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Structural analysis of the human
SYCE2 – TEX12 complex provides
molecular insights into
synaptonemal complex assembly
Owen R. Davies, Joseph D. Maman and Luca Pellegrini

Department of Biochemistry, University of Cambridge, 80 Tennis Court Road,
Old Addenbrookes Site, Cambridge CB2 1GA, UK
1. Summary
The successful completion of meiosis is essential for all sexually reproducing

organisms. The synaptonemal complex (SC) is a large proteinaceous structure

that holds together homologous chromosomes during meiosis, providing the

structural framework for meiotic recombination and crossover formation.

Errors in SC formation are associated with infertility, recurrent miscarriage

and aneuploidy. The current lack of molecular information about the dynamic

process of SC assembly severely restricts our understanding of its function in

meiosis. Here, we provide the first biochemical and structural analysis of an

SC protein component and propose a structural basis for its function in SC

assembly. We show that human SC proteins SYCE2 and TEX12 form a

highly stable, constitutive complex, and define the regions responsible for

their homotypic and heterotypic interactions. Biophysical analysis reveals that

the SYCE2–TEX12 complex is an equimolar hetero-octamer, formed from the

association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy

shows that biochemically reconstituted SYCE2–TEX12 complexes assemble

spontaneously into filamentous structures that resemble the known physical

features of the SC central element (CE). Our findings can be combined with

existing biological data in a model of chromosome synapsis driven by growth

of SYCE2–TEX12 higher-order structures within the CE of the SC.
2. Introduction
Human fertility and genetic diversity depend on the successful execution of the

genetic programme of meiosis. At the physical and functional centre of meiosis is

the synaptonemal complex (SC), an enigmatic proteinaceous superstructure that

holds together homologous chromosome pairs, providing the structural frame-

work within which meiotic recombination and crossover formation occur

[1–5]. The SC is essential for the successful completion of meiotic cell division:

its disruption in mice leads to complete meiotic failure and resultant infertility

[6–10], and its defective function in humans is associated with infertility and

recurrent pregnancy loss (affecting 15% and 5% of couples, respectively), in

addition to non-lethal aneuploidies such as Down’s syndrome [1,6,11,12].

Initially discovered in crayfish spermatocytes [13], the SC has since been

observed in a wide range of sexually reproducing organisms, from humans

to yeast [14,15]. In all cases, it adopts a remarkably conserved tripartite

ribbon-like structure that holds homologous chromosomes together along

their entire length. This tripartite structure consists of lateral elements (LEs)

running along each chromosome axis, a central element (CE) along the
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Figure 1. Physical features and protein constituents of the synaptonemal complex. (a) Schematic of a synapsed homologous chromosome pair, with electron
micrograph of the mouse synaptonemal complex in which central element (CE), lateral element (LE) and transverse filaments (TF) are labelled. The inset electron
micrograph image is reproduced from Kouznetsova et al. [10] under the Creative Commons Attribution Licence. (b) Schematic of the mammalian synaptonemal
complex; SYCP1 molecules are orientated according to current models with N-terminal regions in the CE, C-terminal regions in the LE and central regions forming
the TF. The LE contains SYCP2 and SYCP3, whereas the CE contains SYCE1, SYCE2, SYCE3 and TEX12. (c) Yeast two-hybrid (Y2H) analysis of human SC protein
interactions. Y187[ pGBKT7-bait] strains were mated with Y2HGold[ pGADT7-target] strains, plated on SD/-Ade/-His/-Leu/-Trp/Aba/X-a-Gal plates and then
transferred to filters for visualization. Positive reactions depend on activation of the four independent reporter genes: ADE1, HIS3, AUR-1C and MEL1. These data are
representative of three repeats.
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midline and an array of juxtaposed transverse filaments

(TFs) that bridge between LEs by interdigitating—much

like the teeth of the ‘zipper’—within the CE [2,16–18]

(figure 1a). In addition to the overall structure, the
dimensions of the SC are also well conserved: the central

region (comprising TFs and CEs) typically spans 100 nm,

whereas LEs and CEs have widths of approximately 50

and 20–40 nm, respectively [14,15].
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Assembly and disassembly of the SC are timely events

within meiotic prophase I. SC assembly follows the induction

of 200–400 double-strand breaks (DSBs) per cell that, through

homology searching, establish local alignments between hom-

ologous chromosomes [3,6,17,18]. Short tracts of LEs begin to

form along chromosome arms and are brought into 400 nm

apposition at local alignments. Synapsis of homologous

chromosomes nucleates at these sites by bringing LEs into

100 nm apposition and is extended by growth of the CE and

TF array along the chromosome axis. SC assembly thus con-

verts local alignments into fully synapsed homologous

chromosome pairs. Its three-dimensional architecture further

provides the necessary structural framework for completion

of meiotic recombination, resulting in DSB resolution and

crossover formation [11]. Once accomplished, the SC is disas-

sembled, leaving crossovers as the sole physical links between

homologous chromosomes during metaphase I [1–3].

Over the past two decades, seven essential protein con-

stituents of the mammalian SC have been identified [19–25];

all contain predicted a-helical structure, and some contain

putative coiled-coils. On the basis of immunofluorescence

and immunogold electron microscopy studies, a rudimentary

protein map of the SC has been formulated (figure 1b). TFs

are formed by SYCP1, an elongated protein containing a

large central region of predicted coiled-coil with flanking N-

and C-terminal domains [21,26]. The N-terminal domain is

located within the CE, wherein it is closely associated with

CE proteins SYCE1, SYCE2, SYCE3 and TEX12 [23–27],

whereas the C-terminal domain localizes to the LE, wherein

it contacts LE proteins SYCP2 and SYCP3 [16,22,26–28].

Deficiency of each known SC protein abrogates synapsis,

DSB resolution and crossover formation, resulting in complete

male/female infertility for SYCP1 and CE proteins, and a

sexual dimorphism of male infertility and female subfertility

for LE proteins [6–9,25,29,30].

An apparent dichotomy has emerged between CE pro-

teins. SYCE1 and SYCE3 co-localize in a continuous pattern

identical to that of SYCP1, and their disruption leads to com-

plete failure of tripartite structure formation [23–25].

By contrast, SYCE2 and TEX12 co-localize in a distinct punc-

tate pattern (although this may reflect antibody properties

rather than the underlying protein distribution) and their

disruption leads to synaptic failure, albeit with the presence

of short stretches of close associations that contain CE-

like structure [7,9,23]. Furthermore, SYCE2 and TEX12

co-immunoprecipitate from mouse testis lysate [23]. These

findings have led to the suggestion that SYCE1 and SYCE3

function in the initiation of synapsis, whereas SYCE2 and

TEX12 function in its extension [4,7,9,25].

Since its discovery over 60 years ago and the recognition

of its critical role in meiosis, the accumulating wealth of bio-

logical evidence has led to tentative models of SC assembly

and disassembly [31–35], and to suggestions of functional

roles in mediating recombination, crossover formation and

late interference [8,18,36,37]. However, the absence of any

detailed biochemical and structural information about the

SC and the physical organization of its constituent proteins

hampers rational attempts to test current models of SC func-

tion, and consequently our understanding of its role in

meiosis remains rudimentary. In order to provide a molecu-

lar basis of SC function, we have embarked upon the

biochemical and structural characterization of purified,

recombinant SC proteins.
Here, we describe the reconstitution and biophysical

characterization of a stable, constitutive complex between

human CE proteins SYCE2 and TEX12. The first biochemical

and structural analysis of an essential SC protein component

provides molecular insight into assembly of the human SC.
3. Material and methods
3.1. Yeast two-hybrid
Sequences corresponding to human SYCP1 (1–811), SYCP2

(1399–1530 and 1358–1530), SYCP3 (1–236), SYCE1 (1–315,

1–144 and 141–269), SYCE2 (1–218 and 57–165) and TEX12

(1–123 and 49–123) were cloned into pGBKT7 and pGADT7

vectors (Clontech). Yeast two-hybrid (Y2H) analysis was per-

formed using the Matchmaker Gold Y2H system (Clontech),

with protocols based on the manufacturer’s instructions.

pGBKT7 and pGADT7 vectors were transformed into yeast

strains Y187 and Y2H Gold, respectively, according to a stan-

dard PEG/ssDNA/LiAc procedure. Y187[pGBKT7-bait]

strains were mated with Y2H Gold[pGADT7-target] strains

by mixing single colonies of each in 0.5 ml 2xYPDA and incu-

bating at 308C, 50 r.p.m. for 24 h. Cultures were then diluted 1

in 10 using 0.5xYPDA; 100 ml was plated onto SD/-Leu/-Trp

to select for mated colonies, and a further 100 ml was plated

onto SD/-Ade/-His/-Leu/-Trp containing aureobasidin A

(AbA) and X-a-Gal to select for mated colonies with activation

of ADE1, HIS3, AUR-1C and MEL1 reporter genes. Plates were

incubated at 308C for 5 days. Colonies were lifted onto filters

(Whatman No. 5, 70 mm) that were dried, scanned and

displayed aligned against a black background.

3.2. Recombinant protein expression
For co-expression, sequences corresponding to human SYCE2

(1–218, 57–165, 57–88 and 88–165) with N-terminal MBP-tag

and TEX12 (1–123, 24–123, 45–123, 49–123 and 87–123)

or SYCE2 (1–218) with N-terminal His-tag (both linkers con-

taining tobacco etch virus (TEV) protease cleavage

sequences) were cloned into the two open reading frames of

pRSFDuet-1 (Novagen). For separate expression, sequences

corresponding to SYCE2 (1–218, 57–165, 57–88 and 88–165)

or TEX12 (1–123, 24–123, 45–123, 49–123 and 87–123) with

N-terminal MBP- or His-tags were cloned into pMAT11 and

pHAT4 vectors, respectively [38]. All constructs were

expressed in Rosetta 2 (DE3) cells (Novagen), in 2xYT media,

induced with 0.5 mM IPTG for 16 h at 258C. In the text,

usage of the protein names, SYCE2 and TEX12, relates to the

full-length sequences, unless stated otherwise, in which case

construct boundaries are provided in subscript.

3.3. Purification of SYCE2 – TEX12 protein complexes
MBP–SYCE2572165 was co-expressed with His–TEX12 or His–

TEX1249–123 (described earlier). Fusion protein complexes were

co-purified from clarified lysate by sequential affinity chromato-

graphy using Ni–NTA resin (Qiagen) and amylose resin (NEB);

cleaved protein complexes were eluted from the latter column

through incubation with TEV protease (Invitrogen). Further

purification was achieved through anion-exchange chromato-

graphy using a Resource Q 6 ml column (GE Healthcare).

Protein complexes were eluted from the Resource Q column
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in 20 mM Tris pH 8.0, 145 mM KCl, 2 mM DTT, at concen-

trations of 2–5 mg ml21. All biophysical assays were

performed using freshly prepared material. Protein samples

were analysed by SDS–PAGE using the NuPAGE Novex

Bis–Tris system (Invitrogen), with Coomassie staining per-

formed using SimplyBlue SafeStain (Invitrogen). Densitometry

was performed using IMAGEJ [39]. Protein concentrations were

determined by UV spectrophotometry (Varian Cary 50 spectro-

photometer), with extinction coefficients and molecular weights

calculated by PROTPARAM (http://web.expasy.org/protparam/).

Edman degradation analysis of SYCE257–165–TEX12 solution

samples was performed by the Protein and Nucleic Acid Facil-

ity (Department of Biochemistry, University of Cambridge).

3.4. Circular dichroism spectroscopy
Circular dichroism (CD) data were collected using an Aviv

410 spectropolarimeter (Biophysics facility, Department of

Biochemistry, University of Cambridge). Protein complexes

SYCE257 – 165–TEX12 and SYCE257 – 165–TEX1249 – 123 were

analysed at 0.20 and 0.22 mg ml21, respectively, in 10 mM

NaH2PO4 pH 7.5, 150 mM NaF, using a 1 mm path-length

quartz cuvette, with 1 nm slit width and 1 s averaging time.

CD spectra were recorded at 48C (between 260 and 185 nm)

with 0.5 nm increments; for each sample, raw data from

three measurements were averaged, corrected for buffer

signal, smoothed and then converted into mean residue ellip-

ticity ([u]). Deconvolution was performed using the CDSSTR

algorithm [40] on the DichroWeb server (http://dichroweb.

cryst.bbk.ac.uk) [41]. CD temperature melt data were

recorded at 222 nm, for 18C increments between 58C and

958C, with 18C per minute ramping rate, 0.58C deadband,

30 s incubation time, 1 nm slit width and 1 s averaging

time. Raw data were converted to mean residue ellipticity

([u]222) using standard equations.

3.5. Analytical ultracentrifugation
Sedimentation velocity experiments were performed using a

Beckman XL-A analytical ultracentrifuge (Biophysics facility,

Department of Biochemistry, University of Cambridge).

Protein complexes SYCE257 – 165–TEX12 and SYCE257 – 165–

TEX1249 – 123 were analysed at 57 and 289 mM, respectively,

in 20 mM Tris pH 8.0, 145 mM KCl, 2 mM DTT. Sedimen-

tation velocity experiments were performed at 30 000 r.p.m,

208C, with absorbance data at 285 nm recorded across cell

radii at 0.003 cm intervals, at 3.2 min time intervals, over a

total period of 320 min. Protein and buffer parameters were

calculated using SEDNTERP, and data were analysed

through direct boundary modelling to a continuous c(S) dis-

tribution of Lamm equation solutions using SEDFIT [42].

3.6. Size-exclusion chromatography – multi-angle light
scattering

Absolute molar masses of proteins were determined through

size-exclusion chromatography multi-angle light scattering

(SEC–MALS). Protein samples (100 ml; 1–5 mg ml21) were

loaded onto a Superdex 200 10/300 GL SEC column (GE

Healthcare) in 20 mM Tris pH 8.0, 150 mM KCl, 2 mM

DTT, at 0.5 ml min21 using an ÄKTA Purifier (GE Health-

care). The column output was fed into a DAWN HELEOS
II MALS detector (Wyatt Technology), in which light scat-

tered from a polarized laser source of 664 nm is detected by

eight fixed angle detectors, followed by an Optilab T-rEX

differential refractometer (Wyatt Technology), which

measures absolute and differential refractive index using a

664 nm LED light source at 258C. Data were collected and

analysed using ASTRA 6 software (Wyatt Technology). Molecu-

lar masses were calculated across eluted protein peaks

through extrapolation from Zimm plots using a dn/dc
value of 0.1850 ml g21; quoted molecular weights and esti-

mated errors relate to the overall mass calculation across a

single peak.

3.7. Amylose affinity pulldown assay
MBP-fusion SYCE2 constructs were co-expressed with His-

tagged TEX12 or SYCE2 constructs (described earlier). For

each condition, 1 l cultures were grown, and cells were resus-

pended in 25 ml of 20 mM Tris pH 8.0, 500 mM KCl, 2 mM

DTT, lysed by sonication, clarified by high-speed centrifu-

gation and incubated with 4 ml of amylose resin (NEB) for

1 h at 48C. After thorough washing, bound complexes were

eluted in 10 ml of 20 mM Tris pH 8.0, 150 mM KCl, 30 mM

D-maltose, 2 mM DTT. Total protein concentrations were

equalized to 3 mg ml21 through dilution or concentration

(Millipore Amicon Ultra-4) as appropriate, and analysed by

SDS–PAGE (described earlier). This purification method

was also used in the preparation of individually expressed

MBP–SYCE2 and MBP–TEX12 fusion proteins for analysis

by SEC–MALS.

3.8. Electron microscopy
Electron microscopy analysis was performed using an FEI

Philips CM100 transmission electron microscope (Multi Ima-

ging Unit, University of Cambridge). Protein samples at

100 mM were applied to transmission electron microscopy

carbon-coated grids, and negative staining was performing

using 0.1 per cent (v/v) uranyl acetate.

3.9. Protein sequences and analysis
Protein sequences were extracted from UniProtKB; multiple

sequence alignments were performed using MUSCLE (EBI)

and were displayed using JALVIEW v. 2.0 (www.jalview.

org) [43]. Secondary structure predictions were performed

using JNET (http://www.compbio.dundee.ac.uk/www-jpred/),

PSIPRED v. 3.0 (http://bioinf.cs.ucl.ac.uk/psipred/), PORTER

(http://distill.ucd.ie/porter/) and SOPMA (http://npsa-pbil.

ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html).
4. Results
4.1. Identification of a constitutive SYCE2 – TEX12

complex
Given the apparent intricacy of the molecular architecture of

the SC, we reasoned that SC proteins might exist in constitu-

tive multi-component complexes. We thus set out to identify

interactions between human SC proteins that would facilitate

their biochemical and structural analysis. This was achieved

by a yeast Y2H grid screen of human SC components using

http://web.expasy.org/protparam/
http://web.expasy.org/protparam/
http://dichroweb.cryst.bbk.ac.uk
http://dichroweb.cryst.bbk.ac.uk
http://dichroweb.cryst.bbk.ac.uk
http://www.jalview.org
http://www.jalview.org
http://www.compbio.dundee.ac.uk/www-jpred/
http://www.compbio.dundee.ac.uk/www-jpred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
http://distill.ucd.ie/porter/
http://distill.ucd.ie/porter/
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
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the Matchmaker Gold Y2H system, in which positive inter-

actions are determined by the activation of the four

independent reporter genes ADE1, HIS3, AUR-1C and

MEL1. This revealed self-association of SYCP1, SYCP2,

SYCP3, SYCE1 and TEX12, consistent with previous reports

[21,23,24,30,32], and a robust interaction between CE proteins

SYCE2 and TEX12 that was detected in both directions

(figure 1c). We did not identify other heterotypic SC protein

interactions. This may be due to their non-binary nature,

the high stringency nature of this screen (designed to identify

only strong interactions), or steric interference of the Y2H

fusion proteins. Complex formation between SYCE2 and

TEX12 is entirely consistent with previous reports of their

co-localization, co-immunoprecipitation and the phenotypic

similarity of their individual knockouts [7,9,23]. Accordingly,

we decided to focus our efforts on the putative

SYCE2–TEX12 interaction.

Sequence analysis of SYCE2 reveals that this 218 amino

acid protein consists of a central evolutionarily conserved

domain of three predicted a-helices, the first of which

forms a putative coiled-coil (at confidence level greater than

90%), flanked by divergent, unstructured N- and C-terminal

extensions (see figure 2a; electronic supplementary material,

figure S1). TEX12 is a highly conserved 123 amino acid

protein, containing three predicted a-helices in its central

and C-terminal regions, with a divergent N-terminus (see

figure 2a; electronic supplementary material, figure S2).

Expression and purification of individual SYCE2 and

TEX12 only allowed for recovery of small amounts of

material after removal of affinity tags, which was unsuitable

for biophysical analysis. By contrast, SYCE2 and TEX12 co-

expression conferred a large increase in the solubility and

stability of both protein components. In the case of the full-

length protein complex, removal of affinity tags revealed con-

siderable degradation of SYCE2. As the N- and C-terminal

extensions of SYCE2 are divergent or absent in other species

(see electronic supplementary material, figure S1), and are

dispensable for interaction with TEX12 (figure 1c), we co-

expressed TEX12 with the central conserved region of

SYCE2, spanning residues 57–165. This eliminated degra-

dation, enabling the purification of an SYCE2–TEX12

complex suitable for biophysical analysis. Co-purification of

SYCE257 – 165 and TEX12 over three distinct chromatography

steps (figure 2b) and further co-elution in size-exclusion

chromatography (figure 2c) confirmed the presence of a

strong association between SYCE2 and TEX12. Indeed, we

could not identify a non-denaturing biochemical condition

in which the SYCE2–TEX12 complex is disrupted. We thus

conclude that their interaction is both highly stable and con-

stitutive. Furthermore, SDS–PAGE band densitometry

(figure 2d ) and Edman degradation analysis (data not

shown) of the purified SYCE257 – 165–TEX12 complex indicate

that it is equimolar.

We further prepared an SYCE257–165–TEX1249–123 complex

in which the natively unstructured N-terminal region of TEX12

that is dispensable for interaction with SYCE2 (figure 1c) was

deleted. The SYCE257–165–TEX1249–123 complex was purified

in an identical manner to SYCE257–165–TEX12, showed

comparable stability (figure 2e) and was confirmed to be

equimolar through Coomassie-stained SDS–PAGE band densi-

tometry (figure 2f ). Our biochemical analysis thus confirms

that CE proteins SYCE2 and TEX12 form a constitutive

equimolar complex.
4.2. High helical content and thermal stability of
the SYCE2 – TEX12 complex

As the first stage of structural characterization, we assessed

secondary structure composition of SYCE2–TEX12 by CD

spectroscopy (figure 3a). Far UV spectra of SYCE257–165–

TEX12 showed the presence of 65 per cent a-helical content

(153 helical residues), remarkably close to its predicted a-heli-

cal content of 64 per cent (150 helical residues). CD analysis of

the SYCE257–165–TEX1249–123 complex showed an increase in

relative a-helical content to 82 per cent (157 helical residues)

with concomitant reduction in unordered signal. These data

confirm that the N-terminal region of TEX12 is unstructured,

validating our subsequent use of SYCE257–165–TEX1249–123

in structural analysis, and demonstrate high helical content

within the central region of SYCE2 and the central and

C-terminal regions of TEX12.

We assessed the thermal stability of the SYCE2–TEX12

complex by measuring the a-helical signature ellipticity at

222 nm over the temperature range 5–958C (figure 3b).

SYCE257 – 165–TEX12 showed a reversible linear decline in

ellipticity (i.e. typical of a-helical fraying [44]) up to 658C,

with irreversible cooperative unfolding beyond this point.

Similar data were obtained for SYCE257 – 165–TEX1249 – 123,

albeit with irreversible conformation change and subsequent

unfolding occurring at the slightly lower temperature of

558C. The considerable resistance to thermal denaturation

confirmed the high conformational stability of the

SYCE2–TEX12 complex.
4.3. The SYCE2 – TEX12 complex is a hetero-octamer
We next set out to determine the oligomeric status of the

SYCE2–TEX12 complex. Analytical ultracentrifugation

(AUC) sedimentation velocity data for SYCE257 – 165–TEX12

were fitted to a continuous c(S) distribution, resulting in a

single skewed peak of sedimentation coefficient 4.53 S,

with fitted frictional ratio 1.92 and estimated molecular

weight 118 kDa (figure 4a). As we have previously deter-

mined the complex to be equimolar, the AUC analysis is

most consistent with a hetero-octameric assembly formed

by four chains each of SYCE2 and TEX12, corresponding to

a theoretical molecular weight of 109 kDa. The skewed

peak and slight disparity between estimated and theoretical

molecular weights are likely due to the unstructured

N-terminal region of TEX12. AUC analysis of SYCE257–165–

TEX1249–123 showed a single symmetrical peak of 4.38 S,

with fitted frictional ratio 1.65 and estimated molecular

weight 89.9 kDa (figure 4b), closely matching an equimolar

hetero-octamer size of 89.0 kDa. Reduction in frictional

ratio confirms the flexible unstructured nature of the TEX12

N-terminus, and a frictional ratio of 1.65 for SYCE257–165–

TEX1249–123 indicates significant asymmetry within this

central core, suggesting that the complex adopts an extended

rather than a globular conformation.

To confirm the size of the SYCE2–TEX12 complex, we

employed SEC–MALS, in which native molecular weights

are determined absolutely, overcoming the ambiguity of fric-

tional ratio fitting in AUC. SYCE257 – 165–TEX12 eluted in a

majority peak of molecular weight 110 kDa (figure 4c), with

some high molecular weight aggregation, whereas

SYCE257 – 165–TEX1249 – 123 eluted in a single peak of
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Figure 2. Identification of a constitutive equimolar complex between central element proteins SYCE2 and TEX12. (a) Schematic of human SYCE2 and TEX12 protein
sequences. The central region of SYCE2 (residues 60 – 165) shows evolutionary conservation; a-helical structure is predicted for residues 66 – 83 (a1), 87 – 140 (a2)
and 143 – 160 (a3), and the coiled-coil (CC) formation is predicted for residues 60 – 87. The central and C-terminal region of TEX12 (residues 24 – 123) show
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59.5% and 40.5% of the total signal, closely matching their theoretical equimolar mass percentages of 59.1% and 40.9%, respectively.
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molecular weight 89 kDa (figure 4d ). Thus, the molecular

weights determined by SEC–MALS match closely the theor-

etical sizes of 109 and 89 kDa for equimolar hetero-octameric

assemblies of SYCE257 – 165–TEX12 and SYCE257 – 165–

TEX1249 – 123, respectively.
4.4. SYCE2 is a constitutive tetramer that multimerizes
via its central a2 – 3 region

The realization that interaction of SYCE2 and TEX12 leads to

an octameric assembly raises the question of their oligomeric

status in the absence of the protein partner. As production of

isolated recombinant SYCE2 and TEX12 proved difficult, we

resorted to the use of MBP-fusion tags in order to improve

solubility and stability. SEC–MALS analysis of MBP–

SYCE2 fusion protein (see figure 5a; electronic supplementary

material, figure S3a) revealed a single peak of molecular

weight 274 kDa, consistent with an MBP–SYCE2 tetramer

of theoretical molecular weight 278 kDa. These findings

were confirmed by a SEC–MALS analysis of His-tagged

SYCE2 (see figure 5b; electronic supplementary material,

figure S3b) that, despite significant instability and
aggregation of the sample, indicated a molecular weight of

126 kDa, against a theoretical tetramer size of 115 kDa. We

thus conclude that SYCE2 exists as a tetramer in solution.

We note that SYCE2 self-association was not detected by

Y2H (figure 1c); this may be due to the lack of dynamic

exchange between the two populations of SYCE2

complexes upon yeast mating, or steric interference of Y2H

fusion proteins.

To explore the molecular determinants of SYCE2 tetra-

merization, we dissected the SYCE2 sequence on the basis

of the three predicted a-helices within its central evolutiona-

rily conserved domain. As an MBP-fusion protein, the a1

region of SYCE2 (amino acids 57–88) proved highly stable,

and was determined by SEC–MALS to have a molecular

weight of 48.7 kDa (figure 5c; electronic supplementary

material, figure S3c,d ), precisely matching its theoretical

monomer size. We could not obtain SEC–MALS data for

MBP-fusion proteins corresponding to the a1–3 (amino

acids 57–165) and a2–3 (amino acids 88–65) regions of

SYCE2, presumably owing to their instability in the absence

of TEX12 (data not shown). To overcome this, we assessed

the ability of MBP–SYCE2 fusion constructs to self-associate

with His–SYCE2 by amylose pull-down following
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c(S) distributions in the range 1 – 15 S (bottom panels). (a) SYCE257 – 165 – TEX12 data were fitted with a r.m.s. deviation of 0.0118, showing a mean sedimentation
coefficient of 4.53 S, best fit frictional ratio ( f/f0) of 1.92 and calculated mean molecular weight of 118 kDa. Interpreted species account for 77.5% of total. Its theoretical
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co-expression in bacteria (figure 5d ). Pull-down experiments

revealed His–SYCE2 binding to full-length, a1–3 and a2–3

regions of SYCE2, but not to its a1 region. These data confirm

self-association of full-length and central a1–3 region of

SYCE2, and further demonstrate that while the N-terminal

a1 region is monomeric, the central a2–3 region is sufficient

for oligomerization (figure 5e,f ).
4.5. TEX12 is a constitutive dimer that self-associates
via its central a1 – 2 region

We next assessed the oligomer status of isolated TEX12. As

for SYCE2, it proved necessary to express and purify TEX12

as an MBP-fusion protein (see electronic supplementary

material, figure S3e) in order to obtain recombinant protein

suitable for biophysical analysis. SEC–MALS revealed a
single peak of molecular weight 110 kDa (figure 6a),

consistent with an MBP–TEX12 homodimer (its theoretical

homodimer size is 118 kDa). The molecular determinants of

dimerization were explored by a SEC–MALS analysis of a

series of MBP-fusion proteins in which the N-terminus of

TEX12 was progressively truncated (see figure 6b–d;

electronic supplementary material, figure S3e). Dimerization

was retained for MBP-fusion constructs TEX1224 – 123 and

TEX1249 – 123 that contain the three predicted helices of the

evolutionarily conserved domain, a1–3 (observed molecular

weights of 107 and 102 kDa, respectively, and theoretical

dimer sizes of 113 and 108 kDa). Thus, self-association of

TEX12 is maintained in the SYCE257 – 165–TEX1249 – 123 com-

plex. However, deletion of the a1–2 region abrogated

dimerization, as the MBP–TEX1287 – 123 construct containing

only the C-terminal a3 region had a molecular weight of

49.9 kDa (theoretical monomer size of 49.5 kDa). We
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Figure 5. SYCE2 undergoes tetramerization through its central a2 – 3 region. (a – c) SEC – MALS analysis of MBP – SYCE2 fusion proteins; light scattering (LS) and
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conclude that TEX12 dimerizes via its central a1–2

region (figure 6e,f ).
4.6. A molecular model for the SYCE2 – TEX12
hetero-octamer

As a further step in the analysis of the SYCE2–TEX12 complex,

we investigated the molecular determinants of the SYCE2–

TEX12 interaction by amylose pull-down of bacterial extracts
containing over-expressed MBP–SYCE2 and His–TEX12

constructs. First, we assessed TEX12 binding by SYCE2

(figure 7a). His–TEX12 binding was detected for full-length,

a1–3 and a1 regions of SYCE2, but not for its a2–3 region.

Thus, the N-terminal a1 region of SYCE2 spanning residues

57–88 is necessary and sufficient for interaction with TEX12.

Interestingly, despite being monomeric in solution, SYCE257–88

contains a predicted coiled-coil, suggesting that the

SYCE2–TEX12 interaction may take the form of a heterotypic

coiled-coil. These data suggest a modular structure for SYCE2,
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with mutually independent functions pertaining to the N-term-

inala1 region that binds TEX12, and the central a2–3 region that

is responsible for tetramerization (figure 7e).
We next assessed SYCE2-binding by TEX12. Interactions

with MBP–SYCE2 and MBP–SYCE257–165 were detected for

all N-terminal truncations of TEX12 down to and including its

a3 region alone (figure 7b,c), indicating that the C-terminal a3

region of TEX12 spanning amino acids 87–123 is necessary

and sufficient for interaction with SYCE2. Thus, TEX12 structure

contains mutually independent functional modules as observed

for SYCE2, with a central a1–2 region that mediates dimeriza-

tion, and a C-terminal a3 region responsible for SYCE2

binding (figure 7e). Interactions with MBP–SYCE257–88 were

further detected for all N-terminal truncations of TEX12 down
to and including its a3 region alone (figure 7d), but not for

the N-terminal or a1–2 regions of TEX12 (see electronic

supplementary material, figure S4), confirming a direct inter-

action between the N-terminal a1 region of SYCE2 and the

C-terminal a3 region of TEX12. Interestingly, the stabilizing

effect conferred by TEX12 onto MBP–SYCE2 (as assessed by

proteolytic degradation of the fusion protein) is substantially

diminished for the a3 region of TEX12 (figure 7b,c), suggesting

that stabilization is dependent on TEX12 dimerization.

On the basis of these findings, we propose a molecular

model for SYCE2–TEX12 hetero-octamer formation in

which an SYCE2 tetramer binds two TEX12 dimers through

1 : 1 interactions between N-terminal a1 regions of SYCE2

and C-terminal a3 regions of TEX12 (figure 7f,g).
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structure of SYCE2 and TEX12 proteins. (g) Model of the SYCE2 – TEX12 hetero-octamer: an SYCE2 tetramer binds two TEX12 dimers through constitutive 1 : 1
interactions between the a1 region of SYCE2 and a3 region of TEX12.
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4.7. Higher-order structure formation of SYCE2 – TEX12
The observation that SYCE2 and TEX12 associate constitu-

tively in a hetero-octameric assembly raises the question of

the biological role of the SYCE2–TEX12 interaction in SC

function. As SYCE2 and TEX12 co-localize to the same
molecular network that extends throughout the CE, we

decided to investigate whether the SYCE2–TEX12 complex

could self-associate in large supramolecular structures of

comparable size to the known physical dimensions of the

SC. Electron microscopy analysis of SYCE257 – 165–TEX12

and SYCE257 – 165–TEX1249 – 123 complexes revealed their
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rsob.royalsocietypublishing.org
Open

Biol2:120099

12
concentration-dependent assembly into extended, filamen-

tous structures that are approximately 40 nm wide and

range in length from 300 nm to 1 mm (figure 8a,b). The

dimensions of the filaments resemble those of the CE

within the SC [14,15], raising the possibility that the

SYCE2–TEX12 filaments might represent structural com-

ponents of the CE. To relate this to our solution studies of

SYCE2–TEX12, while the majority species observed were

hetero-octamers, a minority of higher-order species were

observed, the proportion and size of which were irreversibly

increased by protein concentration (data not shown). It is sen-

sible to envisage that assembly of SYCE2–TEX12 complexes

into higher-order filamentous structures within the CE

might be a dynamic process driven by low-affinity
interactions between SYCE2–TEX12 complexes, in contrast

to the high-affinity, constitutive interactions that hold

together the SYCE2–TEX12 hetero-octamer (figure 8c).
5. Discussion
Since its discovery in 1956, the tripartite structure of the SC

has become recognized as a physical hallmark of meiosis.

However, despite its essential role in meiotic cell division,

the molecular structure, mechanism of assembly and function

of the SC remain largely unknown. One of the principal

challenges of studying the SC at the molecular level is the dif-

ficulty in producing recombinant versions of the SC proteins,
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which has precluded so far their biochemical and structural

analysis. Here, we have overcome this problem by defining

a stable and constitutive complex between CE proteins

SYCE2 and TEX12, as an equimolar hetero-octamer, resulting

from the constitutive interaction of one SYCE2 tetramer with

two TEX12 dimers. The assembly of SYCE2–TEX12 hetero-

octamers into higher-order structures suggests a possible

architectural role of the complex in CE structure.

The constitutive nature of the SYCE2–TEX12 interaction

is consistent with their co-localization pattern and co-immu-

noprecipitation, as well as the similar phenotype of

synaptic failure induced by their individual disruption [7–

9,23–25]. It is likely that the SYCE2–TEX12 hetero-octamers

form immediately upon expression in meiotic cells and that

they constitute the dynamic form that is transported to

chromosomes for SC assembly. The realization that SYCE2

and TEX12 associate spontaneously into hetero-oligomers

raises the question of whether other SC protein components

exist in constitutive complexes. Clear candidates are SYCE1

and SYCE3, which, similar to SYCE2 and TEX12, have a

shared functional role and localization pattern within the

CE [8,24,25].

A molecular model of the SYCE2–TEX12 hetero-octamer

was constructed from biophysical and pull-down analyses of

protein truncations (figure 7f,g). SYCE2 and TEX12 share a

modular structure in which both proteins contain distinct

self-association and heterotypic interaction sites. SYCE2

undergoes tetramerization through its central a2–3 region,

whereas TEX12 dimerizes through its central a1–2 region.

Heterotypic association is mediated by the N-terminal a1

region of SYCE2 and the C-terminal a3 region of TEX12,

possibly through coiled-coil formation. Thus, assembly of

the SYCE2–TEX12 hetero-octamer results from four 1 : 1

interactions between an SYCE2 tetramer and two TEX12

dimers. The strong reciprocal affinity of SYCE2 and

TEX12, and high stability of the resulting complex, indicates

a large degree of reciprocal stabilization of the two

protein partners.

The regular filamentous appearance of the higher-order

structures formed by SYCE2–TEX12 complexes that extend

to micrometre scale suggest that they might represent ‘bona

fide’ architectural components of the CE. Given the high asym-

metry of the SYCE2–TEX12 hetero-octamer, we postulate that

the long dimension of the complex constitutes the width of the

higher-order structures and that formation of extended fila-

ments occurs by lateral associations of hetero-octamers

(figure 8c). As the large majority of the SYCE2–TEX12 complex

exists in solution as individual hetero-octamers, lateral associ-

ations are probably low-affinity and dependent on high protein

concentrations of the complex. These weak associations

between SYCE2–TEX12 hetero-octamers may exert consider-

able cooperativity, creating a stable higher-order structure.

Within the cell, the formation of such structures might be

induced by high local concentration of the complex at
the developing SC and may be further stabilized by specific

interactions with other SC proteins.

To assess the potential role of SYCE2–TEX12 higher-

order structures within the CE, we refer to previous electron

microscopy three-dimensional reconstruction studies of the

SC central region. In insects, the CE has well-defined,

ladder-like structures, provided by pairs of stacked pillars

orientated perpendicular to the axis, which are connected

vertically, transversely and longitudinally by fibrous bridges

[45–47]. The mammalian CE is, by contrast, far more amor-

phous; nevertheless, putative transverse and longitudinal

components have been reported [45,46]. The filamentous

nature of SYCE2–TEX12 higher-order structures is most con-

sistent with a role as longitudinal CE components that extend

synapsis in recurrent discrete steps along the chromosome

axis. This is in agreement with the observed failure of exten-

sion, but retention of synaptic initiation, upon disruption of

SYCE2 or TEX12 in meiotic cells [7,9], and provides molecu-

lar explanation for their distinct punctate staining pattern

along the length of the SC [23,24].

Our findings can be combined with existing biological data

in a model for SC assembly. At sites of initiation, growth of

SYCE2–TEX12 filaments may extend the CE, in synchrony

with concomitant extension of the SYCP1 TF array. Full synap-

sis of homologous chromosomes may be achieved through

repeated episodes of initiation and extension of SYCE2–

TEX12 filaments, resulting in concurrent, reciprocal stabiliz-

ation of the CE and the flanking arrays of TFs. While it

remains unknown how SYCE2–TEX12 complexes associate

with TFs, possibilities include direct interactions with SYCP1

or indirect interactions mediated by synaptic initiation proteins

such as SYCE1 and SYCE3 [23–25]. To extend the familiar ana-

logy of the SC as a ‘zipper’, if SYCP1 molecules are the teeth,

SYCE2–TEX12 seemingly acts as the slider, pulling the teeth

together from initiation sites and extending synapsis along

the entire chromosome axis.

As a complete catalogue of protein factors important for

SC assembly and functions emerges from biological studies,

it will become increasingly possible to attempt the partial

or complete biochemical reconstitution of the process of SC

assembly that takes place during meiosis. An important out-

come of this work is the demonstration that biochemical and

biophysical studies of SC proteins are both feasible and

necessary in order to understand the molecular basis of

SC function.
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