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In this paper, systems of multivariate interval linear equations with complex interval coefficients 
are examined, and a novel linear algebra-based approach for locating all of their solutions is 
proposed. The key concept is to convert the system into a crisp polynomial system that is 
equivalent and allows for the use of the innovative computational features of Gröbner bases. 
It is possible to calculate all of the system’s precise solutions at once after an appropriate Gröbner 
basis has been determined. Design is a condition for the presence of a solution in complex interval 
linear systems. In addition, an algorithm is devised to retrieve all solutions using the eigenvalue 
approach. In addition, a proportional case is solved using the provided approach to demonstrate 
its efficiency and efficacy. The given approach can locate all solutions for linear systems with 
complex intervals. Additionally, it determines the presence or absence of a solution for the 
system. We use the aforementioned technique in the context of circuit analysis to demonstrate 
the effectiveness of the findings obtained.

1. Introduction

Linear systems resulting from engineering challenges often include uncertain values. The practice of substituting acceptable 
intervals for the unknown variables is one of the well-known strategies for overcoming this ambiguity. Uncertain quantities produce 
complex values in key issues like electrical circuits [1,2], which causes complex variables and complex intervals to develop. In the 
primary topic of this essay, we presume that the issue is described by a linear system of equations with complicated interval equations 
that may be represented by a matrix of equations. Real interval arithmetic procedures may be used to determine the solutions when 
the system’s coefficient matrix and the right-side vector are both inside the interval. An strategy for the outer interval solution of 
a parametrized linear system, for instance, was provided by Kolev et al. [3]. In relation with structural mechanics, Skalna et al. 
[4] have presented a few methods for handling interval parametric linear equations. In addition, Popova et al. [5] have proposed a 
technique for solving a set of linear equations that are parameterized. Visualizing and calculating the solutions of an interval linear 
system have been studied by Kraemer et al. [6]. Majumdar and Chakraverty [7] presented a novel method of solving an interval-form 
system of linear equations.

The aforementioned scientific articles have addressed some challenges that emerge while computing the solutions of a system of 
equations with interval coefficients. However, there are other concerns that have not been covered in these publications.
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1. The methods need to require a select initial point while it is often challenging.

2. Many approximate solutions for the system will be found.

3. There is no criterion or validation to check whether the systems have a solution.

4. The text does not provide any details on the quantity of solutions for a specific system.

5. When a system has no solution, the selected approach can be misleading.

6. Not all solutions of the systems can be simultaneously achieved.

This paper’s major concept is to use the eigenvalue approach [8] to solve the aforementioned difficult issues (for more details see 
[9–15]). To do this, each interval coefficient is given a variable. The current system is transformed into a set of polynomial equations. 
The system solutions are then created by computing a Gröbner basis and creating a few so-called multiplication matrices using the 
system’s eigenvalues.

Farahani et al. [16] employed the eigenvalue approach to effectively segregate the complex fuzzy linear system. This approach 
involves finding ways to solve of a system in a manner that is not reliant on each other. This approach employs deterministic features 
and transforms a matrix into a triangular matrix by straightforward row operations. Subsequently, Farahani et al. [17] endorsed Wu’s 
method for resolving a Fuzzy Complex System of Linear Equations (FCSLE). The Wu’s method serves as the fundamental basis for this 
technique for resolving FCSLE. Wu’s technique may be used for resolving polynomial equation systems, including characteristic sets. 
The above sets have a triangular shape, which facilitates the use of forward substitution to estimate their range. The ultimate FCSLE 
solution is achieved by implementing the solutions that were previously mentioned. Farahmand Nejad et al. [18] recently employed 
the Gröbner basis approach to solve an FCSLE. This technique converts a complicated fuzzy linear system into a more straightforward 
system, allowing the creation of new solution systems to address novel system issues. The Gröbner base has a pronounced triangular 
shape as a result of its lexicographic ordering. The solution to many polynomial systems that utilize Gröbner theory is same. Since 
the initial equation in Gröbner’s foundation involves just a single variable, it may be readily solved. Therefore, a traditional approach 
may be employed to compute the root of this variable polynomial. To get the solution to the second polynomial equation, one must 
first determine the root of the first equation and then substitute it into the bivariate polynomial equation. The project will persist as a 
substitute until all system alternatives are accessible. Solving an FCSLE results in the production of a system of univariate polynomial 
equations that has a root that is easier to locate compared to the original system.

The eigenvalue technique computes the elements of a system’s solutions separately. As a result, the computation of the following 
solutions is unaffected by the likely errors and approximations that occurred in the computation of the prior solutions. In this 
strategy, let’s assume that 𝐼 is a zero-dimensional ideal in [𝑥1, … , 𝑥𝑛]. Consequently, the quotient ring is shown by [𝑥1,…,𝑥𝑛]

𝐼
is a 

finite dimensional vector space on . For each polynomial ℎ, the matrix that represents the linear transformation described below

𝜑ℎ ∶
[𝑥1,… , 𝑥𝑛]

𝐼
→

[𝑥1,… , 𝑥𝑛]
𝐼

𝑔 + 𝐼 ↦ ℎ𝑔 + 𝐼

with relation to a basis of [𝑥1 ,…,𝑥𝑛]
𝐼

is denoted by 𝑀ℎ. The eigenvalues of 𝑀ℎ are determined by evaluating the values of ℎ at 
the solutions of the polynomial system. Specifically, assessing the polynomials ℎ = 𝑥𝑖, 𝑖 = 1, ..., 𝑛, when we look at the set of all 
solutions to the polynomial equation system, we can get the coordinates of those solutions. By using this method, the difficulty of 
solving complex interval linear systems is reduced to the task of determining and computing a matrix’s eigenvalues. Consequently, 
the matrix may be converted into a triangular matrix by the use of basic row operations, and the characteristics of the determinant 
can serve as a valuable tool in the field of linear algebra. The proposed method addresses the previously described problems, and it 
also addresses a system of 𝑛 interval linear equations in 𝑛 variables, where the right-hand sides and coefficients are both complex and 
complex interval, respectively. The primary concept behind this strategy is to convert the system into a precise polynomial system, 
leading to a system with 4𝑛 equations and 4𝑛 unknowns, from which an efficient scheme to solve systems may be used to determine 
the solution set of the novel system. As a consequence, the complicated interval linear system may be resolved using the eigenvalue 
approach. A need for the solutions’ existence is also provided.

Modeling and simulation is a well recognized scientific technique that may be used to examine a system or forecast its behavior 
prior to its actual implementation [19–23]. In electrical circuits, changes in the value of a circuit component are caused by factors 
such as the method of production, temperature fluctuations, and uncertain device characteristics. When implemented in a real-world 
scenario, the input sources and circuit components inherently possess a certain level of uncertainty. Tolerance analysis is considered 
an essential phase in the circuit design process due to the potential for considerable uncertainties to affect the performance of the 
circuit. Interval analysis simplifies the solution of system equations by representing unknown parameters of a circuit as defined 
ranges of values. In order to guarantee the accurate functioning of the circuit in specific applications, it is necessary to have complete 
knowledge of the most unfavorable impact generated by unknown system parameters. The paper presents many techniques that use 
interval analysis to analyze linear analog circuits [24–26]. In order to evaluate or solve a circuit, it is necessary to ascertain the 
voltages and currents that are passing through each individual component. The methodology proposed in this research is suitable 
and dependable for circuit analysis.

The paper is structured as follows. After an introduction, Sections 2 and 3 go into the topic of interval arithmetic and polynomial 
rings, respectively, review fundamental definitions and findings. Section 3 explains how to resolve a polynomial problem using the 
eigenvalue approach. The complex interval linear system is presented in Section 4. In Section 5, the primary method for solving 
these sorts of systems is laid out and used to resolve a numerical example. We offer some discussions, in section 7. In Section 8, the 
2

conclusion is briefly discussed.
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2. Interval arithmetic

In this part, we recall the arithmetical operations on real intervals [27]. Let ◦ ∈ {+, −, ⋅, ∕} be one of the natural algebraic 
operations, and let [𝑥] = [𝑥, 𝑥] and [𝑦] = [𝑦, 𝑦] be two real compact intervals. The corresponding operations due to the above intervals 
are characterized by

[𝑥]◦[𝑦] = {𝑥◦𝑦|𝑥 ∈ [𝑥], 𝑦 ∈ [𝑦]}, [27](1)

where, in the case of division, 0 does not belong to [𝑦].
Suppose 𝕀ℝ be the set of all bounded and closed intervals on ℝ. For [𝑥], [𝑦] ∈ 𝕀ℝ, we have [𝑥] = [𝑦] ⟺ 𝑥 = 𝑦 and 𝑥 = 𝑦. It is easy 

to prove that 𝕀ℝ is closed under addition, subtraction, multiplication and division. More importantly, we know that [𝑥]◦[𝑦] can be 
represented by only applying the bounds of [𝑥] and [𝑦]. Moreover, the algebraic operations addition, subtraction and multiplication 
are given as follows, respectively:

• + ∶ 𝕀ℝ × 𝕀ℝ → 𝕀ℝ, +([𝑥], [𝑦]) = [𝑥] + [𝑦] = [𝑥+ 𝑦, 𝑥+ 𝑦].
• − ∶ 𝕀ℝ × 𝕀ℝ → 𝕀ℝ, −([𝑥], [𝑦]) = [𝑥] − [𝑦] = [𝑥− 𝑦, 𝑥− 𝑦].
• ⋅ ∶ 𝕀ℝ × 𝕀ℝ → 𝕀ℝ, .([𝑥], [𝑦]) = [min{𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦}, max{𝑥𝑦, 𝑥𝑦, 𝑥𝑦, 𝑥𝑦}].

Every real number 𝑥 may be conceptualized as an interval number [𝑥, 𝑥] with a width of zero. In other word, if 𝑥 = 𝑥 = 𝑥, [𝑥] just 
consists of the element 𝑥, i.e., 𝑥 ≡ [𝑥, 𝑥].

Definition 2.1. ([28,29]) An interval [𝑧] that is complex is defined as

[𝑧] = [𝑥+ 𝑖𝑦, 𝑥+ 𝑖𝑦]

= {𝑥+ 𝑖𝑦 ∈ℂ|𝑥 ≤ 𝑥 ≤ 𝑥, 𝑦 ≤ 𝑦 ≤ 𝑦}.

Suppose 𝕀ℂ denote the set of all complex intervals. A complicated interval is defined in terms of its rectangular shape in Def-

inition 2.1 It should be noted that two further types of complex intervals, polar form and circle form, are addressed in [30–32]. 
Moreover, in [33] besides visualization of complex arithmetic is presented.

Similar to [34], the equation may be expressed as [𝑧] = [𝑥] + 𝑖[𝑦], where [𝑥], [𝑦] ∈ 𝕀ℝ. Moreover,

𝑧 = 𝑥+ 𝑖𝑦, 𝑧 = 𝑥+ 𝑖𝑦.

As clarified in [34], the following definition exhibits how the properties of real intervals are expandable to the complex ones.

Definition 2.2. [35] Consider two complex intervals [𝑧1] = [𝑥1] + 𝑖[𝑦1] and [𝑧2] = [𝑥2] + 𝑖[𝑦2], where [𝑥𝑗 ] = [𝑥𝑗 , 𝑥𝑗 ] and [𝑦𝑗 ] = [𝑦𝑗 , 𝑦𝑗 ], 
for 𝑗 = 1, 2. Let also 𝑐 = 𝑎 + 𝑖𝑏. Then,

[𝑧1] + [𝑧2] = ([𝑥1] + 𝑖[𝑦1]) + ([𝑥2] + 𝑖[𝑦2])

= ([𝑥1] + [𝑥2]) + 𝑖([𝑦1] + [𝑦2])

= [𝑥1 + 𝑥2, 𝑥1 + 𝑥2] + 𝑖[𝑦1 + 𝑦2, 𝑦1 + 𝑦2],

and

𝑐 ⋅ [𝑧1] = (𝑎+ 𝑖𝑏) ⋅ ([𝑥1] + 𝑖[𝑦1])

= (𝑎[𝑥1] − 𝑏[𝑦1]) + 𝑖(𝑎[𝑦1] + 𝑏[𝑥1]).

Definition 2.3. [36] A complex interval vector is the vector [𝐳] = ([𝑧1], [𝑧2], ..., [𝑧𝑛])𝑇 , where [𝑧𝑗 ] ∈ 𝕀ℂ, for 𝑗 = 1, 2, ..., 𝑛.

3. Polynomial ring and Gröbner bases

This part aims to devote the essential definitions and statements on polynomial ring and Gröbner bases. Assume that 𝑥1, … , 𝑥𝑛

are 𝑛 algebraically independent variables and  is a field. For 𝛼1, … , 𝛼𝑛 ∈ ℤ≥0 a monomial is defined by the power product 𝐱𝛼 =
𝑥

𝛼1
1 ⋯ 𝑥𝛼𝑛

𝑛 , where the sequence 𝑥1, … , 𝑥𝑛 is indicated by 𝐱 and 𝛼 = (𝛼1, … , 𝛼𝑛). Monomial orderings, which are special types of total 
orderings, may be used to arrange the whole set of monomials over . In the next definition, a total ordering is defined.

Definition 3.1. On the set of monomials over , a monomial ordering ≻ is a total ordering that applies to each monomials 𝐱𝛼, 𝐱𝛽

and 𝐱𝛾 for which the following conditions are satisfied:
3

• 𝐱𝛼 ≻ 𝐱𝛽 ⟹ 𝐱𝛾𝐱𝛼 ≻ 𝐱𝛾𝐱𝛽 ,
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• ≻ is well-ordering.

Among infinite monomial orderings so that there is one convenient for any special kind of problem, graded reverse lexicographic 
ordering ≻𝑔𝑟𝑒𝑣𝑙𝑒𝑥 is notable. Let 𝐱𝛼 and 𝐱𝛽 be monomials in [𝐱]. Then 𝐱𝛼 ≻𝑔𝑟𝑒𝑣𝑙𝑒𝑥 𝐱𝛽 if 

∑𝑛

𝑖=1 𝛼𝑖 >
∑𝑛

𝑖=1 𝛽𝑖, or if 
∑𝑛

𝑖=1 𝛼𝑖 =
∑𝑛

𝑖=1 𝛽𝑖, 
and in the difference 𝛼 − 𝛽 ∈ℤ𝑛, the rightmost non-zero entry is negative.

A polynomial 𝑓 in 𝑥1, … , 𝑥𝑛 is a finite linear combination of monomials with coefficients in the field . We will write a polynomial 
𝑓 in the form 𝑓 (𝑥1, … , 𝑥𝑛) =

∑
𝛼 𝑐𝛼𝐱𝛼, 𝑐𝛼 ∈  where the sum is over a finite number of 𝑛-tuples 𝛼 = (𝛼1, … , 𝛼𝑛). The set of all 

polynomials in 𝑥1, … , 𝑥𝑛 with coefficients in the field  has the structure of a ring under addition and multiplication for polynomials 
is mentioned to be polynomial ring and is denoted [𝑥1, … , 𝑥𝑛] or [𝐱]. Suppose  is a field and regard the polynomial ring [𝐱]. 
For any nonzero polynomial 𝑓 (𝑥1, … , 𝑥𝑛) =

∑
𝛼 𝑐𝛼𝐱𝛼 , the leading term of 𝑓 (with respect to ≺) is the product 𝑐𝛼𝐱𝛼 , where 𝐱𝛼 is 

the largest monomial appearing in 𝑓 with respect to ≺. We will use the notation 𝐿𝑇 (𝑓 ) for the leading term of 𝑓 . Moreover, if 
𝐿𝑇 (𝑓 ) = 𝑐𝐱𝛼 , then 𝐿𝐶(𝑓 ) = 𝑐 is the leading coefficient of 𝑓 and 𝐿𝑀(𝑓 ) = 𝐱𝛼 is the leading monomial of 𝑓 . Thus, when 𝐹 is the set 
of polynomials, 𝐿𝑀(𝐹 ) = {𝐿𝑀(𝑓 )|𝑓 ∈ 𝐹 } and for the ideal 𝐼 , the ideal generated by 𝐿𝑀(𝐼), denoted 𝑖𝑛(𝐼), is regarded to be the 
initial ideal of 𝐼 . In next paragraph, Gröbner basis theory briefly discussed which gives a deep insight into the ideal.

Definition 3.2. For an ideal 𝐼 ⊂ [𝐱], fix a monomial ordering. A finite set 𝐺 = {𝑔1, ..., 𝑔𝑡} ⊂ 𝐼 is said to be a Gröbner basis for 𝐼 , if 
every leading term of any element of 𝐼 is divisible by one of the 𝐿𝑇 (𝑔𝑖).

We demonstrate that any polynomial ideal in [𝐱] other than 0 has a Gröbner basis for each monomial ordering by using 
the Hilbert basis theorem [37]. A Gröbner basis may be computed from the generating set of any polynomial ideal using a method 
introduced by Bruno Buchberger in his 1965 dissertation. He provided the first method for calculating Gröbner bases. The Buchberger 
approach, developed concurrently with the concept of Gröbner basis, stands out as the most direct among all efficient algorithms, 
for calculating Gröbner bases. The Faugère 𝐹5 algorithm [38] and other signature-based algorithms like G2V [39] and GVW [40] are 
the most effective algorithms currently in use. It should be noted that a polynomial ideal’s Gröbner basis is not always exclusive. In 
order to achieve unicity, the reduced Gröbner basis notion is introduced. A noteworthy observation is that in the worst situation, the 
complexity of the methods to calculate Gröbner bases is double exponential. When the input polynomials are in linear form, this high 
degree of complexity will, nevertheless, be reduced to a polynomial class [38]. The reduced Gröbner basis for a polynomial ideal is 
distinct up to each monomial ordering, it should be noted.

Definition 3.3. The Gröbner basis 𝐺 is said to be reduced if for every 𝑔 ∈ 𝐺,

• 𝐿𝐶(𝑔) = 1 and,

• No monomial of 𝑔 appears in 𝐿𝑇 (𝐺 − {𝑔}).

The topic is then further discussed by using an example to remind the audience how the Gröbner basis may be used to solve a 
system of polynomial equations. Gröbner bases have shown to be quite valuable in the field of discovering solutions to polynomial 
problems. Consider⎧⎪⎨⎪⎩

𝑔1(𝑥1, ..., 𝑥𝑛) = 0
⋮

𝑔𝑠(𝑥1, ..., 𝑥𝑛) = 0

as a polynomial system. The set of all simultaneous solutions (𝛼1, ..., 𝛼𝑛) ∈𝑛 is said to be the affine variety defined by 𝐺 = {𝑔1, ..., 𝑔𝑠}
and is denoted by 𝐕(𝑔1, … , 𝑔𝑠) (or simply 𝐕(𝐺)). An affine variety is defined as a subset 𝑉 in 𝑛 that can be expressed as 𝑉 =
𝑉 (𝑔1, ..., 𝑔𝑠) where 𝑔𝑖 are polynomials in [𝐱].

Assume that 𝐺 is the ideal 𝐼 ’s Gröbner basis with respect to a random monomial ordering. This is noteworthy because 𝐼 = ⟨𝐺⟩, 
this signifies 𝐕(𝐼) = 𝐕(𝐺). A system of polynomial equations may have solutions found by employing this computational method. 
One is provided as follows:

Example 3.4. Suppose that

⎧⎪⎨⎪⎩
𝑥1

2 − 𝑥1𝑥2𝑥3 + 1 = 0
𝑥2

3 + 𝑥3
2 − 1 = 0

𝑥1𝑥2
2 + 𝑥3

2 = 0

The reduced Gröbner basis of the ideal 𝐼 = ⟨𝑥1
2 − 𝑥1𝑥2𝑥3 + 1, 𝑥2

3 + 𝑥3
2 − 1, 𝑥1𝑥2

2 + 𝑥3
2⟩ in 𝐐[𝑥1, 𝑥2, 𝑥3] with respect to the lexico-

graphic ordering is as follows:

𝐺 = {𝑔1(𝑥3), 𝑥1 − 𝑔2(𝑥3), 𝑥2 − 𝑔3(𝑥3)}
4

with respect to 𝑥3 ≺𝑙𝑒𝑥 𝑥2 ≺𝑙𝑒𝑥 𝑥1, where
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⎧⎪⎨⎪⎩
𝑔1(𝑥3) = 𝑥3

15 − 3𝑥3
14 + 5𝑥3

12 − 3𝑥3
10 − 𝑥3

9 − 𝑥3
8 + 4𝑥3

6 − 6𝑥3
4 + 4𝑥3

2 − 1,
𝑔2(𝑥3) = 2𝑥3

14 − 9𝑥3
13 + 11𝑥3

12 + 2𝑥3
11 − 7𝑥3

10 − 3𝑥3
9 + 2𝑥3

8 − 𝑥3
7 + 4𝑥3

6+
+7𝑥3

5 − 10𝑥3
4 − 6𝑥3

3 + 11𝑥3
2 + 2𝑥3 − 4,

𝑔3(𝑥3) = 𝑥3
13 − 3𝑥3

12 + 𝑥3
11 + 2𝑥3

10 + 𝑥3
9 − 𝑥3

8 − 2𝑥3
6 + 2𝑥3

4 − 𝑥3
3 − 3𝑥3

2 + 1.

Utilizing special form of the Gröbner basis for the original system, 𝐕(𝐺) can be found by root-finding one-variable polynomial 𝑔1(𝑥3)
then inserting the roots into the two last polynomials in 𝐺.

Theorem 3.5 ([11]). Let 𝐼 be a polynomial ideal 𝐼 and 𝐺 be a reduced Gröbner basis for 𝐼 with regard to any monomial order. 𝑉 (𝐼) will 
be empty set if 𝐺 be a singleton set with a single element {1}.

Depending on the dimension of the ideal, univariate polynomials may or may not exist. We can explain what the term “dimension 
of an ideal” means in the definition that follows.

Definition 3.6. Let 𝐼 ⊂ [𝐱] be an ideal and also 𝐮 is a set of variables, 𝐮 is an independent set concerning, 𝐼 , whenever 𝐼 ∩[𝐮] =
{0}. The cardinality of the largest independent set with respect to 𝐼 is the dimension of 𝐼 . In addition, 𝐼 is referred to as a zero-

dimensional ideal if its dimension is zero and a positive dimensional ideal in all other cases.

Zero-dimensional ideals provide significant advantages that enhance computational processes. For example, if 𝐼 be a zero-

dimensional ideal then the vector space [𝐱]∕𝐼 will be finite-dimensional. Consequently, a basis for [𝐱]∕𝐼 can be found by reading 
the leading monomials of a Gröbnr basis for 𝐼 . Moreover, the set

𝐴 =𝕄 ⧵ 𝑖𝑛(𝐼)

constructs a basis for [𝐱]∕𝐼 , where 𝕄 is the set of all monomials in [𝐱]. More precisely, to compute 𝐴 it is enough to compute 
a Gröbner basis 𝐺 at first. Next, do the operation of factoring out the monomials that are not divisible by 𝐿𝑀(𝑔) for each 𝑔 ∈ 𝐺. 
One of the key theorems proposed in this study, the following theorem, aims to characterize an important feature of a particular 
zero-dimensional ideal. It is required to consider the definition provided below before that.

Definition 3.7. Suppose 𝐼 be a zero-dimensional polynomial ideal and 𝐵 be a basis for the polynomial ring [𝐱]∕𝐼 . For every 
polynomial ℎ in [𝐱], the linear transformation 𝜑ℎ may be described as follows.

𝜑ℎ ∶ [𝐱]
𝐼

→
[𝐱]

𝐼

𝑔 + 𝐼 ↦ ℎ𝑔 + 𝐼

Furthermore, let 𝑀ℎ be the matrix representation of 𝜑ℎ concerning, for 𝐵. Then 𝑀ℎ is said to be the multiplication matrix of ℎ
concerning, for 𝐼 .

Theorem 3.8 ([37]). Using the previous notations, the eigenvalues of the multiplication matrix 𝑀ℎ represent the values of ℎ inside the set 
𝐕(𝐼).

The solutions of a zero-dimensional polynomial equations system can be determined by calculating the eigenvalues of 𝑀𝑥𝑖
for 

each variable 𝑥𝑖, as a direct result of Theorem 3.8. It should be noted that, the eigenvalues of 𝑀𝑥𝑖
are the 𝑖-th component of 𝐕(𝐽 ). 

The use of the eigenvalue method for locating zero-dimensional polynomial system solutions is shown in the following procedure.

Algorithm 1 Eigenvalue method.

Require: 𝐴 = {𝑓1, … , 𝑓𝑘} be a finite set which belongs to [𝐱]
Ensure: 𝐕(𝐹 )

𝐺 ∶= a Gröbner basis of the polynomial ideal generated by 𝐴 with regard to an arbitrary monomial ordering;

𝐵 ∶= a basis for [𝐱]∕⟨𝐴⟩;
for 𝑗 = 1, … , 𝑚 do

𝐸𝑗 ∶= the eigenvalue set of 𝑀𝑥𝑗
;

end for

𝑉 ∶= 𝐸1 ×⋯ ×𝐸𝑚 ;

for 𝑣 ∈ 𝑉 do

if 𝑓𝑖(𝑣) ≠ 0 for an 𝑖 = 1, … , 𝑘 then

𝑉 ∶= 𝑉 ⧵ {𝑣};

end if

end for

Return (𝑉 );

It should be emphasized that the eigenvalue approach is a quick and easy way for determining a zero-dimensional polynomial 
5

system’s solutions. The cartesian product of eigenvalues, which is another benefit of the solution set, makes it necessary, as stated in 
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the procedure, such that we can determine if a tuple is a solution. For illustration, the eigenvalue technique must be used to examine 
153 tuples to see whether they are part of the solution set in order to solve Example 3.4. This is why there are only 15 solutions to 
this system. As a result, the strategy outlined is useful when there are few univariates relative to the total number of variables.

The following illustrates the eigenvalue approach used to determine the actual solutions of a given polynomial problem.

Example 3.9. [16] Consider the following polynomial systems:

⎧⎪⎨⎪⎩
𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 6,
𝑥1

3 + 𝑥2
3 + 𝑥3

3 − 𝑥1𝑥2𝑥3 = −4,
𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 = −3.

Let 𝐼 be the ideal generated by the polynomial in above system. In the first step, a Gröbner basis is computed for 𝐼 with reference 
to the reverse graded lexicographic order and the basis of monomials

𝐵 = {1, 𝑥3, 𝑥2, 𝑥1, 𝑥3
2, 𝑥2𝑥3, 𝑥1𝑥3, 𝑥2

2, 𝑥3
3, 𝑥2𝑥3

2, 𝑥2
2𝑥3, 𝑥2𝑥3

3}

is obtained using the command

NormalSet(G,tdeg({x_{1}},{x_{2}},{x_{3}})).

Matrix representation of 𝜑𝑥1
is obtained using the Gröbner basis and 𝐵 as follows.

𝑀𝑥1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
−3 0 0 0 0 −1 −1 0 0 0 0 0
6 0 0 0 −1 0 0 −1 0 0 0 0
2 3

2
9
2

9
2 0 0 0 0 0 −1 0 0

−2 −9
2 − 9

2 − 9
2 0 0 0 0 0 0 0 0

0 6 0 0 0 0 0 0 −1 0 −1 0
2 9

2
3
2

9
2 0 0 0 0 0 0 −1 0

0 2 0 0 3
2

9
2

9
2 0 0 0 0 −1

0 −2 0 0 −9
2 − 9

2 − 9
2 0 0 0 0 0

27
2 0 −2 0 0 0 9

2 − 9
2 0 0 0 0

−9 −27
4 − 81

4 − 81
4 −2 0 0 0 −9

2 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Furthermore, in Maple, we can compute this matrix applying the “MultiplicationMatrix” command. Using eigenvalue 

routine “𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠”, two real eigenvalues {1, −2} are provided. Similarly, we are able to obtain the values of 𝑥2 and 𝑥3. The 
eigenvalues of 𝑀𝑥2

and 𝑀𝑥3
are {1, −2} and {1, −2}, respectively. The following solutions are derived from it:

𝑉 (𝐼) = {(1,−2,1), (1,1,−2), (−2,1,1)} .

4. Complex interval linear systems

A complex interval linear system can be described as a 𝑛 × 𝑛 system.

⎧⎪⎨⎪⎩
𝑐11[𝑧1] + 𝑐12[𝑧2] + ...+ 𝑐1𝑛[𝑧𝑛] = [𝑤1],
𝑐21[𝑧1] + 𝑐22[𝑧2] + ...+ 𝑐2𝑛[𝑧𝑛] = [𝑤2],
⋮
𝑐𝑛1[𝑧1] + 𝑐𝑛2[𝑧2] + ...+ 𝑐𝑛𝑛[𝑧𝑛] = [𝑤𝑛],

[41] (2)

where the matrix consisting of the coefficients i.e. 𝐂 = (𝑐𝑘𝑗 )𝑛×𝑛, 𝑐𝑘𝑗 = 𝑎𝑘𝑗 + 𝑖𝑏𝑘𝑗 , is an 𝑛 ×𝑛 complex-valued matrix, [𝑤𝑗 ] = [𝑢𝑗 ] + 𝑖[𝑣𝑗 ], 
1 ≤ 𝑗 ≤ 𝑛 are complex intervals, and [𝑧𝑗 ] = [𝑥𝑗 ] + 𝑖[𝑦𝑗 ], 1 ≤ 𝑗 ≤ 𝑛 are complex interval unknowns [41]. System (2) can be represented 
as

𝑛∑
𝑗=1

𝑐𝑘𝑗 [𝑧𝑗 ] = [𝑤𝑘], 𝑘 ∈ {1,2, ..., 𝑛}. [41] (3)

These equations can be represented as

𝑛∑
𝑗=1

(𝑎𝑘𝑗 + 𝑖𝑏𝑘𝑗 )([𝑥𝑗 ]+ 𝑖[𝑦𝑗 ]) = [𝑢𝑘]+ 𝑖[𝑣𝑘], [41] (4)
6

and consequently,
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𝑛∑
𝑗=1

(𝑎𝑘𝑗 [𝑥𝑗 ] − 𝑏𝑘𝑗 [𝑦𝑗 ]) + 𝑖(𝑎𝑘𝑗 [𝑦𝑗 ] + 𝑏𝑘𝑗 [𝑥𝑗 ]) = [𝑢𝑘] + 𝑖[𝑣𝑘], [41] (5)

which shows that for each 𝑘 ∈ {1, 2, ..., 𝑛},

{
𝑛∑

𝑗=1
(𝑎𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ]−𝑏𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ])}+ 𝑖{

𝑛∑
𝑗=1

(𝑎𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ]+𝑏𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ])} = [𝑢𝑘, 𝑢𝑘]+ 𝑖[𝑣𝑘, 𝑣𝑘]. [41] (6)

In order to account for both positive and negative values of 𝑎𝑘𝑗 and 𝑏𝑘𝑗 , the given equation is expressed as follows:{∑
𝑎𝑘𝑗≥0 𝑎𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ] +

∑
𝑏𝑘𝑗<0 −𝑏𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ] +

∑
𝑎𝑘𝑗<0 𝑎𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ] +

∑
𝑏𝑘𝑗≥0 −𝑏𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ]

}
+ 𝑖

{∑
𝑎𝑘𝑗≥0 𝑎𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ] +

∑
𝑏𝑘𝑗≥0 𝑏𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ] +

∑
𝑎𝑘𝑗<0 𝑎𝑘𝑗 [𝑦𝑗 , 𝑦𝑗 ] +

∑
𝑏𝑘𝑗<0 𝑏𝑘𝑗 [𝑥𝑗 , 𝑥𝑗 ]

}

= [𝑢𝑘, 𝑢𝑘] + 𝑖[𝑣𝑘, 𝑣𝑘],

[41] (7)

for 𝑘 ∈ {1, 2, ..., 𝑛}. Ultimately, System (2) may be expressed in the following manner

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢𝑘 =
∑

𝑎𝑘𝑗≥0 𝑎𝑘𝑗𝑥𝑗 +
∑

𝑏𝑘𝑗<0 −𝑏𝑘𝑗𝑦𝑗 +
∑

𝑎𝑘𝑗<0 𝑎𝑘𝑗𝑥𝑗 +
∑

𝑏𝑘𝑗≥0 −𝑏𝑘𝑗𝑦𝑗 ,

𝑢𝑘 =
∑

𝑎𝑘𝑗≥0 𝑎𝑘𝑗𝑥𝑗 +
∑

𝑏𝑘𝑗<0 −𝑏𝑘𝑗𝑦𝑗 +
∑

𝑎𝑘𝑗<0 𝑎𝑘𝑗𝑥𝑗 +
∑

𝑏𝑘𝑗≥0 −𝑏𝑘𝑗𝑦𝑗 ,

𝑣𝑘 =
∑

𝑎𝑘𝑗≥0 𝑎𝑘𝑗𝑦𝑗 +
∑

𝑏𝑘𝑗≥0 𝑏𝑘𝑗𝑥𝑗 +
∑

𝑎𝑘𝑗<0 𝑎𝑘𝑗𝑦𝑗 +
∑

𝑏𝑘𝑗<0 𝑏𝑘𝑗𝑥𝑗 ,

𝑣𝑘 =
∑

𝑎𝑘𝑗≥0 𝑎𝑘𝑗𝑦𝑗 +
∑

𝑏𝑘𝑗≥0 𝑏𝑘𝑗𝑥𝑗 +
∑

𝑎𝑘𝑗<0 𝑎𝑘𝑗𝑦𝑗 ) +
∑

𝑏𝑘𝑗<0 𝑏𝑘𝑗𝑥𝑗 .

[41] (8)

The following definition elucidates the significance of an algebraic solution for the complex interval linear system (2).

Definition 4.1. A complex interval vector [𝐳] = ([𝑧1], [𝑧2], ..., [𝑧𝑛])𝑇 , where [𝑧𝑗 ] = [𝑧𝑗 , 𝑧𝑗 ], is said to be an algebraic solution for the 
complex linear system (2) if

𝑛∑
𝑗=1

𝑐𝑘𝑗 [𝑧𝑗 ] = [𝑤𝑘], 𝑘 ∈ {1,2, ..., 𝑛}.

Theorem 4.2. The complex linear system (2) and the System (8) have the same solutions.

Proof. The proof is straightforward (see Definition 2.2).

5. The main idea

The primary concept of this study is described in this part. The system (2) may be converted into a polynomial system with 4𝑛
equations and 4𝑛 variables in the polynomial ring, as detailed in Section 4.

𝐑 =ℝ[𝑥1, 𝑥1, 𝑥2, 𝑥2, ..., 𝑥𝑛, 𝑥𝑛, 𝑦1, 𝑦1, 𝑦2, 𝑦2, ..., 𝑦𝑛, 𝑦𝑛].

Regarding the reverse graded lexical ordering, the system (8) generates an ideal, we calculate the reduced Gröbner basis 𝐺 in this 
case. The system may then be resolved using the eigenvalue approach after that (2). A test for determining if System (2) has a 
solution or not is given in the following theorem.

Theorem 5.1. System (2) has a solution if the computed Gröbner basis does not contain 1.

Proof. The solutions of the complex linear system (2) and the system (8) are identical, as stated by Theorem 4.2. Therefore, regarding 
Theorem 3.5, the sufficient and necessary condition for the absence of a solution is 𝐺 = {1}.

The followings express the resolution processes of a complex interval linear system applying the Gröbner basis with regards to 
7

the algorithm below.
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Algorithm 2 Main algorithm.

Require: The complex interval linear system (2)

Ensure: The set of solutions, i.e., 𝑆 for system (2)

[1] Convert System (2) into System (2)

[2] Calculate the Gröbner basis for the ideal given by system (8) in the ring 𝐑 using the reverse graded lexicographical ordering

[4] If 𝐺 = {1} then 𝑆 ∶= ∅ else go to 5
[5] 𝑆 ∶= 𝐸𝐼𝐺𝐸𝑁𝑉 𝐴𝐿𝑈𝐸 𝑀𝐸𝑇 𝐻𝑂𝐷 (𝐺)
[7] End

6. Numerical examples and applications

The above discussion is illuminated in the following example.

Example 6.1. Let us examine the above system, comprising of three complicated interval linear equations with three unknowns:

⎧⎪⎪⎨⎪⎪⎩

(2 + 𝑖)[𝑧1] + (2 − 𝑖)[𝑧2] + (−1 + 𝑖)[𝑧3] = [−9,−1] + 𝑖[−5,3],

(−2 + 2𝑖)[𝑧1] + (1 − 3𝑖)[𝑧2] + (3 + 𝑖)[𝑧3] = [−1,11] + 𝑖[−9,3],

(1 + 𝑖)[𝑧1] + (3 − 2𝑖)[𝑧2] + (1 + 3𝑖)[𝑧3] = [−7,4] + 𝑖[−4,7].

Let [𝑧𝑗 ] = [𝑥𝑗 ] + 𝑖[𝑦𝑗 ], where [𝑥𝑗 ] = [𝑥𝑗 , 𝑥𝑗 ] and [𝑦𝑗 ] = [𝑦𝑗 , 𝑦𝑗 ] for 𝑗 = 1, 2, 3. Using suggested method that is the contribution of 
this article, the original system can be written as the following equivalent system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(2 + 𝑖)([𝑥1, 𝑥1] + 𝑖[𝑦1, 𝑦1]) + (2 − 𝑖)([𝑥2, 𝑥2] + 𝑖[𝑦2, 𝑦2]) + (−1 + 𝑖)([𝑥3, 𝑥3] + 𝑖[𝑦3, 𝑦3])
= [−9,−1] + 𝑖[−5,3],

(−2 + 2𝑖)([𝑥1, 𝑥1] + 𝑖[𝑦1, 𝑦1]) + (1 − 3𝑖)([𝑥2, 𝑥2] + 𝑖[𝑦2, 𝑦2]) + (3 + 𝑖)([𝑥3, 𝑥3] + 𝑖[𝑦3, 𝑦3])
= [−1,11] + 𝑖[−9,3],

(1 + 𝑖)([𝑥1, 𝑥1] + 𝑖[𝑦1, 𝑦1]) + (3 − 2𝑖)([𝑥2, 𝑥2] + 𝑖[𝑦2, 𝑦2]) + (1 + 3𝑖)([𝑥3, 𝑥3] + 𝑖[𝑦3, 𝑦3])
= [−7,4] + 𝑖[−4,7].

We can rewrite the equations of the above system in the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2[𝑥1, 𝑥1] + 2[𝑥2, 𝑥2] − [𝑥3, 𝑥3] − [𝑦1, 𝑦1] + [𝑦2, 𝑦2] − [𝑦3, 𝑦3]

)
+

𝑖

(
2[𝑦1, 𝑦1] + 2[𝑦2, 𝑦2] − [𝑦3, [𝑦3] + 𝑥1, 𝑥1] − [𝑥2, 𝑥2] + [𝑥3, 𝑥3]

)
= [−9,−1] + 𝑖[−5,3],

(
− 2[𝑥1, 𝑥1] + [𝑥2, 𝑥2] + 3[𝑥3, 𝑥3] − 2[𝑦1, 𝑦1] + 3[𝑦2, 𝑦2] − [𝑦3, 𝑦3]

)
+

𝑖

(
− 2[𝑦1, 𝑦1] + [𝑦2, 𝑦2] + 3[𝑦3, 𝑦3] + 2[𝑥1, 𝑥1] − 3[𝑥2, 𝑥2] + [𝑥3, 𝑥3]

)
= [−1,11] + 𝑖[−9,3],

(
[𝑥1, 𝑥1] + 3[𝑥2, 𝑥2] + [𝑥3, 𝑥3] − [𝑦1, 𝑦1] + 2[𝑦2, 𝑦2] − 3[𝑦3, 𝑦3]

)
+

𝑖

(
[𝑦1, 𝑦1] + 3[𝑦2, 𝑦2] + [𝑦3, 𝑦3] + [𝑥1, 𝑥1] − 2[𝑥2, 𝑥2] + 3[𝑥3, 𝑥3]

)
= [−7,4] + 𝑖[−4,7].

The system mentioned above may be reformulated in the following manner:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[2𝑥1 + 2𝑥2 − 𝑥3 − 𝑦1 + 𝑦2 − 𝑦3,2𝑥1 + 2𝑥2 − 𝑥3 − 𝑦1 + 𝑦2 − 𝑦3]+
𝑖[2𝑦1 + 2𝑦2 − 𝑦3 + 𝑥1 − 𝑥2 + 𝑥3,2𝑦1 + 2𝑦2 − 𝑦3 + 𝑥1 − 𝑥2 + 𝑥3] = [−9,−1] + 𝑖[−5,3],

[−2𝑥1 + 𝑥2 + 3𝑥3 − 2𝑦1 + 3𝑦2 − 𝑦3,−2𝑥1 + 𝑥2 + 3𝑥3 − 2𝑦1 + 3𝑦2 − 𝑦3]+
𝑖[−2𝑦1 + 𝑦2 + 3𝑦3 + 2𝑥1 − 3𝑥2 + 𝑥3,−2𝑦1 + 𝑦2 + 3𝑦3 + 2𝑥1 − 3𝑥2 + 𝑥3] = [−1,11] + 𝑖[−9,3],

[𝑥1 + 3𝑥2 + 𝑥3 − 𝑦1 + 2𝑦2 − 3𝑦3, 𝑥1 + 3𝑥2 + 𝑥3 − 𝑦1 + 2𝑦2 − 3𝑦3]+
𝑖[𝑦1 + 3𝑦2 + 𝑦3 + 𝑥1 − 2𝑥2 + 3𝑥3, 𝑦1 + 3𝑦2 + 𝑦3 + 𝑥1 − 2𝑥2 + 3𝑥3] = [−7,4] + 𝑖[−4,7].
8

As seen in Section 4, the precise polynomial system may be expressed as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝑥1 + 2𝑥2 − 𝑥3 − 𝑦1 + 𝑦2 − 𝑦3 = −9,

2𝑥1 + 2𝑥2 − 𝑥3 − 𝑦1 + 𝑦2 − 𝑦3 = −1,

2𝑦1 + 2𝑦2 − 𝑦3 + 𝑥1 − 𝑥2 + 𝑥3 = −5,

2𝑦1 + 2𝑦2 − 𝑦3 + 𝑥1 − 𝑥2 + 𝑥3 = 3,

−2𝑥1 + 𝑥2 + 3𝑥3 − 2𝑦1 + 3𝑦2 − 𝑦3 = −1,

−2𝑥1 + 𝑥2 + 3𝑥3 − 2𝑦1 + 3𝑦2 − 𝑦3 = 11,

−2𝑦1 + 𝑦2 + 3𝑦3 + 2𝑥1 − 3𝑥2 + 𝑥3 = −9,

−2𝑦1 + 𝑦2 + 3𝑦3 + 2𝑥1 − 3𝑥2 + 𝑥3 = 3,

𝑥1 + 3𝑥2 + 𝑥3 − 𝑦1 + 2𝑦2 − 3𝑦3 = −7,

𝑥1 + 3𝑥2 + 𝑥3 − 𝑦1 + 2𝑦2 − 3𝑦3 = 4,

𝑦1 + 3𝑦2 + 𝑦3 + 𝑥1 − 2𝑥2 + 3𝑥3 = −4,

𝑦1 + 3𝑦2 + 𝑦3 + 𝑥1 − 2𝑥2 + 3𝑥3 = 7.

Next, the Gröbner basis for the ideal created by the polynomials in the previously given system, using the reverse graded lexico-

graphic order, is as follows:

𝐺 = {𝑥1 + 2, 𝑥1 + 1, 𝑥2, 𝑥2 − 1, 𝑥3 − 1, 𝑥3 − 2, 𝑦1, 𝑦1 − 1, 𝑦2 + 1, 𝑦2, 𝑦3, 𝑦3 − 1}.

The standard monomial basis 𝐵 = {1} is provided. Applying the monomial basis 𝐵, the eigenvalues of the matrices of 
the full multiplication operator 𝑚𝑥1

, 𝑚𝑥1
, 𝑚𝑥2

, 𝑚𝑥2
, 𝑚𝑥3

, 𝑚𝑥3
, 𝑚𝑦1

, 𝑚𝑦1
, 𝑚𝑦2

, 𝑚𝑦2
, 𝑚𝑦3

and 𝑚𝑦3
can be provided equal to 

−2, −1, 0, 1, 1, 2, 0, 1, −1, 0, 0 and 1 respectively. Ultimately, the equations associated with this basis may be resolved, yielding the 
solution for the aforementioned system as follows:

𝑧1 = [𝑥1] + 𝑖[𝑦1]

= [𝑥1, 𝑥1] + 𝑖[𝑦1, 𝑦1]

= [−2,−1] + 𝑖[0,1]

and

𝑧2 = [𝑥2] + 𝑖[𝑦2]

= [𝑥2, 𝑥2] + 𝑖[𝑦2, 𝑦2]

= [0,1] + 𝑖[−1,0]

and

𝑧3 = [𝑥3] + 𝑖[𝑦3]

= [𝑥3, 𝑥3] + 𝑖[𝑦3, 𝑦3]

= [1,2] + 𝑖[0,1].

The proposed technique is used in the following example.

Example 6.2. The circuit shown in Fig. 1 consists of two loops where the nominal values of the circuit components were shown. The 
electric components include resistance, inductance and capacitance are considered fixed quantities. However, the source voltages are 
assumed interval parameters with the nominal (center) values as 𝑉1 = 𝑗10, 𝑉2 = 4 and 𝑉3 = 1.7 + 𝑗, where 𝑗 =

√
−1.

In the absence of source tolerance, it is possible to simply calculate loop currents using the loop analysis approach. Considering 
the nominal values, the loop analysis approach yields the following system of polynomial equations:{

𝑗30𝐼1 + 55(𝐼1 − 𝐼2) + 𝑉2 − 𝑉1 = 0,
9

−𝑗20𝐼2 − 55(𝐼1 − 𝐼2) + 𝑉3 − 𝑉2 = 0
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Fig. 1. RLC circuit with interval voltage sources.

where can be represented in matrix form as(
55 + 𝑗30 −55
−55 55 − 𝑗20

)(
𝐼1
𝐼2

)
=
(

𝑉1 − 𝑉2
𝑉2 − 𝑉3

)
=
(
−4 + 𝑗10
2.3 − 𝑗

)
Therefore, the loops currents are obtained as: 𝐼1 = 3.0877 + 𝑗2.5329 and 𝐼2 = −2.0219 + 𝑗1.2918. Thus, in real condition the value of a 
voltage source varies within a tolerance interval where for the circuit depicted in Fig. 1 intervals can be assumed as: 𝑉1 = 𝑗[9.9, 10.1], 
𝑉2 = 4 and 𝑉3 = [1.53, 1.87] + 𝑗[0.9, 1.1]. Corresponding the complex interval linear system for this circuit problem can be represented 
as {

(55 + 𝑗30)[𝐼1] − 55[𝐼2] = −4 + 𝑗[9.9,10.1],
−55[𝐼1] + (55 − 𝑗20)[𝐼2] = [2.13,2.47] + 𝑗[−1.1,−0.9].

Let [𝐼𝑛] = [𝑥𝑛] + 𝑗[𝑦𝑛], where [𝑥𝑛] = [𝑥𝑛, 𝑥𝑛] and [𝑦𝑛] = [𝑦𝑛, 𝑦𝑛] for 𝑛 = 1, 2. The aforementioned technique can be written as the 
following equivalent system:

⎧⎪⎨⎪⎩
(55 + 𝑗30)([𝑥1, 𝑥1] + 𝑗[𝑦1, 𝑦1]) − 55([𝑥2, 𝑥2] + 𝑗[𝑦2, 𝑦2]) = −4 + 𝑗[9.9,10.1],

−55([𝑥1, 𝑥1] + 𝑗[𝑦1, 𝑦1]) + (55 − 𝑗20)([𝑥2, 𝑥2] + 𝑗[𝑦2, 𝑦2]) = [2.13,2.47] + 𝑗[−1.1,−0.9].

The aforementioned system may be rephrased in the following style:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
55[𝑥1, 𝑥1] − 30[𝑦1, 𝑦1] − 55[𝑥2, 𝑥2]

)
+ 𝑗

(
55[𝑦1, 𝑦1] + 30[𝑥1, 𝑥1] − 55[𝑦2, 𝑦2]

)
= −4 + 𝑗[9.9,10.1],(
−55[𝑥1, 𝑥1] + 55[𝑥2, 𝑥2] + 20[𝑦2, 𝑦2]

)
+ 𝑗

(
− 55[𝑦1, 𝑦1] + 55[𝑦2, 𝑦2] − 20[𝑥2, 𝑥2]

)
= [2.13,2.47] + 𝑗[−1.1,−0.9].

As shown in Section 4, the precise polynomial system may be expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪

55𝑥1 − 30𝑦1 − 55𝑥2 = −4,

55𝑥1 − 30𝑦1 − 55𝑥2 = −4,

55𝑦1 + 30𝑥1 − 55𝑦2 = 9.9,

55𝑦1 + 30𝑥1 − 55𝑦2 = 10.1,

−55𝑥1 + 55𝑥2 + 20𝑦2 = 2.13,

−55𝑥1 + 55𝑥2 + 20𝑦2 = 2.47,

−55𝑦1 + 55𝑦2 − 20𝑥2 − 1.1,
10

⎪⎩ −55𝑦1 + 55𝑦2 − 20𝑥2 = −0.9.
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We use Maple to calculate a Gröbner basis for the given system using the reverse graded lexicographic order. As a result, we get 
a basis consisting of monomials. Using the monomial basis the eigenvalues of the matrices of the full multiplication operator 𝑚𝑥1

, 
𝑚𝑥1

, 𝑚𝑥2
, 𝑚𝑥2

, 𝑚𝑦1
, 𝑚𝑦1

, 𝑚𝑦2
, 𝑚𝑦2

can be provided. Finally, the solution of the mentioned system is as follows:

𝐼1 = [𝑥1] + 𝑖[𝑦1]

= [𝑥1, 𝑥1] + 𝑖[𝑦1, 𝑦1]

= [0.5732004776,0.5744253449] + 𝑖[0.4351451522,0.4295311769]

and

𝐼2 = [𝑥2] + 𝑖[𝑦2]

= [𝑥2, 𝑥2] + 𝑖[𝑦2, 𝑦2]

= [0.4098007166,0.4116380171] + 𝑖[0.5592177288,0.5677999582].

7. Discussion and results

The general numerical algorithms which are designed for systems of linear and nonlinear equations work also for polynomial 
systems. The disadvantages of these approaches are as follows:

1. To follow the procedures, you must be aware that answers might be either positive or negative. The approaches will be useless 
until this is addressed.

2. Identifying an appropriate starting point for the procedures is challenging.

3. These approaches only provide a subset of the approximate answers.

4. Within the techniques, we lack specific criteria or definitive requirements to determine the presence of solutions for the systems.

5. The approaches do not provide information on the quantity of solutions for the systems. Therefore, the techniques are laborious 
and possess a significant computing burden.

6. If the systems are unsolvable, then the approaches may be deceptive.

Through the implementation of the suggested methodology, it is possible to identify all precise solutions of intricate interval linear 
systems without resorting to approximation techniques, requiring the selection of an appropriate starting point, or imposing value 
restrictions. Consequently, we may efficiently solve the system and acquire all the solutions of the system of polynomial equations, 
in a universal scenario. The suggested approach reliably merges to all solutions of the systems, assuming they exist. Moreover, a 
condition that is both essential and enough is given for the existence and uniqueness of the solution of complex interval linear 
systems. With this strategy, we are free from the aforementioned constraints.

8. Conclusion

Actual simulation of real world is the primary challenge in some engineering application fields. Simulation of actual current and 
voltage is the primary challenge in circuit analysis and design. We attempted to offer a technique based on complex intervals for 
simulating voltage and current sources, as well as complex interval current and voltage in circuit equations. Complex interval linear 
systems were developed for this method. In this paper, complicated interval linear systems are examined, and a novel linear algebra-

based approach for locating all of their solutions is proposed. Design is a condition for the presence of a solution in complicated 
interval linear systems. In addition, an algorithm is devised to retrieve all solutions using the eigenvalue approach. In addition, a 
proportional case is solved using the provided approach to demonstrate its efficiency and efficacy. The given approach can locate 
all solutions for linear systems with complex intervals. It also determines the existence of a solution for the system. The subject 
for future investigation entails the development of learning algorithms for the polynomial systems that have more generality, fully 
complex interval linear systems.
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