diagnosis, determine the
age of infarct, and stratify risk and predict prognosis in MI.

Although its current application for MI imaging faces some
challenges, MRTA shows good clinical application prospects
in MI.
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