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Abstract
Recently, the classical rough set has been extended in many ways. However, some of them are based on binary relations which 
only excavate “one step” information to distinguish objects. The “one step” in the binary relation means that the ordered pair 
of the starting and end points of the step belongs to the relation. Faced with some complex data sets, the “one step” informa-
tion may be not feasible. Motivated by the notion of bisimulation in computer science, three types of bisimulation-based 
generalized fuzzy variable precision rough set (BGFVPRS) models are constructed. Different from many existed rough set 
models which are based on binary relations, the BGFVPRS models can distinguish objects by excavating the “multi-step” 
information of underlying relations. The related properties and relationships of BGFVPRS models are investigated. The 
uncertainty measure of BGFVPRS models and the reduction of fuzzy bisimulations are also discussed. Furthermore, learn-
ing from the PROMETHEE II method and combining it with our presented BGFVPRS models, a novel multiple-attribute 
decision-making method is provided. This method can effectively deal with complex problems including attribute data and 
relational data. The flexibility and effectiveness of our decision-making method are illustrated by comparative analysis and 
sensitivity analysis in the Zachary karate club network.

Keywords  Multi-attribute decision-making · Bisimulation · PROMETHEE II method · Relational data · Fuzzy variable 
precision rough set · Fuzzy logical operator

1  Introduction

Multi-attribute decision-making (MADM) methods are 
well-known decision-making methods that aim to select the 
best alternative from the ranking order for all alternatives 
under the multiple attributes data tables. With the increas-
ing complexity of the research problem, decision-makers 
(DMs) have to consider the relational data among the stud-
ied objects. For example, during the outbreak of a novel 
coronavirus, experts must consider whether people infected 
with the virus come into contact with others. In this case, 
some popular MADM methods only considering the attrib-
ute data seem unavailable. In view of this, an approach based 
on the generalized fuzzy variable precision rough set models 
with fuzzy bisimulations is presented in this paper. In the 

following, the development of MADM methods and the clas-
sical rough set (RS) model is briefly reviewed, respectively.

The MADM methods are widely used in many fields, 
such as investment decision-making and project evalua-
tion. The essence of MADM method in [16] is that using 
the existing decision-making information to sort a group 
of (finite) schemes or select the optimal object in a certain 
way. It consists of two parts: obtaining decision information; 
gathering decision information in a certain way, and ranking 
the alternatives and selecting the best alternative. In [3, 19, 
31, 33, 34, 45], many MADM methods are provided. The 
outranking approaches are a widely used class of MADM 
methods. These approaches are taken to identify whether the 
alternatives under consideration are preferable, neutral, or 
incomparable with attributes than other alternatives.

It is well known that ELECTRE [49, 59] and PRO-
METHEE [6, 29] methods are two main methods of out-
ranking approaches. The PROMETHEE method, as a new 
sorting method in multi-attribute analysis, is stable, simple, 
and clear. Brans [6] first introduced the concept of PRO-
METHEE. Hereafter, many scholars developed it in many 
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ways [4, 8]. The PROMETHEE I and PROMETHEE II 
methods are two versions of the PROMETHEE method. 
Through a comparison between them, PROMETHEE II 
method gets a complete ranking of all alternatives while 
PROMETHEE I obtains a partial sort of all alternatives. 
Then PROMETHEE II method [51] has been widely applied 
in practical applications. Because of the complexity of the 
environment in real life, the data tends to be vague or impre-
cise. It is hard to calculate or rank directly by means of the 
classical PROMETHEE II method based on the crisp sets 
for dealing with the vague or imprecise data. In addition, 
combining the ideas of fuzzy set theory (FST) [61] and the 
classical PROMETHEE II method [5], scholars have pro-
posed some fuzzy PROMETHEE II methods [28, 51, 57, 66] 
to solve complex problems with vague information or impre-
cise data. A study on the applications of some MADM meth-
ods (such as PROMETHEE II method) shows that they may 
not be enough to solve the complicated problems involving 
relational data. For example, these MADM methods in [6, 
20, 59, 63, 64] seem invalid for solving social network prob-
lems. The reason is that they only consider the attribute data 
and ignore the relational data between objects.

Figure 1 shows the development of the RS model. For 
effectively extracting useful information and making a clear 
decision from much uncertain knowledge in information sys-
tems, the RS model was early put forward by Pawlak [40]. 
Although this model can handle many uncertain problems 
well, it is hindered by some shortcomings in the develop-
ment process. For example, the equivalence relation of RS 
model is too idealistic to be applied in real life. Because 
most of the relations in real life are general, they cannot 
always meet the harsh conditions of equivalence relations. 
At present, RS model is developed from the aspects of uni-
verse, equivalence relation, intersection and union, division 

and so on. The equivalence relations are extended to many 
forms such as neighborhood relations [32, 53, 55, 58], tol-
erance relations [18, 26, 43], similarity relations [1, 44], 
and even arbitrary binary relations [48, 54]. Based on the 
extensions of equivalence relations, some generalized RS 
models were born in [62–65]. On the foundation of the pre-
decessor or successor neighborhoods, Yao [55] discussed the 
significant properties of the lower and upper approximations. 
Based on the similarity relations, two definitions of rough 
approximations were compared in [41]. In a relational struc-
ture, Fan [14] considered three key concepts of indiscern-
ibility: congruence, bisimulation, and exact equivalence. By 
these indiscernibility relations, she also investigated rough 
approximations and knowledge reduction. Concerning a 
fuzzy relational structure, Du and Zhu took the bisimulation 
in [36] as indiscernibility and constructed a pair of fuzzy 
approximation operators in [12]. Zhu et al. pointed out that 
many generalized rough approximations which are on the 
basis of binary relations, only rely on “one step” information 
of potential relations in [68]. The “ one step” information 
could be not effective for discerning objects in some com-
plex environments. Inspired by the concept of bisimulation, 
they put forward a generalized rough set based on bisimula-
tion (GRSB). Subsequently, Du and Zhu [13] focused on the 
labeled fuzzy approximation space and took the bisimulation 
into consideration, and they provided a new pair of approxi-
mation operators in the fuzzy rough set based on the largest 
fuzzy bisimulation (FRSLFB).

A large number of researches on existed RS models find 
that some of them are sensitive to misclassification and 
perturbations. In order to make up this defect, the variable 
precision rough set (VPRS) in [35, 69] was proposed. Since 
then, many researchers have expanded the VPRS models 
and applied them in many complicated areas. The measure, 
which the VPRS is based on, can be written as the form of 
the conditional probabilities in a decision-theoretic rough 
set (DTRS) [56]. In this time, the VPRS is an exception to 
DTRS. The VPRS has been further studied under the fuzzy 
environment, and some achievements have been made. 
Combining the fuzzy rough set (FRS) [46] and VPRS [69], 
a powerful tool named fuzzy variable precision rough set 
(FVPRS) was constructed in [67]. It cannot only deal with 
numerical data but also is insensitive to misclassification and 
disturbance. In 2020, Zhan et al. [62] modified Ma’s fuzzy 
neighborhood operator and proposed a novel �-neighbor-
hood operator that satisfies the reflexivity. Based on their 
defined neighborhood operator, a covering-based variable 
precision fuzzy rough set (CVPFRS) was presented. Mean-
while, Jiang et al. [22] presented a new type of CVPFRS 
models by means of fuzzy neighborhoods and applied it in 
the context of medical diagnosis.

From the above discussions, combing the ideas of bisimu-
lation and VPRS models, some types of bisimulations-based Fig. 1   A simple introduction about the development of RS models



2315International Journal of Machine Learning and Cybernetics (2022) 13:2313–2344	

1 3

generalized fuzzy variable precision rough set (BGFVPRS) 
models are constructed in the paper. Considering PRO-
METHEE II method and on the basis of BGFVPRS models, 
we hope to design a decision-making method for solving 
some complicated problems including not only the attribute 
data (or relational data) but also the mixed data including 
both the attribute data and relational data.

Next, the motivations of the paper are briefly introduced 
as follows.

•	 The classical PROMETHEE methods (including PRO-
METHEE I and PROMETHEE II) [5, 6] aim at deal-
ing with the problems which only include the attribute 
data. However, they are invalid for solving the problems 
which contain relational data. For example, faced with 
the social network analysis problems, the classical PRO-
METHEE II method may be infeasible. In view of this, 
motivated by the idea of the PROMETHEE II method, an 
approach is constructed for settling these complex prob-
lems.

•	 Through observations, some MADM methods in [20, 
62–64, 66] based on the extension of RS are effective 
for the multiple-attribute problems. However, faced 
with the problems involving relational data, they may be 
impossible to make a feasible decision, or even choose an 
optimal object. For this reason, a novel decision-making 
method based on BGFVPRS models and PROMETHEE 
II method is provided.

•	 On the basis of bisimulations relations, some approxima-
tion operators were constructed in [12–14]. It is worth 
noting that these models are only deeply studied in the-
ory, and rarely studied in application. Inspired by this, 
based on our proposed BGFVPRS models, we hope to 
put forward an approach and apply it in real life.

•	 Some extended rough set models based on bisimulation 
[14, 68] and other generalized rough set models are sen-
sitive to disturbance or misclassification, and no errors 
are allowed. To enrich the theoretical research of the 
RS models and apply it in wider field, three types of 
BGFVPRS models are raised. These models are combing 
the VPRS models, FRS models, and bisimulations that 
can help DMs extract “multi-step” information.

•	 Because of the different requirements of different DMs 
during different periods, the decision-making method is 
required to have high flexibility. Through the research of 
some algorithms, we find that they cannot change flex-
ibly with the change of DMs’ preferences. Then, it forces 
us to search for a flexible decision-making method to 
help DMs make a clear decision. DMs can adopt differ-
ent fuzzy logical operators, negator operators, and vari-
able precision values, according to the actual situation 
and their preferences. It also shows the flexibility of our 
decision-making method.

Furthermore, the main contribution of the paper is shown 
as follows.

•	 Our proposed BGFVPRS models can depend on the 
“multi-step” information of underlying relationship and 
can be applied in the complex environment including 
complex databases.

•	 By adopting different fuzzy logic operators and changing 
the value of � , the decision-making method proposed in 
the paper can help DMs make a clear decision according 
to the actual situation and their own preferences.

•	 Compared with many existing RS models, the BGFVPRS 
models can be used as a powerful tool. They can solve 
the relational data or mixed data which contains rela-
tional data and attribute data. Besides, they are less sensi-
tive for misclassification and disturbance.

•	 The method based on BGFVPRS models extends the 
application range of some classical MADM methods, 
such as the classical PROMETHEE II method which 
is ineffective for social network analysis and other rela-
tional data issues.

The remainder of the paper is as follows. Some correlated 
preliminary concepts are given in Sect. 2. Section 3 defines 
three types of BGFVPRS models and investigates the rela-
tionships among these models and some existing RS models. 
Besides, this section also discusses the related properties 
of BGFVPRS models. In Sect. 4, the uncertainty measure 
of BGFVPRS models and the reduction of fuzzy bisimula-
tions are put forward. Section 5 gives a decision-making 
method based on the BGFVPRS models and the principle 
of PROMETHEE II. Through an example of selecting the 
best alternative in Zachary karate club network, from the 
comparative analysis and sensitivity analysis, the flexibility 
and effectiveness of our raised method are illustrated. In 
Sect. 6, a conclusion of our work is made and some further 
researches are given.

2 � Preliminary

Some related preliminary concepts and properties of fuzzy 
logical operators, fuzzy relations, and fuzzy bisimulations 
are briefly introduced in this section.

2.1 � Fuzzy logical operators

In the paper, S denotes the universe of the discourse, F(S) 
represents the set of all fuzzy sets, and 𝛾̂ indicates a constant 
fuzzy set in which 𝛾̂(a) = 𝛾 for each a ∈ S , 𝛾̂ ∈ F(S) and 
� ∈ [0, 1] . Without special explanation, S is finite.

Firstly, some significant fuzzy logical operators in [41] 
and the related properties of them are introduced as follows.



2316	 International Journal of Machine Learning and Cybernetics (2022) 13:2313–2344

1 3

Definition 1  [41] If a mapping T ∶ [0, 1] × [0, 1] → [0, 1] 
satisfies the following conditions: 

(1)	 T(�1,�2) = T(�2,�1);

(2)	 T(T(�1,�2),�3) = T(�1, T(�2,�3));

(3)	 if �1 ≤ �3,�2 ≤ �4, then T(�1,�2) ≤ T(�3,�4);

(4)	 T(1,�1) = �1;

for all �1,�2,�3,�4 ∈ [0, 1], then T is named as a t-norm on 
[0, 1]. Three widely known continuous t-norms are the min 
operator TM , the algebraic product TP and the ̌ukasiewicz 
t-norm TL where TM(�1,�2) = �1 ∧ �2 , TP(�1,�2) = �1 ⋅ �2 
and TL(�1,�2) = 0 ∨ (�1 + �2 − 1) for each �1,�2 ∈ [0, 1].

Definition 2  [41] Let a mapping � ∶ [0, 1] × [0, 1] → [0, 1]. 
If � satisfies the following conditions: 

(1)	 �(�1,�2) = �(�2,�1);

(2)	 �(�(�1,�2),�3) = �(�1,�(�2,�3));

(3)	 if �1 ≤ �3,�2 ≤ �4, then �(�1,�2) ≤ �(�3,�4);

(4)	 �(0,�1) = �1;

for any �1,�2,�3,�4 ∈ [0, 1], then � is called an S-norm on 
[0, 1].

The three most popular S-norms are the standard max oper-
ator �M , the probabilistic sum �P and the bounded sum �L 
where �M(�1,�2) = �1 ∨ �2 , �P(�1,�2) = �1 + �2 − �1 ⋅ �2 , 
and �L(�1,�2) = 1 ∧ (�1 + �2) for each �1,�2 ∈ [0, 1]. It is 
worth noting that when T-norm and S-norm are two con-
tinuous functions on [0, 1], they are called the continuous 
T-norm and continuous S-norm, respectively.

Definition 3  [41] Suppose that N ∶ [0, 1] × [0, 1] ⟶ [0, 1] 
is a decreasing mapping. If N  meets the condition that 
N(1) = 0 and N(0) = 1, then it is a negator operator. 
For each �1 ∈ [0, 1], N  is a standard negator operator if 
N(�1) = 1 − �1. In the following, Ns is used to represent 
the standard negator operator. Furthermore, N  is involutive 
when N(N(�1)) = �1.

In the paper, using symbol coN  denotes the fuzzy com-
plement. In other words, coN(K)(ti) = N(K(ti)) for each 
K ∈ F(S), ti ∈ S.

D e f i n i t i o n  4   [ 4 1 ]  G i v e n  a  m a p p i n g 
I ∶ [0, 1] × [0, 1] ⟶ [0, 1], if I contents the requirement that 
I(0, 0) = I(0, 1) = I(1, 1) = 1 as well as I(1, 0) = 0, then it is 
referred as a fuzzy implicator operator.

A border implicator is an implicator I if it satisfies 
I(1,�1) = �1, for each �1 ∈ [0, 1]. For any �1 ∈ [0, 1], if 
implicator I meets that I(⋅,�1) is decreasing (resp. I(�1, ⋅) is 
increasing), I is left monotonic (resp. right monotonic). An 

implicator I is hybrid monotonic if it is both left monotonic 
and right monotonic.

Three most popular fuzzy implicators are R-implicator, 
S-implicator and QL-implicator in [41]. An R-implicator I 
based on a continuous t-norm T iff for each �1,�2 ∈ [0, 1], 
I(�1,�2) = sup{� ∈ [0, 1] ∶ T(�1, �) ≤ �2}. An S-implicator 
I based on � and N  iff I(�1,�2) = �(N(�1),�2) for every 
�1,�2 ∈ [0, 1]. A QL-implicator I based on T, � and N  iff 
for each �1,�2 ∈ [0, 1], I(�1,�2) = �(N(�1), T(�1,�2)).

2.2 � Fuzzy relations

In this section, some important concepts and properties of 
fuzzy relations are introduced. Firstly, we show the concept 
of a binary fuzzy relation and the corresponding properties. 
A binary relation is a subset of S × S where S × S is the 
product set of S and S. The binary fuzzy relation is the natu-
ral extension of the binary relation. Compared with binary 
relation, the application of binary fuzzy relation is wider. 
With the help of binary fuzzy relation, some problems in a 
fuzzy environment can be solved well.

Definition 5  [24, 39] A binary fuzzy relation is a mapping 
� : S × S ⟶ [0, 1]. The binary fuzzy relation is called: 

(1)	 reflexive if for each ti ∈ S,�(ti, ti) = 1;

(2)	 symmetric if for each ti, tj ∈ S,�(ti, tj) = �(tj, ti);

(3)	 T - t r a n s i t i v e  i f  f o r  e a c h 
ti, tj, tk ∈ S,T(�(ti, tk),�(tk, tj)) ≤ �(ti, tj).

For each t, z ∈ S, when �(t, z) = 1 or �(t, z) = 0, the 
binary fuzzy relation is a binary relation. In other words, the 
binary relation is a special case of the binary fuzzy relation. 
In Definition 5, the � is a T-similarity relation if it satisfies 
the conditions (1), (2), and (3). If T=∧ and � satisfies the 
condition (3), then � is transitive. In this case, if � meets 
the above three conditions, � is a fuzzy equivalence relation.

The n-ary fuzzy relation is a natural extension of the 
binary fuzzy relation. A fuzzy set S1 × S2 ×⋯ × Sn is 
named as n-ary fuzzy relation between S1, S2,… , Sn. If 
S1 = S2 = ⋯ = Sn = S, S1 × S2 ×⋯ × Sn is an n-ary fuzzy 
relation on a set S. For simplicity, the set of all n-ary fuzzy 
relation on S is denoted by Sn. In the paper, the n-ary fuzzy 
relation is called the fuzzy relation.

In [9, 25], the composition of binary fuzzy relations is 
given. For non-empty sets S1, S2, S3 and two binary fuzzy 
relations �1 ∈ F(S1 × S2), �2 ∈ F(S2 × S3), their composi-
tion �1◦�2 is a binary fuzzy relation from F(S1 × S3) defined 
by (𝜑1◦𝜑2)(a, c) =

⋁

b∈S2

𝜑1(a, b)⊗𝜑2(b, c), where ⊗ (called 

multiplication) is applied to model the conjunction. Subse-
quently, the composition of n-ary fuzzy relations is provided. 
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Assume that �1 is a (h1 + h)-ary fuzzy relation and �2 is a 
(h + h2)-ary fuzzy relation where �1 ∈ S(h1+h) and 
�2 ∈ S(h+h2). Then, the h-composition of �1 and �2 is a 
(h1 + h2)-ary fuzzy relation defined as:

for each (�, �) ∈ Sh1+h2 where � = (a1, a2,… , ah1 ) and 
� = (c1, c2,… , ch2 ). Especially, if h=1, the subscript is omit-
ted and the formula is written as �1◦�2.

2.3 � Fuzzy bisimulations

Before the introduction of fuzzy bisimulation, we firstly 
bring into the concept of bisimulation. The fuzzy-language 
equivalence is a tool to compare the behavior of fuzzy sys-
tems. However, at this level, the comparison is too coarse. 
By means of this tool, the behavior of some fuzzy systems 
cannot be compared well. In view of this, bisimulation as 
a finer behavior measure has been introduced in fuzzy-
finite automata. Cao et al. [7] considered this bisimulation 
for general fuzzy systems and obtained some results which 
are useful to compare the behavior of these systems. In the 
following, the concept of bisimulation defined in [68] is 
introduced.

Definition 6  [68] Assume that (S,R) is a generalized approx-
imation space. A binary relation B ⊆ S × S is called a bisim-
ulation if for all (z,w) ∈ B

(1)	 (z, z�) ∈ R implies that (w,w�) ∈ R for some w ∈ S with 
(z�,w�) ∈ B,

(2)	 (w,w�) ∈ R implies that (z, z�) ∈ R for some w� ∈ S with 
(z�,w�) ∈ B.

If B is a bisimulation and (z,w) ∈ B, then states z and w 
are bisimilar, denoted by z ∼ w. In this paper, the relation ∼ 
is named as bisimilarity.

A bisimulation is a binary relation between discrete event 
systems. It relates systems with the same behavior. That is, 
one system simulates another, and vice versa. Intuitively, if 
the actions of the two systems match, they are bisimilar. In 
order to understand this relation well, an example is given 
as follows.

Example 1  Figure 2 represents a generalized approxima-
tion space where S = {s1, s2, s3, s4, t1, t2, t3} and the solid 
arrows represent the relation R. Assume that a binary rela-
tion R1 = {(s2, t2), (s4, t3)}. From the Fig. 2, we can find that 
when the state s2 moves one step, then the state t2 moves one 
step. Similarly, when the state t2 moves one step, the state s2 

(𝜓1◦h𝜓2)(�, �) =
⋁

�=(b1,b2,…,bh)∈S
h

𝜓1(�, �)⊗𝜓2(�, �),

also moves one step. After moving one step, the subsequent 
states of s2 and t2 are s4 and t3 , respectively. In this time, 
(s4, t3) ∈ R1. Furthermore, state s4 stops when state t3 stops, 
and vice versa. Then, the relation R1 is called a bisimulation.

Compared with some binary relations which only obtain 
“one step” information, the bisimulation can excavate 
“multi-step” information. It is worth noting that the “one 
step” information could be not effective for discerning 
objects in some complex environments. In the following, an 
example is given to illustrate this. This example is adapted 
from [68].

Example 2  Assume that two reactive systems as two black 
boxes with one red button each, shown as Fig. 3. Through 
pressing the buttons, the interaction between persons and 
black boxes has been done. Sometimes the red button goes 
down, and sometimes it does not. The button going down 
means the persons succeed while the button not going down 
means the persons don’t succeed. By this way, the difference 
between the two black boxes can be told. Assume that the 
button of the first black box can successively go down two 
times from its initial state and after that, it does not continue; 
for the second one, it can always go down. The right state 
transition graph in Fig. 3 shows their behaviors.

Fig. 2   The generalized approximation space (S,R)

Fig. 3   Two black boxes and their behaviors
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Given a generalized approximation space (S,R) where 
S = {a, b, c, d}, R = {(a, b), (b, c), (d, d)}. Assume that the 
successor neighborhood Rs(z) = {w ∈ S ∣ (z,w) ∈ R} of 
z. Furthermore, let us approximate a concept W = {a, d}. 
Using the approximation operators based on the successor 
neighborhoods, we have that

It is known to us that the basic idea of rough set is that using 
a pair precise concept to describe the incomplete or inexact 
concepts. Through our research, the four states are different 
from one another. For example, in state a the left red button 
can successively go down two times, while in state d the 
right red button can only go down one time. Therefore, each 
state should be regarded as a granule of knowledge. In view 
of this, approximating the concept W by the union of two 
knowledge granules {a} and {d} i.e., {a, d} is much better 
than using {d} and {d}.

But, considering the approximations based on bisimilarity 
∼ which is the largest bisimulation, we have that:

In this case, by the basic idea of rough set, we should using 
{a, d} to describe the concept W. Through the comparison 
between the two rough models, we find that the results of 
the second model does follow our intuition. This shows that 
the bisimulation plays an important role in some situations.

However, the bisimulation just can distinguish whether 
two states belong to bisimulation relation. If the relation 
between states is vague or fuzzy, it seems infeasible. Then, 
extending this relation in a fuzzy environment is necessary. 
In the following, a concept of fuzzy bisimulation which is 
the natural extension of bisimulation is given.

According to [14], a fuzzy relational structure is a binary 
tuple (S, (Ri)i∈Λ) where S is a universe, Λ is an index set 
and Ri is a fuzzy relation on S . Based on this structure, the 
concept of fuzzy bisimulation is defined as follows.

Definition 7  [12] Assume that (S, (Ri)i∈Λ) is a fuzzy rela-
tional structure. A binary fuzzy relation � is referred to as 
a fuzzy bisimulation on S , for every (Ri)i∈Λ if it meets the 
following conditions: 

(1)	 𝜓−◦Ri ⊆ Ri◦𝜓
−,

(2)	 𝜓◦Ri ⊆ Ri◦𝜓 ,

apr
Rs

(W) = {z ∈ S ∣ Rs(z) ⊆ W} = {d},

aprRs
(W) = {z ∈ S ∣ Rs(z) ∩W ≠ �} = {d}.

∼= {(a, a), (b, b), (c, c), (d, d)}, [t]
∼
= {y ∈ S ∣ (t, y) ∈∼},

apr
∼
(W) = {t ∈ S ∣ [t]

∼
⊆ W} = {a, d},

apr
∼
(W) = {t ∈ S ∣ [t]

∼
∩W ≠ �} = {a, d}.

	   where �− is the reverse of the fuzzy relation � . For 
each s1, s2 ∈ S, �−(s1, s2) = �(s2, s1).

Note that if a fuzzy bisimulation � satisfies the condition 
(1) in Definition 5, it is a reflexive fuzzy bisimulation. If � 
meets the condition (2) in Definition 5, � is called a symmet-
ric fuzzy bisimulation. When � fits the condition (3) in Defi-
nition 5, � is a T-transitive fuzzy bisimulation. Especially, 
if � meets the conditions (1), (2), and (3) in Definition 5, � 
is a fuzzy T-similarity bisimulation relation. Similarly, if � 
is reflective, symmetric, and transitive, it is a fuzzy equiva-
lence bisimulation relation. The largest bisimulation [36] is 
an equivalence relation which is a special fuzzy equivalence 
bisimulation relation.

For better understand the concept of the fuzzy bisimula-
tion, an example is given as follows.

Example 3  Let (S,R1 ∪ R2) be a fuzzy relational structure 
and ⊗ = ∧. Here S = {t0, t1} and R1 =

0.5

(t0,t0)
+

0.5

(t1,t0)
 and 

R2 =
0.8

(t0,t0,t1)
+

0.6

(t0,t1,t1)
+

0.5

(t1,t0,t0)
+

0.5

(t1,t1,t0)
 . Assume that a 

binary fuzzy relation � =
1

(t0,t0)
+

0.5

(t0,t1)
+

0.5

(t1,t0)
+

1

(t1,t1)
. By 

Definition 7, it is easy to verify that � is a fuzzy 
bisimulation.

The bisimulation is a special case of fuzzy bisimula-
tion. If the fuzzy bisimulation � is a bisimulation on S × S, 
�(a, b) ∈ {0, 1} for each a, b ∈ S. Compared with bisimula-
tion, the application of fuzzy bisimulation is wider than the 
bisimulation. For example, if the relation between states of 
objects is vague, the bisimulation seems infeasible. But, the 
fuzzy bisimulation is still effective. In a word, the fuzzy 
bisimulation can be applied for dealing with vague relations 
in a fuzzy environment while the bisimulation cannot.

3 � Generalized fuzzy variable precision 
rough sets based on bisimulations

The fuzzy logic operator [41] plays an important role in 
fuzzy set theory. In order to overcome some defects of the 
classical RS model, Radzikowska and Kerre proposed a 
general FRS model [41] based on the fuzzy logical opera-
tors. However, the FRS models and the classical RS model 
[40] are easily disturbed by noise data sets. To make up for 
this shortcoming, the VP model [69] is proposed. Based 
on logical operators, some extensions of FVPRS mod-
els [20, 21, 62, 67] are constructed. Their work further 
improves the theoretical basis of classical RS model. A 
study shows that these models are based on the binary 
relations which are only dependent on “one step” informa-
tion. In the face of some more complex data sets, it is not 
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enough to distinguish objects only by “one step” infor-
mation. Therefore, we need an effective tools to obtain 
“multi-step” information for distinguishing objects. The 
fuzzy bisimulations can excavate “multi-step” information 
for underlying relations. By means of the fuzzy bisimula-
tions, objects can be well distinguished. At present, there 
is rare research on RS models based on fuzzy bisimula-
tions. Then, we want to develop the RS model by means 
of these relations.

To improve the RS model, enrich its theoretical 
research, and make it applicable to a wider range of fields, 
we want to present some generalized RS models. Moti-
vated by fuzzy bisimulations and the concept of VP mod-
els, three types of BGFVPRS models are defined in this 
section. The relationships among these BGFVPRS models 
and other types of existing RS models are investigated. 
Besides, some feasible properties of these BGFVPRS 
models are discussed. In the paper, since some properties 
are easy to obtain, then we omit some trivial proof.

Definition 8  Assume (S, (Ri)i∈Λ) is a fuzzy relational struc-
ture and � is a fuzzy bisimulation. Suppose that I1 , I2 are two 
fuzzy implicators and T1 , T2 are two continuous t-norms. For 
each K ∈ F(S), the first type of bisimulation-based general-
ized fuzzy variable precision I1T2-lower approximation 
(1-BGFVPI1T2 A) apr�,�

I1,T2
(K) and T1I2-upper approximation 

(1-BGFVPT1I2UA) apr�,�
T1,I2

(K) of K,  with negator N  and the 
variable precision � ∈ [0, 1), are defined as:

If apr�,�
I1,T2

(K) ≠ apr
�,�

T1,I2
(K), we call K the first type of bisim-

ulation-based generalized fuzzy variable precision rough set 
(1-BGFVPRS), otherwise we call it definable.

To better understand Definition 8, an example is given 
to illustrate it in the following. It is noted that the labeled 
(or unlabeled) fuzzy transition systems [23] are special 
fuzzy relational structures.

Example 4  Let (S,R) be a fuzzy relational structure. Assume 
that S1 ⊆ S, and S1 = {t0, t1, t2, t3, t4} . Figure 4a is an unla-
beled transition system. In the figure, ti

�

⟶tj represents 
R(ti, tj) = � where (i, j = 0, 1, 2, 3, 4) and � ∈ [0, 1]. Here, 
R(ti, tj) = � denotes that the membership degree of ti and tj 
belonging to the binary fuzzy relation R is �. Assume that � 
is a binary fuzzy relation where �(ti, ti) = 1 and �(ti, tj) = 0 
( i ≠ j).

(1)

apr�,�
I1,T2

(K)(a) =
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c))),

(2)

apr
�,�

T1,I2
(K)(a) =

⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧ K(c))).

A c c o r d i n g  t o  F i g .   4 a , 
R =

0.9

(t0,t1)
+

0.9

(t0,t2)
+

0.8

(t1,t3)
+

0.7

(t1,t4)
+

0.8

(t2,t3)
+

0.7

(t2,t4)
 can be got. 

Let ⊗ = ∧. Since 𝜑−◦R ⊆ R◦𝜑− and 𝜑◦R ⊆ R◦𝜑, then � is 
a fuzzy bisimulation by Definition 7. Furthermore, assume 
that IL(k1, k2) = min(1, 1 − k1 + k2), for each k1, k2 ∈ [0, 1]. 
Let I1 = I2 = IL, T1 = T2 = TL and N = Ns . Suppose that �
=0.6 and K =

0.8

t0
+

0.3

t1
+

0.5

t2
+

0.6

t3
+

0.8

t4
, and by Definition 

8, the following results are got:

Thus K is a 1-BGFVPRS.

In the following, another example is given to help us 
understand Definition 8 better.

Example 5  The center for disease control and prevention gets 
a message that a man has a novel coronavirus pneumonia 
test and the result of the test is positive. The institution 
immediately finds that the person t1 who had dinner together 
John H. recently. A social network map for 5 persons is 
shown as Fig. 4b. In the figure, ti

�

⟷tj means the contact 
degree between person ti and tj is � ∈ [0, 1] where 
(i, j = 1, 2, 3, 4, 5). Here, ti

�

⟷tj is equivalent to R(ti, tj) = � . 
Note that the contact relationship is bidirectional or sym-
metric. Then the binary fuzzy relation R is symmetric. Even 
though the first testing results of 5 persons are negative, the 
experts need to observe and treat them further. Through 
observation, they obtain an assessment result as 
K =

0.75

t1
+

0.3

t2
+

0.5

t3
+

0.55

t4
+

0.8

t5
 . The value of K(ti) is the 

apr�,0.6
IL,TL

(K) =
0.8

t0
+

0.6

t1
+

0.6

t2
+

0.6

t3
+

0.8

t4
,

apr
�,0.6

TL,IL
(K) =

0.4

t0
+

0.3

t1
+

0.4

t2
+

0.4

t3
+

0.4

t4
.

Fig. 4   a Is a fuzzy transition system and b is a social network for 5 
persons
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possibility of infection for person ti . Based on experience, 
experts choose a regulatory threshold � = 0.6, a fuzzy rela-
tion � = R, and ⊗ = ∧. The � is a fuzzy bisimulation by 
Definition 7. According to experts’ preferences and the com-
p l ex i t y  o f  t h e  e nv i ro n m e n t ,  t h ey  ch o o s e 
I1 = I2 = IL, T1 = T2 = TL,N = Ns. Then, by Definition 8, 
some results can be obtained as follows:

Here K is a 1-BGFVPRS due to apr�,0.6
Il,Tl

(K) ≠ apr
�,0.6

TL,IL
(K).

The institution uses 
apr�,0.6

IL ,TL
(K)(ti)+apr

�,0.6

TL ,IL
(K)(ti)

2
 to evaluate the 

comprehensive disease degree of person ti. Furthermore, 
according to the comprehensive disease degree of each per-
son, t5 > t1 > t2 > t3 = t4 is obtained. Thus, t5 is most likely 
to get sick and should be treated further.

Furthermore, the relations among some existed RS mod-
els in [10, 20, 27, 41, 55, 58, 62, 63, 65] and 1-BGFVPRS 
model are discussed as follows.

Remark 1  (1) When � = 0, formulas (1) and (2) become the 
following forms:

(i)	 Since the fuzzy bisimulation � is a special fuzzy rela-
tion which can extract “multi-step” information, then 
formulas (3) and (4) become the models defined in 
[10]. Formulas (3) and (4) can help DMs solve more 
complex uncertain problems that some RS models in 
[55, 58, 62, 63] cannot solve.

(ii)	 If � is a fuzzy �-neighborhood Ñ, the above model turns 
into the model defined in [63]:

(iii)	 Let �(b, a) = �b(a). If for each a ∈ S, there at least exist 
one element t ∈ S s.t. �b(t) = 1 i.e., S forms a fuzzy 
covering, models (5) and (6) boil down the models built 
in [27].

apr�,0.6
IL,TL

(K) =
0.75

t1
+

0.4

t2
+

0.6

t3
+

0.6

t4
+

0.8

t5
,

apr
�,0.6

TL,IL
(K) =

0.4

t1
+

0.65

t2
+

0.4

t3
+

0.4

t4
+

0.4

t5
.

(3)apr�,0
I1,T2

(K)(a) =
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c),K(c))),

(4)apr
�,0

T1,I2
(K)(a) =

⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),K(c)).

(5)

aprÑ,0
I1,T2

(K)(a) =
⋁

b∈S

T2(Ñ(b, a),
⋀

c∈S

I1(Ñ(b, c),K(c))),

(6)

apr
Ñ,0

T1,I2
(K)(a) =

⋀

b∈S

I2(Ñ(b, a),
⋁

c∈S

T1(Ñ(b, c),K(c)).

(iv)	 If � is a T-similarity relation on S and I1, I2 are two 
R-implicators, formulas (3) and (4) degenerate into the 
models in [41]. Note that with the condition given by [63], 
the two pairs of generalized approximation operators in 
[63] cannot degenerate into the models defined in [41]. 
But, if the fuzzy relation is a T-similarity relation, both 
pairs operators in [63] degenerate into the models in [41]. 
The reference [65] gives examples and proof to show why 
the equality relationship in Theorem 5.3 in [27] does not 
hold. But it does not give the condition for the equality 
relationship in Theorem 5.3 in [27]. Here we give the con-
dition of the equality relationship in the theorem. The con-
dition is that if the fuzzy relation is a T-similarity relation. 
The proof is easy to prove and thus we omit it.

(v)	 Assume that I1 , I2 are R-implicators and T1 , T2 are con-
tinuous t-norms while � is a fuzzy equivalence relation. 
If � is a fuzzy �-neighborhood, formulas (3) and (4) 
degenerate into the models defined in [20].

(2) When � ≠ 0, if for each c ∈ S, � ≤ K(c) ≤ N(�), the 
following model is obtained:

(i) When � is replaced by the covering-neighborhood 
defined in [63], formulas (7) and (8) turn into the models 
provided in [63].

(ii) If � is a general fuzzy relation, formulas (7) and (8) 
become the formulas defined in [10].

(3) If � ≠ 0, � is a fuzzy equivalence relation, using the 
new fuzzy �-neighborhood defined in [62] to substitute �, 
then formulas (1) and (2) turn into the formulas built in [62].

(4) If K is a crisp set, formulae (1) and (2) become the 
following forms:

Furthermore, another type of BGFVPRS model is 
defined in the following.

Definition 9  Under the condition of Definition 8, for each 
K ∈ F(S), the second type of bisimulation-based generalized 

(7)apr�,�
I1,T2

(K)(a) =
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c),K(c))),

(8)apr
�,�

T1,I2
(K)(a) =

⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),K(c)).

(9)apr�,�
I1,T2

(K)(a) =
⋁

b∈S

T2(�(b, a),
⋀

c∈S,c∉K

I1(�(b, c), �)),

(10)

apr
�,�

T1,I2
(K)(a) =

⋀

b∈S

I2(�(b, a),
⋁

c∈S,c∈K

T1(�(b, c),N(�))).
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fuzzy variable precision I1I2-lower approximation 
(2-BGFVPI1I2LA) apr�,�

I1,I2
(K) and T1T2-upper approximation 

(2-BGFVPT1T2UA) apr�,�
T1,T2

(K) of K,  with negator N  and 
the variable precision � ∈ [0, 1), are defined as:

If apr�,�
I1,I2

(K) ≠ apr
�,�

T1,T2
(K), we call K the second type of 

bisimulation-based generalized fuzzy variable precision 
rough set (2-BGFVPRS), otherwise we call it definable.

Example 6  An unlabeled fuzzy transition system is shown 
as Fig. 5 where S1 = {t0, t1} ⊆ S . From this figure, we have 
that R =

0.5

(t0,t0)
+

0.5

(t0,t1)
 . Assume that � is a binary fuzzy rela-

tion in which � =
1

(t0,t0)
+

0.3

(t0,t1)
+

0.3

(t1,t0)
+

1

(t1,t1)
. When ⊗ = ∧, 

we have that 𝜑−◦R ⊆ R◦𝜑− and 𝜑◦R ⊆ R◦𝜑 . Then � is a 
fuzzy bisimulation. Furthermore, suppose that I1 = I2 = IL, 
T1 = T2 = TL, N = Ns , � = 0.58 and K =

0.8

t0
+

0.45

t1
. By Defi-

nitions 8 and 9, some results will be obtained as follows:

(11)

apr�,�
I1,I2

(K)(a) =
⋀

b∈S

I2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c))),

(12)

apr
�,�

T1,T2
(K)(a) =

⋁

b∈S

T2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧ K(c))).

apr�,0.58
IL,TL

(K) = apr�,0.58
IL,IL

(K) =
0.8

t0
+

0.58

t1
,

apr
�,0.58

TL,IL
(K) = apr

�,0.58

TL,TL
(K) =

0.42

t0
+

0.42

t1
.

Obviously, K is both 1-BGFVPRS and 2-BGFVPRS.
Let IKD(k1, k2) = max(1 − k1, k2), for each k1, k2 ∈ [0, 1]. 

When I1 = IL , I2 = IKD , T1 = T2 = TL , a comparison between 
1-BGFVPRS and 2-BGFVPRS is given as Table 1.

T h r o u g h  T a b l e   1 ,  w e  f i n d  t h a t 
apr𝜑,0.58

IL,IKD
(K) ⊆ apr𝜑,0.58

IL,TL
(K), apr

𝜑,0.58

TL,IKD
(K) = apr

𝜑,0.58

TL,TL
(K). The 

relationship between 1-BGFVPRS and 2-BGFVPRS will 
be investigated deeply later, and thus it is not discussed 
here.

Besides, the the relations among some existing RS mod-
els in [27, 41, 50, 62, 63] and 2-BGFVPRS models are 
discussed as follows.

Remark 2  (1) When � = 0, formulas (11) and (12) will be 
the following forms:

	 (i)	 If I1 = I2 is an R-implicator, T1 = T2 is a continuous 
t-norm, � is replaced by the fuzzy covering-based 
fuzzy neighborhood operator defined in [63], formu-
lae (13) and (14) turn into the models defined in [63].

	 (ii)	 If I1 = I2 is an R-implicator, T1 = T2 is a continu-
ous t-norm, � is a fuzzy equivalence relation, models 
(13) and (14) degenerate into the models built in [41, 
50].

	 (iii)	 Let � be a successor fuzzy relation. For each a, b ∈ S, 
using �b(a) denotes �(b, a). For each b ∈ S, if there 
at least exists one element t ∈ S s.t. �b(t) = 1 i.e., S 
forms a fuzzy covering. In this situation, formulae 
(13) and (3sps14) boil down the models built in [27].

(2) When � ≠ 0, if for each c ∈ S, � ≤ K(c) ≤ N(�), the 
following model is obtained:

Especially, when � is the covering-neighborhood defined 
in [63], formulas (15) and (16) become the models defined 
in [63].

(13)apr�,0
I1,I2

(K)(a) =
⋀

b∈S

I2(�(b, a),
⋀

c∈S

I1(�(b, c),K(c))),

(14)apr
�,0

T1,T2
(K)(a) =

⋁

b∈S

T2(�(b, a),
⋁

c∈S

T1(�(b, c),K(c))).

(15)apr�,�
I1,I2

(K)(a) =
⋀

b∈S

I2(�(b, a),
⋀

c∈S

I1(�(b, c),K(c))),

(16)apr
�,�

T1,T2
(K)(a) =

⋁

b∈S

T2(�(b, a),
⋁

c∈S

T1(�(b, c),K(c))).

Fig. 5   An unlabeled fuzzy 
transition system

Table 1   A comparison between 1-BGFVPRS and 2-BGFVPRS

apr�,0.58
IL ,TL

(K) apr�,0.58
IL ,IKD

(K) apr
�,0.58

TL ,IKD
(K) apr

�,0.58

TL ,TL
(K)

t0 0.8 0.7 0.42 0.42
t1 0.58 0.58 0.42 0.42
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(3) Suppose that � ≠ 0, � is a fuzzy equivalence relation, 
I1 , I2 are R-implicators and T1 , T2 are continuous t-norms. If 
using the new fuzzy �-neighborhood defined in [62] to sub-
stitute �, then formulas (11) and (12) turn into the models 
built in [62].

(4) If K is a crisp set, then formulae (11) and (12) become 
the following forms:

To better grasp 1-BGFVPRS and 2-BGFVPRS models, 
the related axiomatic properties of them are investigated 
in the following.

Proposition 1  For the approximation operators of 
1-BGFVPRS and 2-BGFVPRS models, some important 
properties are listed as follows.

	 (1)	 apr�,�
I1,T2

(S) = S, if � is a reflexive fuzzy bisimulation 

and I1 is a border implicator which is left monotonic.
	 (2)	 apr�,�

I1,I2
(S) = S, when � is a reflexive fuzzy bisimula-

tion and I1 , I2 are border implicators which are left 
monotonic.

	 (3)	 apr�,�
T1,I2

(�) = �, apr𝜑,𝜃
T1,I2

(S) = coN(𝜃̂), if � is a reflex-
ive fuzzy bisimulation and I2 is a left monotonic and 
border implicator.

	 (4)	 apr�,�
T1,T2

(�) = �, apr𝜑,𝜃
T1,T2

(S) = coN(𝜃̂), while � is a 
reflexive fuzzy bisimulation.

	 (5)	 Let I1 , I2 be R-implicators. The apr𝜑,𝜃
I1,T2

(K) ⊆ K ∪ 𝜃̂ 

and K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T1,I2
(K), for each K ∈ F(S).

	 (6)	 If I1 , I2 are two border implicators which satisfy the 
hybrid monotonicity, then apr𝜑,𝜃

I1,I2
(K) ⊆ K ∪ 𝜃̂.

	 (7)	K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T1,T2
(K), when � is a reflexive 

fuzzy bisimulation.
	 (8)	 If K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂) and I1 , I2 are two R-implica-

tors, then

	 (9)	 When I1 , I2 are two R-implicators with � = 0, then

(17)apr�,�
I1,I2

(K)(a) =
⋀

b∈S

I2(�(b, a),
⋀

c∈S,c∉K

I1(�(b, c), �)),

(18)

apr
�,�

T1,T2
(K)(a) =

⋁

b∈S

T2(�(b, a),
⋁

c∈S,c∈K

T1(�(b, c),N(�))).

apr𝜑,𝜃
I1,T2

(K) ⊆ K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T1,I2
(K),

apr𝜑,𝜃
I1,I2

(K) ⊆ K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T1,T2
(K).

apr𝜑,𝜃
I1,T2

(K) ⊆ K ⊆ apr
𝜑,𝜃

T1,I2
(K),

apr𝜑,𝜃
I1,I2

(K) ⊆ K ⊆ apr
𝜑,𝜃

T1,T2
(K).

	 (10)	 ∀ K1 , K2 ∈ F(S), if K1 ⊆ K2 and I1, I2 are 
two right monotonic implicators, then

		    It is noted that the upper approximation operators 
of the 1-BGFVPRS and 2-BGFVPRS models have the 
same properties with the assertion (10) and thus we 
omit them.

	 (11)	 When I1, I2 are two border implicators sat-
isfying the left monotonicity, for each 𝛾̂ ∈ F(S), we 
have

	 (12)	 If 𝜃1 < 𝜃2, implicators I1, I2 are right 
monotonic, then for each K ∈ F(S), we have

Proof  In the paper, we only prove (5), (11), and (12). The 
proof of other assertions is similar to them and thus we omit 
it.

(5) Suppose that I1 , I2 are R-implicators. Due to Lemma 
2.1 in [27], for each K ∈ F(S), � ∈ [0, 1) and a ∈ S, we have

That is, apr𝜑,𝜃
I1,T2

(K) ⊆ K ∪ 𝜃̂.

In the similar way, due to Lemma 2.1 in [27], for each 
K ∈ F(S), � ∈ [0, 1) and a ∈ S, we have

apr𝜑,𝜃
I1,T2

(K1) ∪ apr𝜑,𝜃
I1,T2

(K2) ⊆ apr𝜑,𝜃
I1,T2

(K1 ∪ K2);

apr𝜑,𝜃
I1,T2

(K1) ∩ apr𝜑,𝜃
I1,T2

(K2) ⊇ apr𝜑,𝜃
I1,T2

(K1 ∩ K2);

apr𝜑,𝜃
I1,I2

(K1) ∪ apr𝜑,𝜃
T1,T2

(K2) ⊆ apr𝜑,𝜃
T1,T2

(K1 ∪ K2);

apr𝜑,𝜃
T1,T2

(K1) ∩ apr𝜑,𝜃
T1,T2

(K2) ⊇ apr𝜑,𝜃
T1,T2

(K1 ∩ K2).

apr𝜑,𝜃
I1,T2

(𝛾̂) = �𝛾 ∨ 𝜃, apr
𝜑,𝜃

T1,I2
(𝛾̂) = coN

�(𝜃 ∧ 𝛾);

apr𝜑,𝜃
I1,I2

(𝛾̂) = �𝛾 ∨ 𝜃, apr
𝜑,𝜃

T1,T2
(𝛾̂) = coN

�(𝜃 ∧ 𝛾).

apr𝜑,𝜃1
I1,T2

(K) ⊆ apr𝜑,𝜃2
I1,T2

(K), apr
𝜑,𝜃1
T1,I2

(K) ⊇ apr
𝜑,𝜃2
T1,I2

(K);

apr𝜑,𝜃1
I1,I2

(K) ⊆ apr𝜑,𝜃2
I1,I2

(K), apr
𝜑,𝜃1
T1,T2

(K) ⊇ apr
𝜑,𝜃2
T1,T2

(K).

apr�,�
I1,T2

(K)(a)

=
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c)))

≤
⋁

b∈S

T2(�(b, a), I1(�(b, a), � ∨ K(a)))

≤
⋁

b∈S

(� ∨ K(a))

= � ∨ K(a).
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Thus apr𝜑,𝜃
T1,I2

(K) ⊇ K ∩ coN(𝜃̂) is proved.

(11) Assume that I1, I2 are two border implicators satisfy-
ing the left monotonicity. For each a ∈ S, we have

That is, apr𝜑,𝜃
I1,T2

(𝛾̂) = �𝛾 ∨ 𝜃 . The other equations can be 
proved similarly, and their proof is omitted here. 	�  ◻

Note that the assertions (1)–(4) and (7) in Proposition 1 
for the general binary fuzzy relation cannot be always true. 
In Example 4, for the Early Zadeh implicator IZ (a border 
implicator) in [41], aprR,0.6

IZ ,IZ
(S) =

1

t0
+

0.9

t1
+

0.8

t2
+

0.7

t3
+

1

t4
. In 

Example 6, for the general fuzzy relation R,  through com-
pu t a t ion  we  have  t ha t  aprR,0.58

IL,TL
(S) = apr

R,0.58

TL,IL
(S)

= apr
R,0.58

TL,IL
(�) = aprR,0.58

IL,TL
(�) =

0.5

t0
+

0.5

t1
, apr�,0.58

TL,TL
(S) = � and 

apr
R,0.58

TL,TL
(K) = � ⊉ K ∩ coN(

�0.58). This phenomenon shows 
that for the general binary fuzzy relation R,  the assertions 
(1)–(4) and (7) cannot hold. However, the above proposition 
for the largest fuzzy bisimulation �b i.e., the fuzzy bisimilar-
ity holds.

It is worth noting that the S-implicator, R-implicator 
and QL-implicator are three known and widely used logi-
cal operators. Because of their characteristic properties, our 
provided approximation operators also have some feasible 
properties which are listed in the following.

Corollary 10 

(1)	 If � is a reflexive fuzzy bisimulation and I1 is an S-impli-
cator or R-implicator, then Proposition 1(1) holds.

(2)	 If � is a reflexive fuzzy bisimulation, I1 is an S-impli-
cator or R-implicator while I2 is an S-implicator or 

apr
�,�

T1,I2
(K)(a)

=
⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧ K(c)))

≥
⋀

b∈S

I2(�(b, a), T1(�(b, a),N(�) ∧ K(a)))

≥
⋀

b∈S

(N(�) ∧ K(a))

≥ N(�) ∧ K(a).

apr𝜑,𝜃
I1,T2

(𝛾̂)(a)

=
⋁

b∈S

T2(𝜑(b, a),
⋀

c∈S

I1(𝜑(b, c), 𝜃 ∨ 𝛾̂(c)))

=
⋁

b∈S

T2(𝜑(b, a),
⋀

c∈S

I1(𝜑(b, a), 𝜃 ∨ 𝛾))

=
⋁

b∈S

T2(𝜑(b, a), 𝜃 ∨ 𝛾))

= 𝜃 ∨ 𝛾 .

R-implicator, then Propositions 1(2), (6) and (11) are 
true.

(3)	 If � is reflexive, and I2 is an S-implicator or R-implica-
tor, then Proposition 1(3) is true.

(4)	 Assume that I1 , I2 are two QL-implicators (or R-impli-
cators or S-implicators), Propositions 1(10) and (12) 
hold.

Note that the largest fuzzy bisimulation is a special binary 
fuzzy relation that satisfies the reflexivity. Under the condi-
tions of Corollary 10, the same properties can be obtained 
similarly. For a general binary fuzzy relation, the assertion 
(4) in Corollary 10 is true. But, the assertions (1)–(3) cannot 
always be true for the general binary fuzzy relation.

We have studied the properties of approximation operators 
of 1-BGFVPRS and 2-BGFVPRS models. Furthermore, the 
r e l a t i o n s h i p s  a m o n g  apr�,�

I1,T2
(K), apr

�,�

T1,I2
(K), 

apr�,�
I1,I2

(K), apr
�,�

T1,T2
(K) are discussed in the following. Through 

the relations of these approximation operators, the DMs 
according to their needs choose the satisfied RS model and 
apply it to make a clear decision.

Proposition 2  For each K ∈ F(S) and � ∈ [0, 1), if � is a 
reflexive fuzzy bisimulation and I2 is a border implicator, 
then we get the following results. 

(1)	 apr𝜑,𝜃
I1,I2

(K) ⊆ apr𝜑,𝜃
I1,T2

(K),

(2)	 apr
𝜑,𝜃

T1,I2
(K) ⊆ apr

𝜑,𝜃

T1,T2
(K).

Proof 

(1)	 Assume that � is a reflexive fuzzy bisimulation and I2 
is a border implicator. For each a ∈ S and � ∈ [0, 1),

 and 

apr�,�
I1,T2

(K)(a)

=
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c)))

≥ T2(�(a, a),
⋀

c∈S

I1(�(a, c), � ∨ K(c)))

=
⋀

c∈S

I1(�(a, c), � ∨ K(c)),

apr�,�
I1,I2

(K)(a)

=
⋀

b∈S

I2(�(b, a),
⋀

c∈S

I1(�(b, c),K(c)))

≤ I2(�(a, a),
⋀

c∈S

I1(�(a, c), � ∨ K(c)))

=
⋀

c∈S

I1(�(a, c), � ∨ K(c)),
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 we have apr�,�
I1,I2

(K)(a) ≤ apr�,�
I1,T2

(K)(a).

	   Thus apr𝜑,𝜃
I1,I2

(K) ⊆ apr𝜑,𝜃
I1,T2

(K) for each K ∈ F(S) and 
� ∈ [0, 1).

(2)	 If � is a reflexive fuzzy bisimulation and I2 is a border 
implicator, for any a ∈ S and � ∈ [0, 1),

 and 

 Thus apr𝜑,𝜃
T1,I2

(K) ⊆ apr
𝜑,𝜃

T1,T2
(K) is proved.

	�  ◻

Corollary 11  If I2 is an S-implicator (or R-implicator or QL-
implicator), then the following results are obtained. 

(1)	 When � is a ref lexive fuzzy bisimulation , 
apr𝜑,𝜃

I1,I2
(K) ⊆ apr𝜑,𝜃

I1,T2
(K) and apr𝜑,𝜃

T1,I2
(K) ⊆ apr

𝜑,𝜃

T1,T2
(K);

(2)	 apr𝜑
b,𝜃

I1,I2
(K) ⊆ apr𝜑

b,𝜃

I1,T2
(K) and apr𝜑

b,𝜃

T1,I2
(K) ⊆ apr

𝜑b,𝜃

T1,T2
(K), 

if � = �b which is the largest fuzzy bisimulation.

Proof  Since R-implicator, S-implicator and QL-implicator 
are three border implicators and �b the largest fuzzy bisimu-
lation is reflexive, the assertions (1) and (2) in Corollary 11 
can be easily obtained by Proposition 2. 	�  ◻

Proposition 3  Assume that � is a reflexive fuzzy bisimula-
tion, I1 , I2 are two R-implicators and K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂), 
we have that

Proof  Since an R-implicator is a special border implicator 
that is hybrid monotonic, by Proposition 1(8) and Proposi-
tion 2, the proof of this proposition is easily verified. 	� ◻

apr
�,�

T1,I2
(K)(a)

=
⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧ K(c)))

≤ I2(�(a, a),
⋁

c∈S

T1(�(a, c),N(�) ∧ K(c)))

=
⋁

c∈S

T1(�(a, c),N(�) ∧ K(c)),

apr
�,�

T1,T2
(K)(a)

=
⋁

b∈S

T2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧ K(c)))

≥ T2(�(a, a),
⋁

c∈S

T1(�(a, c),N(�) ∧ K(c)))

=
⋁

c∈S

T1(�(a, c), � ∨ K(c)).

apr𝜑,𝜃
I1,I2

(K) ⊆ apr𝜑,𝜃
I1,T2

(K) ⊆ K ∪ 𝜃̂

⊆ K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T1,I2
(K) ⊆ apr

𝜑,𝜃

T1,T2
(K).

When the value of fuzzy variable precision is 0, the rela-
tionship between 1-BGFVPRS and 2-BGFVPRS models is 
discussed in the following.

Proposition 4  Under the condition in Proposition 3, if � = 0, 
for each K ∈ F(S), we have

The identity relation �S = {(a, a) ∣ a ∈ S} and empty rela-
tion �S are two bisimulations. In the paper, �S is a special 
fuzzy set in which �S(a, a) = 1, ∀ a ∈ S. The �S is also a 
special fuzzy set where �S(a, b) = 0 for each a, b ∈ S.

Proposition 5  If I2 is an R-implicator and � is a fuzzy bisim-
ulation, the following statements are true. 

(1)	 apr
�,�

T1,I2
(K) = apr

�,�

T1,T2
(K) = �, if � = �S.

(2)	 apr
𝜑,𝜃

T1,I2
(K) = apr

𝜑,𝜃

T1,T2
(K) = K ∩ coN(𝜃̂), if � = �S.

From the above propositions, (apr�,�
I1,T2

(K), apr
�,�

T1,I2
(K)) is 

tighter than (apr�,�
I1,I2

(K), apr
�,�

T1,T2
(K)). As we all know, the 

equivalence relation acts a pivotal part in the RS model. The 
effects of fuzzy bisimulation � on 1-BGFVPRS and 
2-BGFVPRS models are studied as follows. As the reflexiv-
ity of � has already been mentioned above, we don’t discuss 
it next.

Proposition 6  If � is a symmetric fuzzy bisimulation, then for 
each K ∈ F(S), the following statements are got. 

(1)	 apr�,�
I1,I2

(K) = apr�
−,�

I1,I2
(K), apr�,�

I1,T2
(K) = apr�

−,�

I1,T2
(K).

(2)	 apr
�,�

T1,I2
(K) = apr

�−,�

T1,I2
(K), apr

�,�

T1,T2
(K) = apr

�−,�

T1,T2
(K).

Corollary 12  If � = �b , for each K ∈ F(S), the following 
statements are obtained. 

(1)	 apr�
b,�

I1,I2
(K) = apr(�

b)
−
,�

I1,I2
(K), apr�

b,�

I1,T2
(K) = apr(�

b)
−
,�

I1,T2
(K).

(2)	 apr
�b,�

T1,I2
(K) = apr

(�b)
−
,�

T1,I2
(K), apr

�b,�

T1,T2
(K) = apr

(�b)
−
,�

T1,T2
(K).

Remark 3  The models defined in [62] are generalized into 
the following forms with fuzzy bisimulation relation � as 
follows:

apr𝜑,0
I1,I2

(K) ⊆ apr𝜑,0
I1,T2

(K) ⊆ K

⊆ apr
𝜑,0

T1,I2
(K) ⊆ apr

𝜑,0

T1,T2
(K).

(19)��

I3
(K)(a) =

⋀

b∈S

I3(�(a, b), � ∨ K(b)),
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Here ��

I3
(K),�

�

T3
(K) are called the third type of bisimu-

lation-based generalized fuzzy variable precision I3-lower 
approximation (3-BGFVPI3LA) and T3-fuzzy upper 
approx imat ion  (3 -BGFVPT3UA) of  K .  When 
��

I3
(K) ≠ �

�

T3
(K), K is called the third type of bisimulation-

based generalized fuzzy variable precision rough set 
(3-BGFVPRS). Otherwise it is definable.

(1) It is remarkable that if fuzzy bisimulation � is 
replaced by the largest fuzzy bisimulation �b, � = 0 and 
I3 is an S-implicator [41] based on the involutive negator 
N  , the 3-BGFVPRS model degenerates into the model 
defined in [12].

(2) When � is a fuzzy �-neighborhood relation, the 
3-BGFVPRS model turns out to be the model constructed 
in [20].

(3) If �=0, � is a general binary fuzzy relation and I3 is 
an S-implicator, formulas (19) and (20) will be the S-lower 
and T-upper approximation operators in [67], respectively.

Let �i(i ∈ Λ) be a fuzzy bisimulation. Then, �−
i
 , 
⋃

i∈Λ �i 
and 

⋃

i∈Λ �
−
i
 are also fuzzy bisimulations. The union of 

all fuzzy bisimulations is the largest fuzzy bisimulation 
�b . Based on the properties of fuzzy bisimulations, some 
results of our models are listed as follows.

Proposition 7  Let �i(i ∈ Λ) be a fuzzy bisimulation. For any 
� ∈ [0, 1) and K ∈ F(S) , the following statements are true. 

(1)	 apr𝜑
b,𝜃

I1,I2
(K) ⊆ apr

(
⋃

i∈Λ 𝜑i),𝜃

I1,I2
(K) ⊆

⋃

i∈Λ apr
𝜑i,𝜃

I1,I2
(K) with 

two left monotonic implicators I1, I2.
(2)	 apr𝜑

b,𝜃

I1,I2
(K) ⊆ apr

(
⋃

i∈Λ 𝜑i),𝜃

I1,I2
(K) =

⋂

i∈Λ

apr𝜑i,𝜃

I1,I2
(K) with two 

R-implicators I1, I2.
(3)	 apr

(
⋃

i∈Λ 𝜑i),𝜃

T1,T2
(K) =

⋃

i∈Λ apr
𝜑i,𝜃

T1,T2
(K) ⊆ apr

𝜑b,𝜃

T1,T2
(K).

(4)	 (𝜑b)
𝜃

I3
(K) ⊆ (

⋃

i∈Λ 𝜑i)
𝜃

I3

(K) ⊆
⋃

i∈Λ (𝜑i)
𝜃

I3

(K) where I3 

is a left monotonic implicator.
(5)	 (𝜑b)

𝜃

I3
(K) ⊆ (

⋃

i∈Λ 𝜑i)
𝜃

I3

(K) =
⋂

i∈Λ (𝜑i)
𝜃

I3

(K) where I3 

is an R-implicator.
(6)	 (

⋃

i∈Λ 𝜑i)
𝜃

T3
(K) =

⋃

i∈Λ (𝜑i)
𝜃

T3
(K) ⊆ (𝜑b)

𝜃

T3
(K).

If �1,�2 are two fuzzy bisimulations, then �1◦�2 
is a fuzzy bisimulation. Due to (�1◦�2)

− = �−
2
◦�−

1
 and 

(
⋃

i∈Λ �i)
− =

⋃

i∈Λ(�
−
i
), the following statements are true.

Proposition 8  Assume that �i(i ∈ Λ) is a fuzzy bisimulation. 
For any � ∈ [0, 1) and K ∈ F(S) , the following statements 
are true. 

(20)�
�

T3
(K)(a) =

⋁

b∈S

T3(�(a, b),N(�) ∧ K(b)). (1)	 apr(�1◦�2)
−,�

I1,T2
(K) = apr

(�−
1
)◦(�−

2
),�

I1,T2
(K), 

apr
(�1◦�2)

−,�

T1,I2
(K) = apr

(�−
1
)◦(�−

2
),�

T1,I2
(K).

(2)	 apr
(
⋃

i∈Λ �i)
−,�

I1,T2
(K) = apr

⋃

i∈Λ(�
−
i
),�

I1,T2
(K), 

apr
(
⋃

i∈Λ �i)
−,�

T1,I2
(K) = apr

⋃

i∈Λ(�
−
i
),�

T1,I2
(K).

Since the BGFVPRS models have the same proper-
ties of Proposition 8, only the relevant properties of 
1-BGFVPRS model are shown.

Next,  the relation between 2-BGFVPRS and 
3-BGFVPRS models is researched as follows.

Proposition 9  Let I1 = I2 = I3 = I and T1 = T2 = T3 = T . If 
� is a T-transitive and symmetric fuzzy bisimulation, I is 
an R-implicator based on continuous t-norm T,  for each 
K ∈ F(S) with � ∈ [0, 1), the following statements are true. 

(1)	 𝜑𝜃

I
(K) ⊆ apr𝜑,𝜃

I,I
(K) ⊆ K ∪ 𝜃̂.

(2)	 K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T ,T
(K) ⊆ 𝜑

𝜃

T
(K).

Proof 

(1)	 Due to � is a T-transitive and symmetric fuzzy bisim-
ulation, by Lemma 2.1 in [27], for each a ∈ S and 
� ∈ [0, 1), we have 

 Thus, 𝜑
I
(K) ⊆ apr𝜑,𝜃

I,I
(K). Furthermore, by Proposition 

1(6), 𝜑
I
(K) ⊆ apr𝜑,𝜃

I,I
(K) ⊆ K ∪ 𝜃̂ is proved.

(2)	 For each K ∈ F(S), � ∈ [0, 1) and a ∈ S,

apr�,�
I,I

(K)(a)

=
⋀

b∈S

I(�(b, a),
⋀

c∈S

I(�(b, c), � ∨ K(c)))

=
⋀

b∈S

⋀

c∈S

I(�(b, a), I(�(b, c), � ∨ K(c)))

=
⋀

c∈S

⋀

b∈S

I(�(b, a), I(�(b, c), � ∨ K(c)))

=
⋀

c∈S

⋀

b∈S

I(T(�(b, a),�(b, c)), � ∨ K(c))

=
⋀

c∈S

I(
⋁

b∈S

T(�(b, a),�(b, c)), � ∨ K(c))

=
⋀

c∈S

I(
⋁

b∈S

T(�(a, b),�(b, c)), � ∨ K(c))

≥
⋀

c∈S

I(�(a, c), � ∨ K(c))

= �
I
(K)(a).
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apr
𝜑,𝜃

T ,T
(K) ⊆ 𝜑T (K) is obtained. In addition, by Proposition 

1(7), K ∩ coN(𝜃̂) ⊆ apr
𝜑,𝜃

T ,T
(K) ⊆ 𝜑T (K) is obtained eas-

ily. 	� ◻

The relationship among the approximation operators 
of 2-BGFVPRS and 3-BGFVPRS models is investigated 
in Proposition 9. Figure  6 gives the relationship of them 
clearly.

Proposition 10  Let I1 = I2 = I3 = I, T1 = T2 = T3 = T be an 
R-implicator, a continuous t-norm, respectively. For each 
K ∈ F(S) and � ∈ [0, 1), we have the following results. 

(1)	 apr�,�
I,I

(K) = ��

I
(K), if � is a T-similarity fuzzy bisimula-

tion.

apr
�,�

T ,T
(K)(a)

=
⋁

b∈S

T(�(b, a),
⋁

c∈S

T(�(b, c),N(�) ∧ K(c)))

=
⋁

b∈S

⋁

c∈S

T(�(b, a), T(�(b, c),N(�) ∧ K(c)))

=
⋁

c∈S

⋁

b∈S

T(�(b, a), T(�(b, c),N(�) ∧ K(c)))

=
⋁

c∈S

T(
⋁

b∈S

T(�(b, a), (�(b, c)),N(�) ∧ K(c))

=
⋁

c∈S

T(
⋁

b∈S

T(�(a, b), (�(b, c)),N(�) ∧ K(c))

≤
⋁

c∈S

T(�(a, c),N(�) ∧ K(c))

= �T (K)(a),

(2)	 apr
�,�

T ,T
(K) = �

�

T
(K), when � is a reflexive fuzzy bisimu-

lation.
(3)	 apr�

b,�

I,I
(K) = (�b)

�

I
(K), apr�

b,�

T ,T
(K) = (�b)

�

T
(K).

Proof  (1) For each a ∈ S, � ∈ [0, 1) and K ∈ F(S),

Thus apr�,�
I,I

(K) = ��

I
(K) holds.

(2) For any a ∈ S, � ∈ [0, 1) and K ∈ F(S),

That is, apr�,�
T ,T

(K) = �
�

T
(K).

(3) Since �b is the largest fuzzy bisimulation, then it is 
reflexive. Through the assertions (1) and (2) in this proposi-
tion, the proof of (3) is easily proved. 	�  ◻

Remark 4  Under the condition in Proposition 9, if � is a 
T-similarity fuzzy bisimulation, for each K ∈ F(S) and 
� ∈ [0, 1), some statements are obtained as follows. 

(1)	 𝜑𝜃

I3
(K) = apr𝜑,𝜃

I1,I2
(K) ⊆ apr𝜑,𝜃

I1,T2
(K) ⊆ K ∪ 𝜃̂ ⊆ K ∩ coN

(𝜃̂) ⊆ apr
𝜑,𝜃

T1,I2
(K) ⊆ apr

𝜑,𝜃

T1,T2
(K) = 𝜑

𝜃

T3
(K),  i f 

K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂);

apr�,�
I,I

(K)(a)

=
⋀

b∈S

I(�(b, a),
⋀

c∈S

I(�(b, c), � ∨ K(c)))

=
⋀

b∈S

⋀

c∈S

I(�(b, a), I(�(b, c), � ∨ K(c)))

=
⋀

c∈S

⋀

b∈S

I(�(b, a), I(�(b, c), � ∨ K(c)))

=
⋀

c∈S

I(
⋁

b∈S

T(�(b, a),�(b, c)), � ∨ K(c))

=
⋀

c∈S

I(
⋁

b∈S

T(�(a, b),�(b, c)), � ∨ K(c))

=
⋀

c∈S

I(�(a, c), � ∨ K(c)).

= ��

I
(K)(a).

apr
�,�

T ,T
(K)(a)

=
⋁

b∈S

T(�(b, a),
⋁

c∈S

T(�(b, c),N(�) ∧ K(c)))

=
⋁

b∈S

⋁

c∈S

T(�(b, a), T(�(b, c),N(�) ∧ K(c)))

=
⋁

c∈S

⋁

b∈S

T(�(b, a), T(�(b, c),N(�) ∧ K(c)))

=
⋁

c∈S

T(
⋁

b∈S

T(�(b, a),�(b, c)),N(�) ∧ K(c)))

=
⋁

c∈S

T(
⋁

b∈S

T(�(a, b),�(b, c)),N(�) ∧ K(c)))

=
⋁

c∈S

T(�(a, c),N(�) ∧ K(c))

= �
�

T
(K)(a).

Fig. 6   The relationship between the 2-BGFVPRS and 3-BGFVPRS 
models
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(2)	 𝜑𝜃

I3
(K) = apr𝜑,𝜃

I1,I2
(K) ⊆ apr𝜑,𝜃

I1,T2
(K) ⊆ K ⊆ apr

𝜑,𝜃

T1,I2
(K) ⊆

apr
�,�

T1,T2
(K) = �

�

T3
(K), if � = 0.

The statements in Propositions 7 and 8 for the general 
binary fuzzy relation are also true. It is worth noting that 
the assertions in Propositions 2, 3–6, 9, 10, in Corollaries 
11, 12 and in Remark 4 cannot always hold if � is a general 
binary fuzzy relation. But, for the largest fuzzy bisimulation 
�b , the above statements are always true.

According to Remark 4, under some special circum-
stances, the relationship among the approximation operators 
of 1-BGFVPRS, 2-BGFVPRS, and 3-BGFVPRS models 
is obtained, as shown in Fig. 7. Through the research, the 
approximation operators of 1-BGFVPRS and 2-BGFVPRS 
models are tighter than the approximation operators of 
3-BGFVPRS in some special cases. The approximation 
operator of 1-BGFVPRS is the most compact approxima-
tion operator among the three models.

It is noticed that the duality between rough approximation 
operators plays an important role in RS models. Many research-
ers usually take advantage of the duality to build a dual pair of 
approximation operators. Based on this, the duality of approxi-
mation operators provided in the paper is studied as follows.

Proposition 11  Let I1 , I2 be two S-implicators based on contin-
uous t-norm T1 , T2, respectively. If N  is an involutive negator 
i.e., for any k1, k2 ∈ [0, 1], I(k1, k2) = N(T(k1,N(k2))), then 
∀ K ∈ F(S) and � ∈ [0, 1), the following statements are true. 

(1)	 apr�,�
I1,T2

(K) = coN(apr
�,�

T1,I2
(coN(K))).

(2)	 apr
�,�

T1,I2
(K) = coN(apr

�,�

I1,T2
(coN(K))).

(3)	 apr�,�
I1,I2

(K) = coN(apr
�,�

T1,T2
(coN(K))).

(4)	 apr
�,�

T1,T2
(K) = coN(apr

�,�

I1,I2
(coN(K))).

Proof  (1) Since N  is an involutive negator, then for any 
k1, k2 ∈ [0, 1], I(k1, k2) = N(T(k1,N(k2))). Due to I1 , I2 are 
two S-implicators, for each a ∈ S and � ∈ [0, 1),

coN(apr
�,�

T1,I2
(coN(K)))(a)

= N(apr
�,�

T1,I2
(coN(K)))(a))

= N(
⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧N(K(c)))))

= N(
⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(� ∨ K(c))))

= N(
⋀

b∈S

(N(T2(�(b, a),N(
⋁

c∈S

T1(�(b, c),N(� ∨ K(c)))))))

= N(
⋀

b∈S

(N(T2(�(b, a),
⋀

c∈S

N(T1(�(b, c),N(� ∨ K(c)))))))

= N(
⋀

b∈S

(N(T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c)))))

= N(N(
⋁

b∈S

(T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c))))))

=
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c)))

= apr�,�
I1,T2

(K)(a).

Fig. 7   The relationship among 
the 1-BGFVPRS, 2-BGFVPRS 
and 3-BGFVPRS models
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Thus, apr�,�
I1,T2

(K) = coN(apr
�,�

T1,I2
(coN(K))) can be obtained.

(2) For each a ∈ S and � ∈ [0, 1),

Thus, apr�,�
T1,I2

(K) = coN(apr
�,�

I1,T2
(coN(K))) is proved. Simi-

larly, the assertions (3) and (4) can be proved and thus we 
omit them here 	�  ◻

Proposition 12  Assume that I1 , I2 are two R-implicators 
based on continuous t-norms T1 , T2, respectively. If N  is 
a negator induced by implicator I,  for each k1, k2 ∈ [0, 1], 
N(N(k1)) ≥ k1, and N(I(k1, k2)) ≥ T(k1,N(k2)),∀K ∈ F(S) 
and � ∈ [0, 1), we have the following statements. 

(1)	 apr
𝜑,𝜃

T1,I2
(coN(K)) ⊆ coN(apr

𝜑,𝜃

I1,T2
(K)).

(2)	 apr𝜑,𝜃
I1,T2

(coN(K)) ⊆ coN(apr
𝜑,𝜃

T1,I2
(K)).

(3)	 apr
𝜑,𝜃

T1,T2
(coN(K)) ⊆ coN(apr

𝜑,𝜃

I1,I2
(K)).

(4)	 apr𝜑,𝜃
I1,I2

(coN(K)) ⊆ coN(apr
𝜑,𝜃

T1,T2
(K)).

Proof  Here, we only prove the first assertion in this propo-
sition, others can be verified similarly. Under the condition 
given in this proposition, for each a ∈ S,

coN(apr
�,�

I1,T2
(coN(K)))(a)

= N(apr�,�
I1,T2

(coN(K)(a)))

= N(
⋁

b∈S

T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨N(K(c)))))

= N(
⋁

b∈S

T2(�(b, a),
⋀

c∈S

N(T1(�(b, c),N(N(K(c)) ∧N(�))))))

= N(
⋁

b∈S

T2(�(b, a),
⋀

c∈S

N(T1(�(b, c),K(c) ∧N(�))))))

= N(
⋁

b∈S

T2(�(b, a),N(
⋁

c∈S

T1(�(b, c),K(c) ∧N(�))))))

=
⋀

b∈S

N(T2(�(b, a),N(
⋁

c∈S

T1(�(b, c),K(c) ∧N(�))))))

=
⋀

b∈S

(I2(�(b, a),
⋁

c∈S

T1(�(b, c),K(c) ∧N(�))))

= apr
�,�

T1,I2
(K).

apr
�,�

T1,I2
(coN(K))(a)

=
⋀

b∈S

I2(�(b, a),
⋁

c∈S

T1(�(b, c),N(�) ∧N(K(c))))

≤
⋀

b∈S

I2(�(b, a),
⋁

c∈S

N(I1(�(b, c), � ∨ K(c))))

≤
⋀

b∈S

N(T2(�(b, a),N(
⋁

c∈S

N(I1(�(b, c), � ∨ K(c))))))

=
⋀

b∈S

N(T2(�(b, a),
⋀

c∈S

N(N(I1(�(b, c), � ∨ K(c))))))

≤
⋀

b∈S

N(T2(�(b, a),
⋀

c∈S

I1(�(b, c), � ∨ K(c))))

= N(apr�,�
I1,T2

(K)(a)).

Hence, apr𝜑,𝜃
T1,I2

(coN(K)) ⊆ coN(apr
𝜑,𝜃

I1,T2
(K)) holds. 	�  ◻

Proposition 13  Let I1 , I2 be two R-implicators based 
on continuous t-norms T1 , T2, respectively. For each 
K ∈ F(S) and k1, k2 ∈ [0, 1], i f  N(N(k1)) = k1 and 
N(I(k1, k2)) ≤ T(k1,N(k2)), the following statements hold. 

(1)	 coN(apr
𝜑,𝜃

I1,T2
(K)) ⊆ apr

𝜑,𝜃

T1,I2
(coN(K)).

(2)	 coN(apr
𝜑,𝜃

T1,I2
(K)) ⊆ apr𝜑,𝜃

I1,T2
(coN(K)).

(3)	 coN(apr
𝜑,𝜃

I1,I2
(K)) ⊆ apr

𝜑,𝜃

T1,T2
(coN(K)).

(4)	 coN(apr
𝜑,𝜃

T1,T2
(K)) ⊆ apr𝜑,𝜃

I1,I2
(coN(K)).

Proposition 14  Let I1 , I2 be two R-implicators based on con-
tinuous t-norms T1 , T2, respectively. If N(N(k1)) = k1 and 
N(I(k1, k2)) = T(k1,N(k2)) for each k1, k2 ∈ [0, 1], then the 
following results are obtained. 

(1)	 coN(apr
�,�

I1,T2
(K)) = apr

�,�

T1,I2
(coN(K)).

(2)	 coN(apr
�,�

T1,I2
(K)) = apr�,�

I1,T2
(coN(K)).

(3)	 coN(apr
�,�

I1,I2
(K)) = apr

�,�

T1,T2
(coN(K)).

(4)	 coN(apr
�,�

T1,T2
(K)) = apr�,�

I1,I2
(coN(K)).

4 � The uncertainty measure and reduction

The uncertainty measure and reduction are two impor-
tant concepts in classical RS model. In this section, the 
uncertainty measure of BGFVPRS models and reduction 
of fuzzy bisimulations are introduced. Furthermore, the 
related properties of them are discussed. In the following, 
we firstly investigate the uncertainty measure of BGFVPRS 
models.

4.1 � The uncertainty measure

The inaccuracy of a set is caused by the existence of the 
boundary domain. To express this point more accurately, we 
introduce the concept of accuracy measures of BGFVPRS 
models of the fuzzy set K. Obviously that 1-BGFVPRS, 
2-BGFVPRS, and 3-BGFVPRS are three fuzzy sets on S. 
Then ∀ K1 , K2 ∈ F(S), the distance function of fuzzy sets is 
used to define the closeness measure between K1 and K2. As 
we all know that the Euclid distance function satisfies the 
conditions of distance. In general, it is used as a similarity. 
In the paper, by using the Euclid distance, we can compute 
the accuracy measure between fuzzy sets K1 and K2.
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S u p p o s e  t h a t  K1 =
K1(a1)

a1
+

K1(a2)

a2
+⋯ +

K1(an)

an
, 

K2 =
K2(a1)

a2
+

K2(a2)

a2
+⋯ +

K2(an)

an
, 

S = {a1, a2,… , an}, ∣ S ∣= n. Assume that Kt(ai) is the 
membership degree that element ai belongs to fuzzy set 
Kt where t ∈ {1, 2} and i ∈ {1, 2,… , n} . The Euclid dis-
tance function between fuzzy sets K1 and K2 is defined as:

Based on the Euclid distance function, a concept of the 
accuracy measures of the BGFVPRS models is given in the 
following.

Definition 13  Let (S,�) be a fuzzy relational structure 
where 𝜃 ∈ [0, 1),S1 = {a1, a2,… , an} ⊆ S. Then for each 
K ∈ F(S), the �-accuracy measures of upper and lower 
approximation operators of 1-BGFVPRS, 2-BGFVPRS, and 
3-BGFVPRS for fuzzy set K are defined as follows:

Meanwhile, another concept of the roughness measure 
of the BGFVPRS models is defined as follows.

Definition 14  Under the condition in Definition 13, for each 
K ∈ F(S), the �-roughness measure of upper and lower 
approximation operators of �-BGFVPRS for the fuzzy set 
K is defined as ��,�

�
(K) = 1 − d

�,�

E,�
(K), where � = 1, 2, 3.

For better understand the above two definitions, an 
example is given in the following.

Example 7  Assume that in the condition of Exam-
p l e  4 ,  i f  I1 = I2 = I3 = IL,  T1 = T2 = T3 = TL, 
through Definitions 13 and 14, we have that 
d
�,0.58

E,1
(K) = d

�,0.58

E,2
(K) = d

�,0.58

E,3
(K) = 0.7085, 

�
�,0.58

1
(K) = �

�,0.58

2
(K) = �

�,0.58

3
(K) = 0.2915. In this case, 

the 0.58-accuracy measures of 1-BGFVPRS, 2-BGFVPRS, 
and 3-BGFVPRS are identical meanwhile the 0.58-rough-
ness measures of them are the same.

dE(K1,K2) = 1 −
1
√

n
(

n
�

i=1

(K1(ai) − K2(ai))
2)

1

2 .

(21)

d
�,�

E,1
(K) = 1 −

1
√

n

� n
�

i=1

(apr
�,�

T1,I2
(K)(ai) − apr�,�

I1,T2
(K)(ai))

2

�
1

2

,

(22)

d
�,�

E,2
(K) = 1 −

1
√

n

� n
�

i=1

(apr
�,�

T1,T2
(K)(ai) − apr�,�

I1,I2
(K)(ai))

2

�
1

2

,

(23)d
�,�

E,3
(K) = 1 −

1
√

n

� n
�

i=1

(�
�

T3
(K)(ai) − ��

I3
(K)(ai))

2

�
1

2

.

In the following, the relationships of the �-accuracy 
measures (or the �-roughness measures) of the BGFVPRS 
models are discussed.

Proposition 15  If K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂) , � is reflexive and I1 , 
I2 are R-implicators, for each K ∈ F(S) and � ∈ [0, 1), we 
have d�,�

E,1
(K) ≥ d�

E,2
(K), �

�,�

1
(K) ≤ �

�,�

2
(K).

Proposition 16   Suppose that  K ∪ 𝜃̂ ⊆ K ∩ coN(𝜃̂), 
I1 = I2 = I3 = I and T1 = T2 = T3 = T where I is an R-impli-
cator based on a continuous t-norm T. For each K ∈ F(S) 
and � ∈ [0, 1), we have the following statements. 

(1)	 If � is symmetric and T-transitive fuzzy bisimulation, 
then d�,�

E,3
(K) ≤ d

�,�

E,2
(K), �

�,�

3
(K) ≥ �

�,�

2
(K).

(2)	 If � is a fuzzy T-similarity bisimulation relation, then 
d
�,�

E,3
(K) ≤ d

�,�

E,2
(K) ≤ d

�,�

E,1
(K), �

�,�

3
(K) ≥ �

�,�

2
(K) ≥ �

�,�

1
(K).

(3)	 If � is a fuzzy equivalence bisimulation relation, then 
d
�,�

E,3
(K) ≤ d

�,�

E,2
(K) ≤ d

�,�

E,1
(K), �

�,�

3
(K) ≥ �

�,�

2
(K) ≥ �

�,�

1
(K).

(4)	 If � is a largest fuzzy bisimulation relation, then 
d
�,�

E,3
(K) ≤ d

�,�

E,2
(K) ≤ d

�,�

E,1
(K), �

�,�

3
(K) ≥ �

�,�

2
(K) ≥ �

�,�

1
(K).

(5)	 Under the condition (2) (or (3), or (4)), if � = 0, then 
d
�,�

E,3
(K) ≤ d

�,�

E,2
(K) ≤ d

�,�

E,1
(K) ≤ 1, �

�,�

3
(K) ≥ �

�,�

2
(K) ≥

�
�,�

1
(K) ≥ 0.

(6)	 Fo r  e a ch  �1, �2 ∈ [0, 1),  i f  �1 ≤ �2,  t h e n 
d
�,�1
E,i

(K) ≤ d
�,�2
E,i

(K) where (i = 1, 2, 3).

The above Propositions show that we can study RS 
models from a numerical point of view. Through Prop-
ositions 15 and 16, when describing a fuzzy set at the 
same time, the accuracy (or roughness) measures of 
1-BGFVPRS, 2-BGFVPRS, and 3-BGFVPRS may 
be different. The 1-BGFVPRS is the most accurate, 
2-BGFVPRS is the second, and 3-BGFVPRS is the worst. 
Conversely, 3-BGFVPRS is the roughest, 2-BGFVPRS is 
the next, and 1-BGFVPRS is the least rough.

4.2 � The reduction

In two models (or the model and itself), the largest fuzzy 
bisimulation is the union of all fuzzy bisimulations. If 
there are some redundant or unnecessary fuzzy bisimula-
tions, when we compute the largest fuzzy bisimulation, 
we will spend a lot of unnecessary manpower and material 
resources. Especially when dealing with big data, these 
redundant data even make our work impossible because 
of the limited equipment and manpower.

To deal with these redundant data, some related con-
cepts are described below.
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Definition 15  Let (S, (Ri)i∈Λ) be a fuzzy relational struc-
ture. Assume that H = {�1,�2,… ,�k} which is the set of 
some fuzzy bisimulations in this structure. Then �t ∈ H is 
called dispensable to �b if �b − �t = �b; otherwise, it is 
called indispensable to �b. The set of all indispensible fuzzy 
bisimulations to �b in H is named the reduction of �b, which 
is written as �b

r
.

Note that fuzzy transition system in [7] is a special case 
of fuzzy relational structure with labels. In general, the 
labels are regarded as attributes. The following example is 
given to demonstrate the feasibility of the above definition.

Example 8  Assume � = {T = {t1, t2, t3},A = {m}, �, t1} is 
a labeled fuzzy transition system where T is a set of states, 
A is a set of labels, � is the fuzzy transition relation and t1 
is the initial state. The fuzzy transition system is shown as 
Fig. 8 where �(t1,m, t2) = �(t1,m, t3) = 0.8 and � takes values 
0 for all other cases.

Suppose that

It is easy to prove that R1 , R2 , R3 are three fuzzy 
bisimulations.

In this case, since �b =
⋃3

i=1
Ri = R3,�

b − R3 ≠ �b, 
then R3 is an indispensable fuzzy bisimulation to �b. Due to 
�b − R1 = �b − R2 = �b, we have R1 , R2 are two dispensable 
fuzzy bisimulations to �b. Hence, R3 is the reduction to �b.

Proposition 17  In a fuzzy relational structure 
(S, (Ri)i∈Λ), if H = {�1,�2,… ,�b

r
}, � =

⋃m

t=1
�b
rt
, and 

�b
r
= {�b

r1
,�b

r2
,… ,�b

rm
} which is a reduction of �b, then for 

each K ∈ F(S) and � ∈ [0, 1) the following results are true. 

(1)	 apr�
b,�

I1,T2
(K) = apr� ,�

I1,T2
(K), apr

�b,�

T1,I2
(K) = apr

� ,�

T1,I2
(K).

(2)	 apr�
b,�

I1,I2
(K) = apr� ,�

I1,I2
(K), apr

�b,�

T1,T2
(K) = apr

� ,�

T1,T2
(K).

(3)	 (�b)
�

I3
(K) = ��

I3
(K), (�b)

�

T3
(K) = �

�

T3
(K).

(4)	 d
�b,�

E,1
(K) = d

� ,�

E,1
(K)   ,  d

�b,�

E,2
(K) = d

� ,�

E,2
(K), 

d
�b,�

E,3
(K) = d

� ,�

E,3
(K).

(5)	 �
�b ,�

1
(K) = �

� ,�

1
(K), �

�b ,�

2
(K) = �

� ,�

2
(K), �

�b ,�

3
(K) = �

� ,�

3
(K).

R1 =
1

(t1, t1)
+

1

(t2, t2)
+

1

(t3, t3)
,

R2 =
1

(t1, t1)
+

1

(t2, t3)
+

1

(t3, t2)
,

R3 =
1

(t1, t1)
+

1

(t2, t2)
+

1

(t3, t3)
+

1

(t2, t3)
+

1

(t3, t2)
.

Of course, for the general fuzzy bisimulation, the reduc-
tion is very important. In order to maintain some proper-
ties, we can also propose some reduction methods of fuzzy 
bisimulation from other angles, such as keeping the positive 
region unchanged.

The paper from keeping the distance between the lower 
and the upper approximation operator invariable provides a 
method to depict the reduction of the general fuzzy bisimu-
lation. Using our method, in the era of big data, human and 
material resources can be greatly saved. The reduction forms 
of the three models are similar. Next, only the reduction of 
1-BGFVPRS model is discussed.

Definition 16  Let (S, (Ri)i∈Λ) be a finite fuzzy relational 
structure. Assume that H = {�1,�2,… ,�k} which is the 
set of all fuzzy bisimulations. If d�−�t ,�

E,1
(K) ≠ d

�,�

E,1
(K), then 

�t is relative indispensable to � ; otherwise it is relative dis-
pensable to � . The relative reduction of H is all relative 
indispensable fuzzy bisimulations for H.

To help us understand the above definition well, the fol-
lowing example is given.

Example 9  Under the condition of Example 8, let 
I1 = I2 = IL, T1 = T2 = TL, N = Ns and � = 0.58. Assume 
that K =

0.8

t1
+

0.5

t2
+

0.7

t3
. By Definition 8 and formula (3.21), 

we have the following results:

Through Definition 16, we obtain that R3 is relative indis-
pensable while R1 , R2 are relative dispensable to �b. Thus, 
R3 is a relative reduction to �b.

d
�b−R1,0.58

E,1
(K) = d

�b,0.58

E,1
(K) = 0.74;

d
�b−R2,0.58

E,1
(K) = d

�b,0.58

E,1
(K) = 0.74;

0 = d
�b−R3,0.58

E,1
(K) ≠ d

�b,0.58

E,1
(K) = 0.74.

Fig. 8   A labeled fuzzy transition system
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In the following, a method to compute the relative reduc-
tion for a general fuzzy bisimulation is given. Through this 
method, the reduction to the largest fuzzy bisimulation �b 
can be easily obtained.

Let H = {�1,�2,… ,�k} be a set of k fuzzy bisimulations 
in the finite fuzzy relational structure (S, (Ri)i∈Λ). The fuzzy 
bisimulation � is a relative reduction to the fuzzy bisimula-
tion � if it satisfies the following conditions: 

(1)	 d
�,�

E,1
(K) = d

�,�

E,1
(K),

(2)	 ∀ 𝜑t ∈ H,𝜑t ⊆ 𝜛, d
𝜑,𝜃

E,1
(K) ≠ d

𝜑t ,𝜃

E,1
(K).

In the following, an example is given to illustrate the above 
method.

Example 10  From Example 9, through Definition 8 and for-
mula (3.21), we have that d�

b,0.58

E,1
(K) = 0.74, d

R1,0.58

E,1
(K) =

0.71, d
R2,0.58

E,1
(K) = 0.15, d

R3,0.58

E,1
(K) = 0.74. Based on this, 

we find that d�
b,0.58

E,1
(K) = d

R3,0.58

E,1
(K), d�

b,0.58

E,1
(K) ≠ d

R1,0.58

E,1
(K), 

d
�b,0.58

E,1
(K) ≠ d

R2,0.58

E,1
(K).

Since R1,R2 ⊂ R3 , according to the above method, R3 is 
the relative reduction to �b while R1 and R2 are not the rela-
tive reduction.

The relationship between the reduction and relative 
reduction is discussed as follows.

Remark 5  Through the analysis of the above definitions and 
propositions, we have the following statements. 

(1)	 If � is the relative reduction of �b, it may not the reduc-
tion for �b.

(2)	 If � is the reduction of �b, it is the relative reduction 
for �b.

5 � The PROMETHEE II method based 
on BGFVPRS models

The classical PROMETHEE methods in [5, 6] and some 
MADM methods in [20, 21, 62–64] based on the general-
ized RS models have achieved many great results in applica-
tions. However, they seem powerless for the multiple rela-
tionship structure problems such as community promotion 
problems and social network analysis problems. In view 
of this, a novel MADM method is needed. In this section, 
based on the concept of fuzzy bisimulation and the thought 
of PROMETHEE II method, we want to provide an effective 
decision-making method based on the BGFVPRS models.

The BGFVPRS models are based on the fuzzy bisimula-
tions. With them, the theoretical research of the classical 

rough set model has been enriched. These relations can exca-
vate “multi-step” information for underlying relations in a 
fuzzy environment. By means of the fuzzy bisimulations, 
objects can be well distinguished. Based on this, we can 
approximate the uncertain concept well and make a better 
result.

From Fig.  7 in Section  3 and Propositions 15 and 
16 in Section 4, 1-BGFVPRS is most accurate than the 
2-BGFVPRS and 3-BGFVPRS. That is to say, the results 
by using 1-BGFVPRS are closer to the uncertainty concept 
K than the other BGFVPRS models provided in the paper. 
In order to make the decision results closer to the actual 
needs of DMs, the 1-BGFVPRS is selected to be applied. Of 
course, the other two types of BGFVPRS models can also 
be applied in this decision-making method, and then some 
different results may be obtained.

To make the decision-making method more general and 
be applied in widely areas, the general fuzzy logic operators 
are introduced. A threshold parameter � where � ∈ [0, 1), is 
given to control the influence of environmental noise data 
on our decision results. In decision-making, DMs can give 
the appropriate threshold � according to the actual situation 
of the environment, which will make the decision-making 
result better. Because the BGFVPRS models are not easily 
disturbed by noise data, the decision-making method in the 
paper is robust.

The subjective weight is important in some decision-mak-
ing methods. However, if the experts have different opinions, 
then the subjective weights are difficult to obtain. Or, if the 
DMs are lack of experience, the subjective weights obtained 
may not be right. Compared with it, the objective weight can 
avoid errors caused by human factors. In this section, by 
means of the concept of �-accuracy measure which is uncer-
tainty measure, an objective weight formula is proposed.

In classical rough set theory, the attribute reduction can 
help remove redundant attributes and improve the decision-
making efficiency of the algorithm. In view of this, the 
reduction defined in Section 4 is applied in our decision-
making method. When making a decision, we don’t need to 
compute the decision-making result of every fuzzy bisimula-
tion. Then, we will save a lot of time and human resources. 
In other words, it will improve the decision-making effi-
ciency of our proposed algorithm.

Above, our method is robust, flexible, and effective.

5.1 � The PROMETHEE II method based on 1‑BGFVPRS 
model

Recently, MADM methods have drawn many scholars’ 
attention and their contribution is enormous. Some schol-
ars relied on RS models and presented many decision-
making methods. However, some MADM methods in [5, 
6, 20, 21, 62–64] have some defects in relational structure 



2332	 International Journal of Machine Learning and Cybernetics (2022) 13:2313–2344

1 3

decision-making problems such as graph mining or social 
network analysis. Based on this, we hope to look for an 
effective approach to solve these problems.

On the basis of the 1-BGFVPRS model, combing the 
principle of the PROMETHEE II method, a novel decision-
making method is provided. Furthermore, an example for 
selecting the optimal alternative by mass organizations in 
the Zachary karate club network is given to illustrate this 
method. Through the example, the flexibility and effective-
ness are illustrated from two aspects: comparative analysis 
and sensitivity analysis.

5.2 � Problem statement

An organization or a community wants to choose talent lead-
ers. It is necessary to consider not only the belief ability, 
planning ability, and goal ability of alternatives, but also 
their influence ability, interpersonal ability, and communi-
cation ability. If the managers not only have political integ-
rity and ability, but also have high leadership ability, the 
organization will make brilliant achievements under their 
leadership.

Let S = {t0, t1,… , tn−1} be the universe of n alternatives 
in an organization or a community, M = {m0,m1,… ,mq−1} 
be the set of q labels, Υ = {R0,R1,… ,Ry−1} be a set of fuzzy 
relations, and Ψ = {�0,�1,… ,�x−1} be a set of binary 
fuzzy relations. Here, Rh(ti,mj, tk) = hijk denotes the degree 
value of alternative ti to alternative tk with respect to the 
relation Rh ∈ R for label mj where ti, tk ∈ S, mj ∈ M, and 
hijk ∈ [0, 1]. Here, the n, q, y, x are natural numbers.

The information of Rh(ti,mj, tk) is provided by a lot of 
experts and shown as Table 2. The value of �f (ti, tk) = fik 
shows that the membership degree for alternative ti to 
alternative tk with respect to binary fuzzy relation �f . 
Table 3 presents the information of the fuzzy set �f . Note 
that the labels can represent a certain identity, a certain 
characteristic, or a certain aspect, etc. Generally speak-
ing, labels can be considered as attributes. Therefore, this 
kind of problem is an MADM with multiple relationships.

To select the optimal member, a decision-making 
method is given as follows.

5.3 � Decision‑making methodology

First of all, through the experience of experts, profes-
sional evaluation, and statistical analysis, we can get real 
data from a community or a social network. Through nor-
malization, we get the fuzzy data sets Υ and Ψ.

Secondly, according to Definition 7 and the reduc-
tion of fuzzy bisimulation, some fuzzy bisimulations are 
selected. These fuzzy bisimulations constitute a new fam-
ily of relation sets Ξ = {𝜓0,𝜓1,⋯ ,𝜓z−1} ⊆ Ψ.

Thirdly, based on the principle of PROMETHEE II, 
through Definition 8, the preference function is given as 
follows:

w h e r e  Df (ti, tj) = [apr
�f ,�

I1,T2
(K)(ti) + apr

�f ,�

T1,I2
(K)(ti)]

−[apr
�f ,�

I1,T2
(K)(tj) + apr

�f ,�

T1,I2
(K)(tj)] and �f ∈ Ξ.

Fourthly, by the following formula, the overall prefer-
ence index � is obtained:

where �f =
d
�f ,�

E,1
(K)

∑z−1

v=0
d
�v ,�

E,1
(K)

. Especially, when 
∑z−1

v=0
d
�v,�

E,1
(K) = 0 

and wf = 0.

Furthermore, the leaving flow, the entering flow, and 
net flow are defined as :

Finally, the alternative ti is ranked by the value of �(ti). The 
best alternative is selected according to the ranking order.

In the following, an algorithm of our proposed method 
is given as follows.

(24)Pf (ti, tj) = Df (ti, tj),

(25)�(ti, tj) =

z−1
∑

f=0

Pf (ti, tj) ⋅ �f ,

(26)�+(ti) =

n−1
∑

j=1

�(ti, tj),

(27)�−(ti) =

n−1
∑

j=1

�(tj, ti),

(28)�(ti) = �+(ti) − �−(ti).

Table 2   The information of Rh(ti,mj, tk)

Rp  t0  t1  ⋯  tn−1

t0  h0j0  h0j1  ⋯  h0j(n−1)
t1  h1j0  h1j1  ⋯  h1j(n−1)
⋮  ⋮  ⋮  ⋯  ⋮
tn−1  h(n−1)j0  h(n−1)j1  ⋯  h(n−1)j(n−1)

Table 3   The information of �f (ti, tk)

�f  t0  t1  ⋯  tn−1

t0  f00  f01  ⋯  f0(n−1)
t1  f10  f11  ⋯  f1(n−1)
⋮  ⋮  ⋮  ⋯  ⋮
tn−1  f(n−1)0  f(n−1)1  ⋯  f(n−1)(n−1)
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5.4 � Procedure for decision‑making method

In this subsection, Algorithm 1 is the algorithm of our 
proposed method. The complexity of Algorithm  1 is 
O(z ∗ n2 + xy). In this algorithm, its computational complex-
ity is analyzed as follows. Step 1 is to obtain fuzzy bisimula-
tions by Definition 7 and the computational complexity is 
O(xy). Step 2 is to get the approximation operators of the 

Algorithm 1 The algorithm of the PROMETHEE II method based on 1-BGFVPRS method in fuzzy
relational structure
htbp
Input: A fuzzy relational structure (S,Υ ∪ Ψ)
Output: The ranking of all members and the optimal member
1: begin for Ξ = ∅, Rh ∈ Υ, ϕf ∈ Ψ, h ∈ {0, 1, · · · , y − 1}, f ∈ {0, 1; · · · , x− 1} do

if (ϕf )− ◦Rh ⊆ Rh ◦ (ϕf )− and ϕf ◦ Rh ⊆ Rh ◦ ϕf then Ξ = ϕf ∪ Ξ end
2: Given a parameter θ and a fuzzy set K

for ti ∈ S, ϕf ∈ Ξ
compute: aprϕf ,θ

I1,T2
(K)(ti) =

b∈S
T2(ϕf (b, ti),

c∈S
I1(ϕf (b, c), θ ∨K(c)))

compute: aprϕf ,θ
T1,I2

(K)(ti) =
b∈S

I2(ϕf (b, ti),
c∈S

T1(ϕf (b, c),N (θ) ∧K(c)))

end
3: for ti, tj ∈ S do

compute:
D(ti, tj) = [aprϕf ,θ

I1,T2
(K)(ti) + apr

ϕf ,θ
T1,I2

(K)(ti)]− [aprϕf ,θ
I1,T2

(K)(tj) + apr
ϕf ,θ
T1,I2

(K)(tj)]
end

4: for ti, tj ∈ S
compute: Pf (ti, tj) = Df (ti, tj)
end

5: for ϕf ∈ Ξ do

if
z−1

v=0
dϕv,θ
E,1 (K) = 0, then ωf = 0

else ωf =
d
ϕf ,θ

E,1 (K)
z−1

v=0
dϕv,θ
E,1 (K)

end
6: for ti, tj ∈ S do

compute: π(ti, tj) =
z−1

f=0
Pf(ti, tj) · ωf

end
7: for ti ∈ S do

compute: +(ti) =
n−1

j=0
π(ti, tj)

compute: −(ti) =
n−1

j=0
π(tj , ti)

compute: (ti) = +(ti)− −(ti)
end

8: for ti, tj ∈ S
if (ti) (tj), then ti > tj
else ti ≤ tj
end

9: return: The ranking of all members and the optimal member.
end

fuzzy set K and the computational complexity is O(n2). Steps 
3 and 4 are to calculate the preference between alternatives 
and the computational complexity is O(2n2) . Steps 5 and 
6 are to obtain the overall preference between alternatives 
and the computational complexity is O(zn2 + z). Step 7 is to 
get the net flow and the computational complexity is O(n2). 
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Step 8 is to rank the alternatives and the computational com-
plexity is O(n2). In a word, the computational complexity of 
Algorithm 1 is O(xy + zn2).

In the following, an illustrative example is given for the 
above algorithm.

5.5 � An illustrative example

Example 11  From reference [60], we observe that the karate 
club network shown as Fig. 9, was divided into two small 
subgroups by the conflict between the club president, John 
A., and Mr. Hi about the price of karate lessons. Mr. Hi 
wanted to raise the prices and asked the mechanism to give 
him the right to set his lesson fees due to that he was the 
instructor. However, John A, the chief executive of the club, 
insisted on stabilizing prices and claimed that he had the 
right to set the tuition.

As time went by, this contradiction split the original com-
munity into two small groups. However, these factions are 
only ideological groups, which have never materialized in 
the organization. It is worth noting that there are no political 
differences, and the club members do not name their names 
or even deny the existence of these factions. No one have 
tried to arrange or guide the political tactics of these groups.

To make the club better and stronger, the top management 
of the company came forward to make John A and Mr. Hi 
reconcile. For increasing the cohesion and competitiveness 
of the club, the board of directors unanimously decided to 
select an outstanding member from 34 members as CEO. 
Through a series of tests, the experts investigated the abili-
ties of the 34 members in various aspects, such as the belief 
ability, planning ability, and target ability of alternative 
programs. Then, the comprehensive evaluation ability value 
of 34 members constitutes a fuzzy set K. For the selected 

member to better lead everyone, it is also necessary to exam-
ine the degree of communication among members.

Figure 9 shows the social relationship of 34 members in 
the karate club. In this figure, the red ball 33 represents John 
A. and the other red numbered balls represent the supporters 
of his. John A. with his supporters constitute one commu-
nity. Meanwhile, the green No.0 ball represents Mr. Hi, and 
other green numbered balls represent his supporters, forming 
another community. A line between two colored numbered 
balls represents consistently communicated in settings out-
side those of workouts, club meetings, and karate classes. 
Because in workouts, club meetings, and karate classes, they 
interact with each other almost identically. The labels con-
sidered here for all members are the same, which can be 
considered as having no labels. In other words, this is an 
unlabeled approximation space. The line can be regarded as 
an edge. The edge in Fig. 9 is bidirectional which makes that 
the fuzzy relation R is symmetrical.

Anthropologists have investigated and counted the fre-
quency of interaction between club members, the depth 
of conversation, the influence of the conversation, and the 
mutual trust after communication. The degree of communi-
cation between members is shown in Tables 4 and 5. In the 
paper, R(ti, tj) ≠ 0 denotes that there is one line between the 
colored numbered balls i and j, which shows that the degree 
of communication between the members ti and tj is not 0, 
vice versa. For the sake of simplicity, some unnecessary 
data representations are omitted. For example R(t14, tj) = 0 
(j ∈ {0, 1,… , 8}) is omitted.

Case 1: Let I1 = I2 = IL, T1 = T2 = TL, N = Ns, and ⊗ = ∧. 
The information of K is listed as Table 6. According to 
the actual demands and environmental factors, experts set 
� = 0.45. Since R−◦R = R◦R−,R◦R = R◦R, through Defini-
tion 7, R is the only fuzzy bisimulation relation. By Algo-
rithm 1, some results are obtained as Tables 7, 8, 9, 10.

Through the value of �(ti) in Table 10, the 34 members 
in Zachary karate club network are ranked as:

t33 > t0 > t1 > t32 > t11 > t17 = t19 > t4 > t23

= t24 > t26 > t27 > t25 > t12 > t5 >

t29 > t16 > t15 > t30 > t7 > t2 > t14

= t18 = t20 > t8 > t21 > t22 > t3 > t13

> t10 > t31 > t9 = t28 > t6.

According to the ranking order, the member t33 should 
be selected to lead this club.

The result of this algorithm accords with real life, 
because the member t33 is the president of the club, and 
his technical and management ability is very strong. If he 
leads the team, the karate club will develop better.

Fig. 9   Zachary karate club network
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Table 4   The information of fuzzy relation R 

R(ti, tj)  t0  t1  t2  t3  t4

t0  0  0.5015  0.1381  0.6123  0.7508
t1  0.5014  0  0.4762  0.4228  0
t2  0.1381  0.4762  0  0.21  0
t3  0.6123  0.4228  0.21  0  0
t4  0.7508  0  0  0  0
t5  0.1661  0  0  0  0
t6  0.3146  0  0  0  0.4867
t7  0.4855  0.4447  0.2177  0.5053  0
t8  0.7258  0  0.4558  0  0
t9  0  0  0.4868  0  0
t10  0.5546  0  0  0  0.2545
t11  0.7263  0  0  0  0
t12  0.513  0  0  0.4034  0
t13  0.5766  0.7454  0.5876  0.8032  0
t16  0  0  0  0  0
t17  0.8889  0.8348  0  0  0
t19  0.7245  0.1776  0  0  0
t21  0.1618  0.4564  0  0  0
t27  0  0  0.3637  0  0
t28  0  0  0.6358  0  0
t30  0  0.6322  0  0  0
t31  0.3578  0  0  0  0
t32  0  0  0.2584  0  0
t33  0  0  0  0  0

R(ti, tj)  t5  t6  t7  t8

t0  0.1662  0.3146  0.4855  0.7258
t1  0  0  0.4447  0
t2  0  0  0.2178  0.4558
t3  0  0  0.5053  0
t4  0  0.4867  0  0
t5  0  0.4867  0  0
t6  0.6181  0  0  0
t10  0.4849  0  0  0
t16  0.3639  0.5237  0  0
t30  0  0  0  0.3515
t32  0  0  0  0.3697
t33  0  0  0  0.2043

R(ti, tj)  t9  t10  t11  t12  t13

t0  0  0.5546  0.7263  0.513  0.5766
t1  0  0  0  0  0.7454
t2  0.4868  0  0  0  0.5876
t3  0  0  0  0.4034  0.8032
t4  0  0.2545  0  0  0
t5  0  0.4849  0  0  0
t33  0.2592  0  0  0  0.7413

R(ti, tj)  t14  t15  t16  t17

t0  0  0  0  0.8889
t1  0  0  0  0.8348
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Table 4   (continued)

R(ti, tj)  t14  t15  t16  t17

t5  0  0  0.3639  0
t6  0  0  0.5237  0
t32  0.2446  0.7147  0  0
t33  0.6341  0.1818  0  0

R(ti, tj)  t18  t19  t20  t21  t22

t0  0  0.7245  0  0.1618  0
t1  0  0.1776  0  0.4564  0
t2  0.4868  0  0  0  0.5876
t32  0.2025  0  0.7056  0  0.4584
t33  0.2754  0.5802  0.9985  0  0.5212

R(ti, tj)  t23  t24  t25  t26

t23  0  0  0.6547  0
t24  0  0  0.7537  0
t25  0.6547  0.7537  0  0
t27  0.6619  0.6736  0  0
t29  0.328  0  0  0.5642
t31  0  0.7191  0.3349  0
t32  0.568  0  0  0
t33  0.4903  0  0  0.6108

Table 5   The information of 
fuzzy relation R 

R(ti, tj)  t27  t28  t29  t30  t31  t32  t33

t0  0  0.7245  0  0.1618  0.3578  0  0
t1  0  0  0  0.6322  0  0  0
t2  0.3637  0.6358  0  0  0  0  0.2584
t8  0  0  0  0.3515  0  0.3697  0.2043
t9  0  0  0  0  0  0  0.2592
t13  0  0  0  0  0  0  0.7413
t14  0  0  0  0  0  0.2446  0.6341
t15  0  0  0  0  0  0.7147  0.1818
t18  0  0  0  0  0  0.2025  0.2754
t19  0  0  0  0  0  0  0.5802
t20  0  0  0  0  0  0.7056  0.9985
t22  0  0  0  0  0  0.4584  0.5212
t23  0.6619  0  0.328  0  0  0.568  0.4903
t24  0.6736  0  0  0  0.7191  0  0
t25  0  0  0  0  0.3349  0  0
t26  0  0  0.5642  0  0  0  0.6108
t27  0  0  0  0  0  0  0.7917
t28  0  0  0  0  0.7589  0  0.112
t29  0  0  0  0  0  0.5475  0.7715
t30  0  0  0  0  0  0.8532  0.1807
t31  0  0.7589  0  0  0  0.7231  0.5093
t32  0  0  0.5475  0.8532  0.7231  0  0.9985
t33  0.7917  0.112  0.7715  0.1807  0.5093  0.9985  0
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5.6 � Comparative analysis

In this section, some comparative analyses are given. 
Firstly, a comparison of ranking results about our proposed 
method for different logical operators is demonstrated in the 
following.

5.6.1 � A comparative analysis for different logical operators

Since S-implicator, R-implicator and QL-implicator are 
three kinds of popular and important implicators, by using 
these kinds of implicators and some usually used continu-
ous t-norms in [41], we have 198 types of 1-BGFVPRS 
models, 198 types of 2-BGFVPRS models and 18 types of 

3-BGFVPRS models. In the following, we random extract 
15 types of 1-BGFVPRS models to apply our method for 
solving the problems. Table 11 gives the information of 15 
cases and the optimal alternatives of each case. It should be 
noted that I∙ and T◦ (∙ = L,G,Δ,KD,⋆, Z;◦ = M, L,P) [41] 
are an implicator and a continuous t-norm, respectively.

In order to compare the correlation of ranking results, we 
introduce Spearman’s rank correlation coefficient (SRCC). 
Suppose that the two random variables are A and B (can 
also be regarded as two sets), and the number of elements 
is k. The ith (1 ≤ i ≤ k) value of the two random variables 
is represented by Xi and Yi respectively. Sorting A and B 
(ascending or descending at the same time) to obtain two 
element ranking sets X and Y where elements Xi and Yi are 

Table 6   The information of 
fuzzy set K 

ti  t0  t1  t2  t3  t4  t5  t6  t7  t8  t9

K(ti)  0.98  0.81  0.90  0.12  0.91  0.63  0.09  0.27  0.54  0.05
ti  t10  t11  t12  t13  t14  t15  t16  t17  t18  t19
K(ti)  0.15  0.95  0.48  0.45  0.14  0.42  0.91  0.79  0.10  0.65
ti  t20  t21  t22  t23  t24  t25  t26  t27  t28  t29
K(ti)  0.03  0.84  0.93  0.58  0.75  0.74  0.39  0.65  0.17  0.70
ti  t30  t31  t32  t33
K(ti)  0.03  0.27  0.75  0.94

Table 7   The results of 
aprR,0.45

IL ,TL
(K)(ti)

ti  t0  t1  t2  t3  t4  t5  t6

aprR,0.45
IL ,TL

(K)(ti))  0.8641  0.81  0.4868  0.45  0.565  0.6181  0.45
ti  t7  t8  t9  t10  t11  t12  t13
aprR,0.45

IL ,TL
(K)(ti)  0.2997  0.54  0.301  0.3688  0.5405  0.3271  0.45

ti  t14  t15  t16  t17  t18  t19  t20
aprR,0.45

IL ,TL
(K)(ti)  0.0856  0.3115  0.5237  0.703  0.0  0.5387  0.45

ti  t21  t22  t23  t24  t25  t26  t27
aprR,0.45

IL ,TL
(K)(ti)  0.1611  0.0552  0.58  0.679  0.6428  0.45  0.65

ti  t28  t29  t30  t31  t32  t33
aprR,0.45

IL ,TL
(K)(ti)  0.45  0.5642  0.45  0.45  0.75  0.94

Table 8   The results of 
apr

R,0.45

TL ,IL
(K)(ti)

ti  t0  t1  t2  t3  t4  t5  t6

apr
R,0.45

TL ,IL
(K)(ti)

 0.55  0.55  0.55  0.4922  0.6814  0.55  0.3819

ti  t7  t8  t9  t10  t11  t12  t13
apr

R,0.45

TL ,IL
(K)(ti)

 0.7479  0.5818  0.5509  0.5151  0.7126  0.8498  0.45

ti  t14  t15  t16  t17  t18  t19  t20
apr

R,0.45

TL ,IL
(K)(ti)

 0.9144  0.8339  0.6361  0.55  1.0  0.7143  0.55

ti  t21  t22  t23  t24  t25  t26  t27
apr

R,0.45

TL ,IL
(K)(ti)

 0.9283  1.0  0.649  0.55  0.55  0.7572  0.55

ti  t28  t29  t30  t31  t32  t33
apr

R,0.45

TL ,IL
(K)(ti)

 0.4019  0.5965  0.6954  0.4268  0.55  0.55
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the ith values in the ranking of X and Y,  respectively. The 
elements in sets X and Y are correspondingly subtracted 
to obtain a ranking difference set d = {di ∣ i = 1, 2,… , k} 
where di = Xi − Yi . The SRCC ( � ) between random variables 
A and B can be calculated as follows:

From Table 11, we find that in most cases, the best member 
is t33 , while in Case 2, the best member is t0. The reason is 
that the selection of different logical operators has a certain 

� = 1 −

6
k
∑

i=1

d2
i

k(k2 − 1)
.

influence on sorting order. Although the optimal results of 
Case 15 and Case 2 are inconsistent, the SRCC of the two 
ranking results is 0.7406, which is highly correlated.

5.6.2 � A comparative analysis for different variable 
precision values

In this section, we investigate how � affects the ranking 
orders of all considered members. When � changes its 
value, we make some comparisons among several cases as 
figures 10 and 11. The value range of � is [0, 1),  and the step 
length is 0.1. From Figs. 10 and 11, the following conclu-
sions can be drawn.

Table 9   The results of the 
overall preference �(ti, tj)

�(ti, tj)  t0  t1  t2  ⋯  t31  t32  t33

t0  0  0.0541  0.3773  ⋯  0.5373  0.1141  − 0.0759
t1  − 0.0541  0  0.3232  ⋯  0.4832  0.06  − 0.13
t2  − 0.3773  − 0.3232  0  ⋯  0.16  − 0.2632  − 0.4532
t3  − 0.4719  − 0.4178  − 0.0946  ⋯  0.0654  − 0.3578  − 0.5478
t4  − 0.1677  − 0.1136  0.2096  ⋯  0.3696  − 0.0536  − 0.2436
⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮
t16  − 0.2543  − 0.2002  0.123  ⋯  0.283  − 0.1402  − 0.3302
t17  − 0.1611  − 0.1070  0.2162  ⋯  0.3762  − 0.047  − 0.237
t18  − 0.4141  − 0.36  − 0.0368  ⋯  0.1232  − 0.3  − 0.49
⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮
t30  − 0.2687  − 0.2146  0.1086  ⋯  0.2686  − 0.1546  − 0.3446
t31  − 0.5373  − 0.4832  − 0.16  ⋯  0  − 0.4232  − 0.6132
t32  − 0.1141  − 0.06  0.2632  ⋯  0.4232  0  − 0.19
t33  0.0759  0.13  0.4532  ⋯  0.6132  0.19  0

Table 10   The results of �+(ti), �−(ti) and �(ti)

ti  t0  t1  t2  t3  t4  t5  t6

�+(ti)  10.0061  8.1667  − 2.8221  − 6.0385  4.3043  1.6421  − 9.7887
�−(ti)  − 10.0061  − 8.1667  2.8221  6.0385  − 4.3043  − 1.6421  9.7887
�(ti)  20.0122  16.3334  − 5.6442  − 12.077  8.6086  3.2842  − 19.5774

ti  t7  t8  t9  t10  t11  t12  t13

�+(ti)  − 2.4549  0.0679  − 9.1087  − 8.0207  4.5321  1.9413  − 7.4733
�−(ti)  2.4549  − 0.0679  9.1087  8.0207  − 4.5321  − 1.9413  7.4733
�(ti)  − 4.9098  0.1358  − 18.2174  − 16.0414  9.0642  3.8826  − 14.9466

ti  t21  t22  t23  t24  t25  t26  t27

�+(ti)  − 1.0337  − 2.1965  3.7127  3.7127  2.4819  2.9715  2.7267
�−(ti)  1.0337  2.1965  − 3.7127  − 3.7127  − 2.4819  − 2.9715  − 2.7267
�(ti)  − 2.0674  − 4.393  7.4254  7.4254  4.9638  5.943  5.4534

ti  t28  t29  t30  t31  t32  t33

�+(ti)  − 9.1087  1.3905  0.8703  − 8.262  6.1267  12.5867
�−(ti)  9.1087  − 1.3905  − 0.8703  8.2621  − 6.1267  − 12.5867
�(ti)  − 18.2174  2.781  1.7406  − 16.5242  12.2534  25.1734
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•	 With the change of variable precision value � , the rank-
ing of each case will change, but the optimal members of 
them are consistent. For example, in Fig. 10, except for 
Case 2, when taking the same �, the optimal members of 
other five cases are highly consistent in most of the time.

•	 In Fig. 10, for Case 2, when the variable precision is 
greater than a certain value, its sensitivity is not high. In 
particular, when � = 0.9 , using Case 2 cannot help DMs 
to select the best member. Therefore, the DMs may not 
consider Case 2 when making decisions.

•	 Through Fig. 11a, when � = 0.95, the best optimal mem-
ber cannot be obtained in Cases 1–3. But, the optimal 
member can be selected in the other cases. In Cases 4 
and 5, more than one optimal member is got while the 
best one can be obtained in Cases 6 and 15.

•	 Figures 10j and 11a show that when 0.9 < 𝜃 < 1 , the opti-
mal member cannot be selected in some cases. This phe-
nomenon is caused by human subjective factors interfere 
so strongly that many objective data sets are invalid. In 
fact, in these conditions the results obtained are unfair for 
the members under the test. Generally speaking, the vari-
able precision value should not be too large or infinitely 
close to 1. If an irrational decision-maker has to make a 
decision in this situation, we can still help him make a 
decision and choose the best member, such as Case 15.

•	 By Figs. 10 and 11a, the optimal member for Case 6 
changes while the optimal member for Case 15 still stays 
the same i.e., t33.

Above, the DMs can select different logical operators and 
variable precision values according to their actual needs. 
This shows the flexibility of the method in the paper.

5.6.3 � A comparative analysis for different MADM methods

In this section, from a comparison among the classical 
PROMETHEE method (including PROMETHEE I and 
PROMETHEE II) in [5, 6], some popular MADM methods 
in [20, 21, 62–64] and our proposed method, the effective-
ness and feasibility of our presented method are demon-
strated. Through the analysis of the design principle and 
application environment of these methods, their differ-
ences are shown as Table 12. In this table, for simplicity, 
using FISs denotes functional information systems [42] 
while using RISs represents relational information sys-
tems [42].

By Table 12, some conclusions are made as follows:

•	 A data table in RS consists of a set of objects and a set 
of attributes. In the data table, every attribute is consid-
ered as a function from a set of objects to the attributes’ 
domain of values. In [42], FISs are data tables that rep-
resent attribute data. In the FISs, the methods proposed 
in [5, 6, 20, 21, 62–64] only consider the information 
about individual objects but do not consider the relations 
between objects. Sometimes, it may be necessary to take 
into account the relations between objects. For example, 
in social network analysis, if you only consider the attrib-
ute data, you will lose much useful information since 
its main data types are attribute data [42] and relational 
data [42]. In this case, using the methods in [5, 6, 20, 
21, 62–64] may be unavailable. The RISs [15] comprise 
a set of objects, a set of attributes and a set of relations 
between objects. In the RISs, using our proposed method 
can deal with the problems which the above mentioned 

Table 11   The information 
of 15 cases and the optimal 
alternative of each case

Case  I1  I2  T1  T2  N  � The 
optimal 
member

Case 1  IL  IL  TL  TL  Ns  0.45  t33
Case 2  IKD  IL  TM  TL  Ns  0.45  t0
Case 3  IL  IKD  TL  TM  Ns  0.45  t33
Case 4  IL  IKD  TL  TP  Ns  0.45  t33
Case 5  IL  I∗  TL  TL  Ns  0.45  t33
Case 6  IL  I∗  TL  TM  Ns  0.45  t33
Case 7  IL  IZ  TL  TL  Ns  0.45  t33
Case 8  I∗  IZ  TL  TL  Ns  0.45  t33
Case 9  IL  IG  TL  TL  Ns  0.45  t33
Case 10  I∗  IZ  TP  TL  Ns  0.45  t33
Case 11  IΔ  IL  TL  TL  Ns  0.45  t33
Case 12  IΔ  I∗  TP  TL  Ns  0.45  t33
Case 13  IΔ  IZ  TP  TL  Ns  0.45  t33
Case 14  IΔ  IKD  TP  TL  Ns  0.45  t33
Case 15  IΔ  IG  TP  TL  Ns  0.45  t33
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 10   The comparison of the ranking results for 6 cases with different �
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methods cannot solve and helps DMs make a clear deci-
sion.

•	 From Table 12, we find that the weights in [6, 20, 21, 
62–64] are given by experts or DMs while the weights 
in [5] and our proposed method are calculated from the 
raw data by a formula. In general, the weights given by 
experts or DMs are called subjective weights while the 
weights computed by a formula are named objective 
weights. For the methods in [6, 20, 21, 62–64], if the 
experts have different opinions, then the weights are dif-
ficult to obtain. Or, if the DMs are lack of experience, 
the weights obtained may not be suitable. That is, using 
these methods may be infeasible in these cases. But using 
objective weight formulas can effectively avoid these 
situations.

•	 From the above table, the two methods in [5, 6] are 
not based on relations. The methods in [20, 62, 64] are 
based on the fuzzy �-neighborhood operators while other 
methods in [21, 63] are based on the fuzzy neighborhood 
operators. Different from the aforementioned methods, 
our proposed method is on the basis of fuzzy bisimula-
tions. It is noted that the fuzzy �-neighborhood opera-
tors and fuzzy neighborhood operators are binary fuzzy 
relations that only obtain “one step” information of the 
potential relations. However, for some complex prob-

lems, “one step” information may not be enough to dis-
cern objects. The fuzzy bisimulations which are natural 
generations of bisimulations can help us to characterize 
indiscernibility by exploiting “multi-step” information. 
With fuzzy bisimulations, the application scope of the 
classical PROMETHEE II has been expanded. For exam-
ple, our proposed decision-making method can solve 
many MADM problems involving relational structure 
data where some popular MADM methods in [5, 6, 20, 
21, 62–64] cannot solve.

(a) (b)

Fig. 11   A comparison for 7 cases when � = 0.95 and another comparison for Case 1 when � ∈ [0, 1).

Table 12   The differences 
among some methods in [5, 6, 
20, 21, 62–64] and our proposed 
method

Methods Information 
systems

Weights Relations

Brans and Vincke’s method [5] FISs Objective None
Brans et al.’s method [6] FISs Subjective None
Jiang et al.’s method [20] FISs Subjective Fuzzy �-neighborhoods operators
Jiang et al.’s method [21] FISs Subjective Fuzzy neighborhood operators
Zhan et al.’s method [62] FISs Subjective Fuzzy �-neighborhood operators
Zhang et al.’s [63] FISs Subjective Fuzzy neighborhood operators
Zhang et al.’s [64] FISs Subjective Fuzzy �-neighborhood operators
Our proposed method RISs Objective Fuzzy bisimulations

Table 13   A comparison among some methods in Example 11

Methods Ranking order Optimal 
member

Brans and Vincke’s method [5] × ×

Brans et al.’s method [6] × ×

Jiang et al.’s method [20] × ×

Jiang et al.’s method [21] × ×

Zhan et al.’s [62] × ×

Zhang et al.’s [63] × ×

Zhang et al.’s [64] × ×

Our proposed method ✓ ✓
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Furthermore, we apply some methods in [5, 6, 20, 21, 
62–64] and our proposed method in Example 11. A com-
parison among them is given as Table 13. From this table, 
we have the following statements:

•	 Using the methods in [5, 6, 20, 21, 62–64] cannot get a 
ranking order for the considered members while using 
our proposed method can obtain a ranking order for 
them.

•	 By means of the methods in [5, 6, 20, 21, 62–64], the 
optimal member cannot be obtained while using our pro-
posed method can get an optimal member.

Above all, using the methods in [5, 6, 20, 21, 62–64] cannot 
help DMs make a clear decision while using our proposed 
method can do it. This demonstrates the feasibility and effec-
tiveness of our proposed method in the paper.

5.6.4 � A comparative analysis for different BGFVPRS models

Different models may affect the results of decision-making 
results. The reason is that the different construction prin-
ciples of different models will affect the decision-making 
results in a certain extent. In the following, an example is 
given to demonstrate this.

E x a m p l e  1 2   L e t 
I1 = I3 = I△, I2 = IG, T1 = T3 = TP, T2 = TL,

⨂

= ∧ and 
� = 0.45. Furthermore, 1-BGFVPRS, 2-BGFVPRS, and 
3-BGFVPRS models are applied in Algorithm 1, respec-
tively. The information of K is given as Table 6. Under the 
same condition in Case 1, through computation, a compari-
son of the results for these three type of models is shown 
as Table 14. From this table, we find that the optimal mem-
ber of 3-BGFVPRS is t20 while the optimal members of 
1-BGFVPRS and 2-BGFVPRS are t33. The optimal mem-
ber of 3-BGFVPRS is different from the other two types 
of BGFVPRS models. The ranking orders of three mod-
els are different. Above all, applying different models in 

Algorithm 1 may obtain different ranking orders of members 
and different optimal members. When making a decision, 
1-BGFVPFRS model plays a better performance than the 
other two models. The reason is that the accuracy measure 
of 1-BGFVPRS model is bigger than other two models. As 
the accuracy measure of the BGFVPRS model increases, the 
decision-making results get more accurate and closer to the 
actual needs. In order to make the decision results closer to 
the DMs’ actual needs, the 1-BGFVPRS is a better option 
than other two models.

5.7 � Sensitivity analysis

The variable precision � acts a critical role in BGFVPRS 
models, which is verified in Section 3. In subsection 5.6.2, 
the change of sorting results is studied when different vari-
able precision values are taken in Case 1. Here, the value 
range of variable precision � is [0,1), where the step size is 
0.05. The comparison among 20 ranking results in Case 1 
when taking different variable precision values is given in 
Fig. 11b. From the figure, the optimal member is t33 when 
� ∈ [0, 0.8) while the optimal members are t15, t30, t33 with 
� ∈ [0.8, 0.95). Especially, if � ∈ [0.95, 1), the optimal mem-
ber cannot be selected.

Remark 6  Through comparative analysis and sensitivity 
analysis, the following conclusions can be drawn. 

(1)	 Our approach is highly flexible when solving complex 
problems by selecting different logical operators and 
changing the value of �.

(2)	 Although the ranking order will fluctuate after selecting 
different logic operators, the optimal results are con-
sistent, which shows the effectiveness of the decision-
making method on the other hand.

Table 14   A comparison of the 
results for different BGFVPRS 
models

Models Ranking orders of members Optimal 
member

1-BGFVPRS t33 > t0 > t1 > t32 > t27 > t24 > t25 > t17 > t5 > t29 > t23 > t33

t16 > t2 > t4 > t11 > t8 > t19 > t20 > t6 > t3 > t30 > t13 > t26

t28 > t31 > t10 > t12 > t15 > t7 > t9 > t14 > t21 > t18 > t22

2-BGFVPRS t33 > t0 > t1 > t2 > t3 > t4 > t5 > t6 > t7 > t8 > t9 > t10 > t33

t11 > t12 > t13 > t14 > t15 > t16 > t17 > t18 > t19 > t20 > t21 >

t22 > t23 > t24 > t25 > t26 > t27 > t28 > t29 > t30 > t31 > t32

3-BGFVPRS t20 > t17 > t11 > t8 > t19 > t15 > t14 > t30 > t23 > t6 > t4 > t26 > t20

t27 > t10 > t25 > t22 > t12 > t9 > t21 > t0 > t29 > t7 > t18 >

t32 > t1 > t16 > t24 > t33 > t31 > t2 > t13 > t28 > t5 > t3
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(3)	 Compared with some popular MADM methods in [5, 
6, 20, 21, 62–64], our provided method can solve the 
complex problems which consist of attribute data and 
relational data. That is to say, this method can solve the 
MADM problems involving relational structure data.

6 � Conclusion

Aiming at the complex MADM problems including attrib-
ute data and relational data, the paper has proposed a deci-
sion-making method. This method is based on BGFVPRS 
models which are the natural generalizations of the clas-
sical RS model. The BGFVPRS models are based on the 
fuzzy bisimulations. With these relations, the theoretical 
research and the application of the classical RS model has 
been enriched and expanded, respectively. The BGFVPRS 
models have many important properties such as duality. 
Using the concept of reduction, the redundant data can be 
removed quickly. According to the �-accuracy measures 
(or �-roughness measures) of BGFVPRS models defined in 
the paper, the compactness of them can be compared very 
well. Compared with many MADM methods, the method 
presented in the paper is effective to solve the problems 
including relational data. The comparative analysis and 
sensitivity analysis have shown that the flexibility and 
effectiveness of our decision-making method in the Zach-
ary karate club network. For example, although the rank-
ing order will fluctuate after selecting different logic oper-
ators and the values of � , the optimal results are consistent.

The future research directions are shown as follows.

•	 Because the data in real life does not always exist in 
the form of numbers, it should be considered to extend 
our BGFVPRS models to solve linguistic problems [37, 
38] and design an effective decision-making method 
for dealing with these problems by building a tool to 
minimize information loss.

•	 Motivated by the concept of weak bisimulations [17], 
the BGFVPRS models can be generalized and some 
related important properties about the models may be 
got.

•	 Learning from many popular three-way decision-mak-
ing methods [11, 19, 31, 52], we will further modify 
our decision-making method and apply it to more com-
plex environments such as the IF [2] environment.

•	 The granular computing is an important concept. 
Many scholars applied it in three-way decision-making 
methods [30, 47]. Motivated by this, integrating the 
concepts of fuzzy bisimulations, three-way decision-

making methods and granular computing will provide 
a novel decision-making method.
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