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Abstract

Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may
contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in
the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed
the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver
samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET
genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation.
Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological
functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic
DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.
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Introduction

Drugs are usually approved based on safety and efficacy data in

a limited number of patients that are thought to represent the

entire population. However, individuals in a population show

differences in drug sensitivity, efficacy, toxicity, and dosing [1,2,3].

For the majority of drugs used in treating common diseases, only

25% to 60% of patients respond to a specific medication [2]. A

widely cited article [4] stated that more than 2 million adverse

drug reaction cases were reported annually in the United States,

including approximately 100,000 instances of death.

The variability of drug responses among individuals in the

population occurs because of complex, multifactorial contributions

of genetic factors (such as single nucleotide polymorphisms and

copy number variations), environmental factors (such as dietary

components), disease/health condition of the individuals, and

drug-drug interactions. These interactions alter drug absorption,

metabolism and pharmacokinetics differently in patients, leading

to interindividual variability of drug efficacy, safety, and adverse

drug reactions [1,2,5]. Many studies have investigated associations

among genetic polymorphisms of drug-metabolizing enzymes and

transporters (DMETs) and drug responses: the number of drug-

gene relationships deposited in PharmGKB (http://www.

pharmgkb.org/) has grown to 24,329 up to date (September,

2011). Besides the polymorphisms in coding regions, gene

expression variability is another contributor to interindividual

differences in drug responses, which is difficult to study in humans.

The US Food and Drug Administration (FDA) maintains a

database (http://www.fda.gov/drugs/scienceresearch/

researchareas/pharmacogenetics/ucm083378.htm) of genetic var-

iants that affect the treatment outcomes of some drugs. However,

these variations in coding sequences do not fully explain

differences in drug responsiveness between individuals with similar

variations. A better understanding of the interindividual variability

in the expression of the DMETs is one of the fundamental

requirements needed to improve drug efficacy and mitigate

adverse reactions to empower personalized medicine.

Markedly high interindividual variability of DMET activities

among humans was previously documented [6,7]. Rodriguez-

Antona et al. [8] observed large variations of 10 cytochrome (CYP)

enzymes among 12 human liver samples with 40-fold differences

in CYP2C19, 50-fold differences in CYP3A4, and more than 500-

fold differences in CYP2D6. Analyses of gene expression of 261

DMETs in primary hepatocytes from 6 individuals showed that
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GSTM5 had the greatest variation (166-fold), followed by

CYP26B1 (157-fold) and SULT1C1 (58-fold) [9]. Reports of

systematic analysis of the DMET expression spectrum in a larger

sample size have been published. For example, a genome-wide

expression quantitative trait loci (eQTL) study that aimed at

mapping the genetic architecture of gene expression in human

liver was performed in a cohort containing 427 human liver

samples [10]. In addition, using the same set of human liver

samples, Yang et al. systematically analyzed the full spectrum of

functionality of CYP enzymes in human liver by profiling gene

expression, protein activity, and genetic variants and their

relationships. However, the expression patterns and interindivid-

ual variability of other DMETs in human liver were not analyzed

in that study [11].

Other studies focusing on interindividual variability of DMET

were limited by small sample sizes and/or a focus on a subset of

hepatic DMETs [9,11,12,13]. In order to evaluate the interindi-

vidual variability of hepatic DMET expression in a larger

sampling of the human population, the current study archived

the expression profiles from a published dataset containing of 427

human liver samples [10], and further analyzed interindividual

variability focusing on of 374 DMET genes. Our results

demonstrated a wide range of interindividual variability in the

expression of human hepatic DMETs genes. Coexpression

network analysis was also used to delineate biologically meaningful

modules that suggest co-regulation among DMETs. Finally, the

clinical implications of interindividual variability of DMETs in

personalized medicine are discussed.

Results

Interindividual variability in expression for DMET genes is
greater than non-DMET genes

The interindividual variability of 374 DMETs in a cohort of 427

human liver samples was evaluated by calculating the mean

expression value, median expression value, standard deviation

(SD), coefficient of variation (CV), the highest expression value(s)

(Max) and the lowest value(s) (Min) (summarized in Table S1).

Using SD as a measure of interindividual variability in expression,

we compared 374 DMET genes against 19,167 genes in the data

set that are not considered to be involved directly in drug

metabolism and are designated as non-DMET genes for this study.

The non-DMET genes (Figure 1) were more likely to distribute to

the lower SD interval of 0 to 0.2, while the DMET genes were

more likely to distribute to the higher SD interval of 0.25 to 1.1.

The distribution of SD suggested that DMET genes have higher

interindividual variability in expression than non-DMET genes.

When the CV was used to evaluate the interindividual variability

between DMETs and non-DMETs, a similar patter with SD

distribution was observed (data unshown).

As a reference, 20 genes typically considered to be housekeeping

genes were selected to compare the expression variability of

DMET genes. These housekeeping genes are often used as

controls due to their ubiquitous and stable expression across

different biological conditions [14]. The majority of these 20

housekeeping genes had an SD value between 0.05 and 0.20, and

none had an SD value higher than 0.25. This comparison

indicated that DMET genes show much higher expression

variability than housekeeping genes.

Top 20 most variably expressed DMETs in human liver
The majority of the DMET genes exhibited large expression

variability among the individuals in the study population, with

some DMETs showing 1,000-fold difference between individuals.

Shown in Figure 2 are 20 of the most variably expressed DMET

genes in the liver as determined by the highest CV values. The

median expression values are indicated as a bold line in the middle

of each box, while the bottom and top of the box represent the

25th and 75th percentile, respectively. CYP3A4, CYP2B6, CYP2A6,

CYP3A7, GSTA1 and SULT1E1 are genes involved in the

metabolism of many drugs and xenobiotics and had the highest

variability in gene expression. In addition, transporter genes

SLC13A1, ABCC13, SLC16A8 and SLC16A14 were among these

most variably expressed genes. Surprisingly, an important drug-

metabolizing gene, CYP2D6, was not on the list of the top 20 most

variably expressed genes in the current cohort of samples.

Interindividual variability of human hepatic DMET expression

levels within this population was demonstrated by the expression

differences (fold changes) between the highest and the lowest

expressing individuals. Table 1 lists the top 20 most variably

expressed DMETs with their expression ranges (fold changes).

‘‘Expression Difference’’ indicates the fold differences between two

individuals at the extremes of expression for that gene. The

numbers in the column ‘‘Related Drugs’’ indicate the number of

drugs metabolized by the corresponding genes (from the

PharmGKB database www.pharmgkb.org). The analyses in this

study were based on published Agilent two-color microarray data

in which a cutoff standard between log10 values of 22 to 2 was

used. Hence, some of the DMET genes with the highest

variability, such as ABCA12 and UGT8, showed fold changes over

the detection standard. These are designated as O.E.R. (Over the

Evaluation Range) in Table 1. Some DMET genes most

commonly involved in drug metabolism which showed large and

measurable interindividual variability in this population were:

N CYP3A4 (metabolizing 245 drugs) with a 641-fold difference

between the highest and lowest expression levels.

N CYP2B6 (metabolizing 57 drugs) with a 2,704-fold difference.

N GSTA1 (metabolizing 20 drugs) with a 582-fold difference.

Co-expression of human hepatic DMETs
Genes which are co-expressed potentially can be considered to

be functionally related, since genes associated with specific

biological processes usually are co-expressed [15,16,17] or

involved in the same network. Gene co-expression network

analysis aids in identifying genes interacting within and between

modules [11,15,17]. Topological overlap matrix (TOM) analysis

was performed to identify modules consisting of highly intercon-

nected expression traits within the co-expression network for the

374 DMET genes. Ten distinct modules including 55 genes that

were differentially expressed among individuals were identified

(Figure 3). The remaining 319 DMET genes with differential

expression levels failed to fall into any module. Genes within a

module are usually co-expressed together with a higher correlation

than genes outside of this module. The co-expression interactions

between genes differentially regulated among individuals in one

module and across modules are represented in a network

(Figure 4). We interpret these modules in the co-expression

networks as functional drug metabolic units. Detailed information

for the contents of each module is listed in the Table S1. The

largest module (turquoise color) contains 22 DMETs enriched with

phase II enzymes including UGT2B family members, GSTs and

GSTs and SULTs. Another module (blue color) contains CYP3A4,

CYP3A7, CYP2B6, CYP2C8 and additional CYP enzymes. These

genes evolved to metabolize a broad range of xenobiotics and

based on the analysis described here, possibly are co-regulated.

Two other modules (green and brown) have many interactions at

DMET Expression Variability in Liver
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Figure 1. The standard deviation (SD) for the expression of DMET and non-DMET genes among 427 individuals. The DMET genes
appear to have a higher likelihood of having high SD compared to non-DMET genes. The X-axis shows the SD interval and Y-axis represents the
probability of 427 individuals with an indicated SD interval value.
doi:10.1371/journal.pone.0060368.g001

Figure 2. Box plot of the top 20 most variably expressed human hepatic DMET genes. The bottom and top of the boxes represent the
25th and 75th percentiles, respectively. The median is indicated by a bold line. The length of the box is the interquartile range (IQR). Values more than
1.5 IQRs are labeled as dots. The X-axis indicates names of DMETs, and the Y-axis indicates ‘‘Log10 Ratio of Intensity (samples/references). The
reference is the pooled RNA derived from 192 liver samples selected fro sex balance from Vanderbilt and Pittsburgh samples [10].
doi:10.1371/journal.pone.0060368.g002
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close distances indicating their high similarity in levels of co-

expression. The most prominent members of these modules are

UGT1A family members which may share common regulatory

mechanisms. The UGT1 complex locus posses a unique gene

structure in which each family members have different promoters

and N-terminal exons, but share identical exons in the C-terminal

region of the gene [18]. This unique exon sharing process may

partially explain the similar expression patterns of members for

this gene family.

Clinical implications of variably expressed DMETs in
humans

Interindividual variability in the expression of hepatic DMETs

among patients is one of the most important factors accounting for

differences in drug metabolism, disease severity, and clinical

effectiveness of drugs. DMET enzymes have been comprehen-

sively characterized for their roles in metabolizing commercially

available drugs. Using information derived from the PharmGKB

database (http://www.pharmgkb.org/), the top 10 most clinically

important DMETs were ranked according to the number of drugs

they metabolize/eliminate. GeneGo database (www.genego.com)

was searched with this gene list for related clinical therapeutics,

biological pathways and associated diseases. As summarized in

Table 2, the 10 most important genes showed highly variable

expression and had significant clinical relevance to the metabo-

lism/transport of endogenous molecules and/or xenobiotics.

Moreover, potential impact of these genes on diseases, such as

metabolic disorders and cancer development, were also revealed

by GeneGo analysis.

The top 10 most important DMET genes and the top 100 most

prescribed drugs were visualized with Cytoscape (www.cytoscape.

org, Figure 5). CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2D6 and

ABCB1 are the major nodes associated with the majority of these

drugs. Interindividual variability in the expression of these

DMETs, an important biological significance caused by genetic

variations and environmental factors of the genes, would be

expected to have a large impact on individual drug metabolism,

efficacy and adverse reactions.

Nuclear receptor mediated regulation of the expression
of DMETs

To investigate the mechanisms and relationships underlying the

expression variability of top 10 most important DMETs (listed in

the Table 2) and the expression variability of nuclear receptor

genes (listed in the Table 3), we applied data analysis using

GeneGo software. As shown in Figure 6, when all gene IDs of

nuclear receptors (Table 3) and DMETs (Table 2) were uploaded

into the Data Analysis Wizard, the enrichment analysis indicated

that the constitutively expressed androstane receptor (CAR, gene

symbol NR1I3) and pregnane X receptor (PXR, gene symbol

NR1I2), interacting with retinoid X receptor alpha (RXRA), were

pivotal mediators in the regulation of the expression of DMETs.

For example, CAR/RXR mediated the expression of CYP2B6,

CYP2C9, CYP2C9, CYP2C19, CYP3A4, CYP3A5, UGT1A1,

etc., through binding of different xenobiotics, such as phenobar-

bitals, androstane and carbamazepine (Figure 6A). Similarly,

PXR/RXR or PXR/PXR regulated the expression of DMETs in

the Table 2, such as CYP2A6, CYP2B6, CYP2C9, CYP2C9,

CYP2C19, CYP3A4, CYP3A5, CYP3A7, UGT1A1, etc., which

Table 1. Interindividual Variability of the 20 Most Variably Expressed DMET Genes among 427 Subjects.

Gene Symbol
Highest Expression (log10
ratio)

Lowest Expression (log10
ratio)

Expression Difference (Fold
Change) Number of Related Drugsa

ABCA12 2 22 O.E.Rb NA

ABCC13 2 22 O.E.R NA

ADH4 0.6378 21.767 254 1

CYP24A1 2 22 O.E.R 2

CYP26A1 1.108 22 .1282 1

CYP2A13 0.8784 21.384 183 6

CYP2A6 1.215 21.819 1081 38

CYP2A7 1.258 22 .1811 1

CYP2B6 1.565 21.711 1888 57

CYP3A4 0.8979 21.909 641 245

CYP3A7 0.8617 21.842 505 22

CYP51A1 2 22 O.E.R 2

CYP7A1 1.18 22 .1513 5

GSTA1 0.7653 22 .582 20

GSTA2 0.8187 22 .659 6

SLC13A1 2 22 O.E.R NA

SLC16A14 2 22 O.E.R NA

SLC16A8 2 22 O.E.R NA

SULT1E1 2 22 O.E.R 9

UGT8 2 22 O.E.R NA

aThe number of the related drugs was derived from PharmGKB database.
bO.E.R stands for Over the Evaluation Range.
doi:10.1371/journal.pone.0060368.t001
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were stimulated by different ligands such as rifampicin, poly-

chlorinated biphenyls, and hypertorin (Figure 6B).

Discussion

The variability in the level of expression of 374 DMET genes in

427 human livers was determined using weighted co-expression

analyses (TOM, see Methods), based on a published gene

expression data set [10]. The expression of 374 selected DMET

genes was highly variable relative to 20 genes typically considered

to have stable and less variable gene expression (i.e., housekeeping

genes). Furthermore, the 374 DMETs were observed to be more

variably expressed than 19,167 non-DMET genes (Figure 1). The

DMETs are critical for detoxification of endogenous and

exogenous compounds, and the commonly observed variability

in DMET expression has been linked to risks of disease and

adverse response to exogenous compounds [19,20,21,22,23]. To

our knowledge, this work is the first study to comprehensively

assess the variation in expression of the DMETs involved in Phase

1, 2, and 3 metabolisms.

Selected DMETs in each of the three phases of metabolism

were variably expressed in the human liver samples analyzed in

this study (Table 1 and Figure 2). Among the DMETs that have

been well characterized previously as having highly variable gene

expression and metabolic functions [24], several were observed in

our study. For example, variability in the CYP3A4 expression has

been correlated with pathological processes and pharmacogenetic

response to several exogenous compounds [24,25,26]. This gene

varied by 641-fold among the samples in our study. Variation in

expression of this gene would be expected to influence the

metabolism of an unknown number of compounds including 245

related drugs (see www.pharmGKB.org). Other highly character-

ized DMETs were also observed to be variably expressed in this

sample set. CYP2B6 was associated with more than a 2,000-fold

difference in expression among the samples. CYP2B6 is responsible

for metabolizing at least 57 pharmacologic agents. Among the top

20 most variable DMETs in our study, marked variation in gene

Figure 3. A topological overlap matrix (TOM) of all 374 DMET genes. Both the rows and the columns are sorted by hierarchical clustering.
The colors specify the strength of the pair-wise topological connections (yellow: not significantly connected; red: highly connected). Genes that are
highly connected within a cluster are defined as a module. Each module was assigned a unique color identifier (turquoise and blue), with the
remaining genes colored gray.
doi:10.1371/journal.pone.0060368.g003
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expression among several members of the solute carrier trans-

porter family (SLC) and the adenosine triphosphate-binding

cassette transporter (ABC) family was also found. The extreme

variability in expression for these transporters (SLC13A1,

SLC16A8, SLC16A14, ABCC13, and ABCA12) precluded estimates

of the difference in fold expression. The extreme expression

phenotypes are displayed as dots in Figure 2. Members of both

transporter families have been increasingly found to contribute to

interindividual differences in metabolism of endogenous and

exogenous compounds [27,28,29,30]. These observations support

further explorations of the roles of variability in the expression of

various transporters in the response and clearance of endogenous

and exogenous compounds.

Topological overlap matrix (TOM) analyses revealed 10 distinct

modules of DMETs with highly interconnected expression

patterns (Figure 3). As expected, some of the modules are

comprised of DMETs that are members of extended families

and/or subfamilies. For example, one module (green in Figure 4) is

comprised of five uridine diphospho (UDP)-glucuronosyltransfer-

ase (UGT) enzymes which are created by alternative splicing or

gene duplication on chromosome 2q37 (UGT1A10, UGT1A4,

UGT1A5, UGT1A6, and UGT1A9). Co-expression of these genes

would be expected. However, nine of the ten modules contained

DMET genes in combinations that were less predictable. For

example, one module suggests a correlation in the expression of

members of the CYP2C subfamily (2C9 and 2C19) and members of

the UGT family (UGT1A1, UGT1A3, UGT1A7 and UGT1A8).

Members of the CYP2 and CYP3 families were co-expressed (blue

module), and individual genes of this module (i.e., CYP2B6,

CYP2C8 and CYP3A4) contribute significantly to metabolism of

some drugs. The most unexpected result was a module (turquoise)

comprised of members that contribute to each phase of

metabolism and the drug disposition processes (Phases 1–3).

Why this set of genes appears together by TOM analyses to be co-

regulated will require additional studies.

As has been observed by others [31,32], some of the DMETs

shared transcription factor binding sites with other DMETs from

different enzyme families within their respective modules. For

example, some DMETs from the CYP2 and CYP3 families (blue

module) share transcription factor binding sites that are regulated

by the nuclear receptor PPARG. PPARG was the most variably

expressed nuclear receptor among the samples in our cohort.

Moreover, additional nuclear receptors that are known to regulate

expression of DMETs were also variably expressed in this data set

(Table 3). Furthermore, we observed that the respective DMETs

in some of the modules share transcription binding sites that have

not been well characterized as contributors to drug metabolism

and disposition.

The top 10 DMETs known to metabolize the most compounds

are listed in Table 2. This information is striking because

considerable variability in expression of the DMETs was observed

in the samples analyzed, and these genes are involved in

metabolism of the majority of pharmacologic interventions.

CYP3A4 has a 641-fold difference in expression among individuals

in this sample set, and is involved in the metabolism of the largest

number of medications. Furthermore, the DMETs that are most

influential in drug metabolism have been associated with

occurrence and/or pathophysiology of various diseases

[31,32,33]. Future studies exploring the roles of DMETs in

metabolizing and detoxifying endogenous and environmental

compounds may help elucidate some of the unknown contributors

to the pathogenesis of the associated diseases.

Figure 4. The visualization of the coexpression network for DMET genes. The graph highlights that genes in a liver coexpression network
fall into 10 distinct modules, where genes within a module are more highly interconnected with each other than with genes outside the module.
doi:10.1371/journal.pone.0060368.g004
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Table 2. Expression Variability of Top 10 Most Important DMETs and Their Biological Significances.

Gene
Symbol

Maximum
Expression
(log10 intensity)

Minimum
Expression
(log10 intensity)

Expression
Difference
(Fold
change)

Classification based
on major substrate
(Xenobiotics or
nonxenobiotics) Related Drugs Associated Diseases

CYP 2B6 1.565 21.711 1888 Xenobiotics 31 drugs: Amiodarone, Sulconazole,
Clopidogrel, Toremifene, Efavirenz,
Phenytoin, Bupropion, Retinoic acid,
Orphenadrine, Benidipine, etc.

3 diseases: Stomach
Neoplasms, Breast Neoplasms,
Prostatic Neoplasms

CYP2C19 1.738 21.165 800 Xenobiotics 67 drugs: Ketoconazole,
Amiodarone, Rabeprazole,
Sulconazole, Tegaserod, Cimetidine,
Clopidogrel, Latrepirdine, RO3201195,
Proguanil, etc.

1 disease: Breast Neoplasms

CYP3A4 0.8979 21.909 641 Xenobiotics 138 drugs: Ketoconazole,
Amiodarone, Octreotide, Indinavir,
Metronidazole, Domperidone,
Manidipine, Rabeprazole,
Glibenclamide, Oxcarbazepine, etc.

6 diseases: Carcinoma, Ductal,
Breast Colorectal Neoplasms,
Drug Toxicity, Breast Neoplasms,
Prostatic Neoplasms

CYP2C8 0.8525 21.566 262 Xenobiotics 60 drugs: Ketoconazole,
Amiodarone, Indinavir, Lovastatin,
Trimethoprim, Desipramine,
Tegaserod, Clopidogrel, Candesartan
cilexetil, etc.

1 disease: Breast Neoplasms

CYP3A5 0.7256 21.324 112 Xenobiotics 15 drugs: Ketoconazole,
Amprenavir, Troleandomycin,
Phenytoin, Clarithromycin,
Nelfinavir, Rifampicin, Erythromycin,
Diltiazem, Tanespimycin, etc.

6 diseases: Stomach
Neoplasms, Carcinoma, Ductal,
Breast Colorectal Neoplasms,
Breast Neoplasms, Prostatic
Neoplasms

UGT1A1
(UD11)

0.7943 21.177 94 Xenobiotics 13 drugs: Indinavir, Niflumic acid,
Saquinavir, Sulfinpyrazone,
Diclofenac, Fenofibrate,
Acetaminophen, Gemfibrozil,
Indometacin, ALBU_HUMAN, etc.

40 diseases: Gilbert Disease,
Hereditary Spherocytosis, Sickle
Cell Anemia, Leukopenia
Lymphoid Leukemia, Endometrial
Stromal Tumors,
Glucosephosphate
Dehydrogenase Deficiency, Non
Small-Cell Lung arcinoma, alpha-
Thalassemia, b Thalassemia,
Cystic Fibrosis, etc.

SLCO1B1
(SO1B1)

0.4576 21.453 81 Xenobiotics 25 drugs: Ketoconazole,
Indinavir,Glibenclamide, Saquinavir,
Amprenavir, Verlukast, Ciprofibrate,
Tacrolimus, Fenofibrate,
Sildenafil, etc.

1 disease: Hepatocellular
Carcinoma

CYP 2C9 0.6832 21.219 80 Xenobiotics 98 drugs: Ketoconazole,
Amiodarone, Metronidazole,
Manidipine, Rabeprazole, Naproxen,
Sulconazole, Fluvastatin, Dapsone,
Tegaserod, etc.

3 diseases: Stomach
Neoplasms, Drug Toxicity, Breast
Neoplasms

CYP2D6 0.8369 20.8532 49 Xenobiotics 103 drugs: Amiodarone, Betaxolol,
Indinavir, Manidipine, Rabeprazole,
Sulconazole, Desipramine,
Clemastine, Tegaserod,
Cimetidine, etc.

1 disease: Colorectal Neoplasms

ABCB1
(MDR1)

0.5266 20.5369 12 Xenobiotics 79 drugs: Ketoconazole,
Amiodarone, Manidipine,
Buspirone, Clemastine, Promazine,
Noscapine, Idarubicin,
Laniquidar, Alimemazine, etc.

17 diseases: Contact Allergic
Dermatitis, Stomach Neoplasms,
Soft Tissue Neoplasms, Uveal
Melanoma, Non-Small-Cell Lung
Carcinoma, Esophageal
Neoplasms, Creutzfeldt-Jakob
Syndrome, Ductal Glioblastoma,
Breast Carcinoma, Alzheimer
Disease, etc.

doi:10.1371/journal.pone.0060368.t002
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The drug-gene interaction network represented in Figure 5

displays the interaction of the ten most influential DMETs and the

top 100 prescribed medications. This figure highlights the impact

of variable DMET expression and their polymorphisms on

disposition and metabolism of the most commonly used pharma-

cologic agents. Studies have provided evidences that DMETs are

variably expressed among individuals, and genetic variants

contribute to the inter-individual variability in the expression of

DMETs in human liver [10,20,24,34]. Previously published data

identified significant associations between genotypes and the gene

expression among more than 600 genes including DMETs [10]. A

recent review article summarized that the expression of CYPs is

regulated by multiple factors including genetic polymorphisms

[34]. In addition, the expression of DMETs is also affected by

other factors including sex, age and environmental exposures. To

investigate of the expression viabilities of DMETs gene between

sexes, our prior study analyzed the sex differences in the

expression of 374 DMETs using the same dataset [10,35]. In that

study, we identified that 77 out of 374 genes showed differential

expression due to sex, which is partially consistent with other

reports [5,11]. However, different conclusions for some sexually

differtially expressed DMET genes were also observed, which

could be due to different sample sizes in different studies [36].

Considering the cohort of 234 male and 193 female subjects in the

study, our results [35] could represent more reliable conclusion of

the effect of sex on DMETs expression. In term of the effect of age

on the variable DMET expression, studies have been reported that

age was an important variable involved in the regulation of many

DMETs [11,37]. For example, Yang et al. showed evidences that

age impacted activities of certain CYPs [11]. Notably, the age-

related correlation was relatively weak. In the future, more

detailed studies are warranted to unseal the impacts of those

factors on the DMET expression. This study is a comprehensive

analysis of DMET expression in a large human liver cohort, but

there are limitations to this analysis. The samples for this cohort

were all obtained from European-Americans, and the observed

expression patterns may not occur in other ancestral backgrounds

or different European populations (North to south gradient in

Europe - genes mirror geography within Europe [38]). Lifestyle

factors (e.g., diet and physical activity) were not assessed in the

study or in the analyses. Additional limitations for this cohort have

been described elsewhere [11]. For example, detailed information

Figure 5. Drug-gene interaction network. The figure indicates the relationship among the ten most influential DMETs and the top 100
prescribed medications. A line between a gene and a drug suggest that the DMET is involved in the metabolism or transporting of the drug. A drug is
labeled as a circle and a gene is labeled.
doi:10.1371/journal.pone.0060368.g005
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related to donors’ health status, environmental exposure history

and medication records are not available for the analysis, although

these donors were considered as ‘‘normal’’ individuals. Many

dietary components and drugs could induce or inhibit the

expression levels of DMET genes, thus noise could be introduced

to the analyses due to the unavailability of such information.

Nuclear receptor mediated transcriptional regulation of

DMETs is one of the most important mechanisms in the

expression regulation of DMET genes. Generally, four ligands,

including CAR (NR1I3), PXR (NR1I2), aryl hydrocarbon

receptor (AhR) and peroxisome proliferator activated receptor c
(PPARc, or NR1C3), play a key role in the induction of expression

of DMETs[39,40]. In addtion, 10 other nuclear factors, including

HNF1a (hepatic nuclear factor 1), HNF4a (hepatic nuclear factor

4), NR1I1 (vitamn D receptor), NROB2 (nuclear receptor

subfamily 0), NR1H4 (nuclear receptor subfamily 1), NFE2L2

(nuclear factor erythroid-derived 2), GR (glucocorticoid receptor,

NR3C1), FXR (Farnesoid X-activated receptor, NR1H4), LXR

(Liver X nuclear receptor a, NR1H3), LRH-1 (Liver nuclear

receptor homolog-1 variant, NR5A2) are also involved in the

transcriptional regulation of the DMETs [39,40]. In this study, we

searched the possible pathway that may illustrate the regulatory

effects of nuclear receptors on the expression of DMETs with the

GeneGo software (Figure 6). Apparently, 8 out of 10 most variably

expressed DMETs (except SLCO1B1 and ABCB1) were mediated

by CAR or PXR separately (panel A or B). It has been reported

that both CAR and PXR activate the gene transcription of

CYP2Bs, CYP2Cs, CYP3As, UGT1A1 and MDR1[41,42]. Our

observation here was consistent with the previous findings. In

addition to the DMET polymorphisms, the different patient

medication histories (different drugs and different dosages) could

have contributed to the variable activation of different nuclear

factors that in turn could affect the variability of the expression of

DMETs.

In summary, a comprehensive analysis of the expression of

DMETs involved in Phase 1 through Phase 3 disposition and

metabolism of pharmacologic agents in a large human liver cohort

was conducted. More variation in the expression of DMETs than

non-DMET genes was observed, and the variability was found for

genes involved in each phase of drug metabolism and disposition.

Moreover, ten modules of DMETs that were coexpressed in this

cohort were identified. Significant variability in expression of

nuclear receptors that are known to regulate the expression of

DMETs was observed. Finally, to display the clinical significance

of the variability in expression of DMETs, a graphical network

displaying the ten most influential DMETs and their substrates

from the top 100 prescribed drugs was created. These results

provide a molecular explanation to a well-known fact that drug

efficacy and safety differs significantly between individuals, even

among the same ancestral group (in this case, European ancestry).

Predicting how gene expression may differ among individuals

remains a challenge for developing personalized medicine. In

addition, two important implications emerge from this analysis:

(i) The results provide strong evidence that individuals have

different gene expression patterns adding to the variability in

response expected from polymorphisms in coding regions of

genes. That is, the full range of metabolism of a drug in an

individual will be the combined contribution of gene

expression changes often regulated by environmental factors

such as naturally occurring chemicals in the diet (e.g., fatty

acids, phytoestrogens, amino acids), by lifestyle such as

activity levels, and by exposure to drugs and toxicants (e.g.,

[43]). These factors have to be measured to understand why

Table 3. Interindividual Variability in the Expression of Nuclear Receptor Genes among 427 Subjects.

Gene Symbol Entrez Gene ID Highest Expression (log10 ratio) Lowest Expression (log10 ratio) Expression Variability (Fold Change)

AHR 196 0.5589 20.8767 27

ARNT 405 0.3353 20.3176 4

ESR1 2099 0.5367 21.187 53

HNF1A 6927 0.3912 20.6903 12

HNF4A 3172 0.9861 20.2267 16

IFNA 3438 NA NA NA

IFNR 3466 NA NA NA

NFE2L2 4780 0.4233 20.5602 10

NR0B2 8431 0.9219 20.8689 62

NR1C1 5465 0.3826 20.3637 6

NR1H3 10062 0.4048 20.5631 9

NR1H4 9971 0.2728 21.052 21

NR1I1 7421 1.429 20.8548 192

NR1I2 8856 0.4092 21.064 30

NR1I3 9970 0.661 22 458

NR3C1 2908 0.2928 20.5567 7

NR5A2 2494 0.5085 20.6075 13

PPARG 5468 2 21.459 2877

TNF 7124 0.7351 20.7636 32

TNFRSF11A 8792 0.6535 20.2374 8

doi:10.1371/journal.pone.0060368.t003
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the gene expression patterns differ so greatly between

different individuals.

(ii) In addition to gene expression changes, drug metabolism will

also be influenced by differences in enzyme activity due to

variation in amino acid sequences. The full array of coding

SNPs in these samples were not available since genotyping

reported in the article [10] was done with a 500K Affymetrix

chip.

The variability in the expression of many different genes found

between different individuals has significant consequences for the

design of biomedical studies, including those of drug efficacy and

safety. Interindividual variation in disease incidence, severity,

response to medications, and outcomes has challenged traditional

medical practices that rely upon data generated from prospective

case-control studies. The assumption of such experimental designs

was that the average response of the individuals treated in the

study could be used to predict outcomes in patients in the general

population. The analyses described in this report provide examples

of why that assumption is not valid, because gene expression and

co-expression patterns of drug metabolizing genes are highly

variable and each individual may have a unique pattern of

expression of these 374 DMET genes. Developing novel exper-

imental designs that account for genetic variation and its

consequences remains a challenge for the entire biomedical

community.

Methods

Dataset
The dataset used for this analysis was from the study done by

Schadt et al. [10]. A total of 427 liver samples were retrieved from

three independent liver collections. The liver samples (1–2 g) were

originally acquired from Caucasian individuals from three

independent liver collections at Vanderbilt University, the

University of Pittsburgh, and Merck Research Laboratories [10].

The Vanderbilt samples (231) included both postmortem tissue

and surgical resections from organ donors. The Pittsburgh samples

(171) were normal postmortem human liver, so were the Merck

samples (25). Sex was well balanced for the Vanderbilt (M/F 121/

110) and Pittsburgh (M/F 93/78) collections. However, the Merck

collection was male biased (M/F 20/5), but its sample size was

small. The average age of the donors is 52, 51, and 46 for the

Vanderbilt, Merck, and Pittsburgh collections, respectively. The

differences among the sample collections might have contributed,

at certain degree, to the inter-individual differences observed in

our analysis. Gene expression data were generated using Agilent

two-color microarrays consisting of 39,302 probes corresponding

to 19,541 genes, among which are 374 DMET genes (Table S1).

The standard deviation (SD) and coefficient of variation (CV) for a

given gene across the 427 individuals were calculated to describe

interindividual variability.

Figure 6. Regulation pathways for DMET expression by
GeneGo analysis. The figure indicates the relationship among the
ten most influential DMETs and drugs (Table 2), and the most common
nuclear receptors (Table 3). The Panel A indicats the CAR/RXR mediated
pathways in the regulation of DMET gene expression, and the Panel B
indicates the PXR/RXR mediated pathways in the regulation of DMET
gene expression. Panel C lists the legends to visualize the GeneGo
pathway maps.
doi:10.1371/journal.pone.0060368.g006
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Constructing the gene coexpression network
All 374 DMET genes were chosen for constructing the weighted

gene coexpression network [15]. A matrix of the pair-wise Pearson

correlation coefficients was constructed before it was converted to

the adjacency matrix by the function, aij~jcor(xi,xu)jb, where aij

denotes the connection strength between gene expressions xi and xj

across 427 samples. The parameter b is determined in such a way

that the coexpression network is approximately scale-free [17].

The model fitting index R2 of the linear model that regresses

log[p(k)] on log(k) is introduced to measure the fitting of the network

to this scale-free topology, where k is the connectivity and p(k) is the

probability density of the connectivity. A value of b = 7 was chosen

because it achieved a fitting index greater than 0.8. The adjacency

matrix is further transformed into the topological overlap matrix

[16], as the topological overlap between two genes reflects not only

their direct interaction but also their indirect interactions through

all the other genes in the network. The average linkage

hierarchical clustering was applied to group genes based on the

topological overlap matrix, from which two modules were

identified.

Construction of the drug-gene interaction network
The drugs were the top prescriptions dispensed in 2006 (http://

www.rxlist.com/script/main/art.asp?articlekey = 79437). All com-

mercial names were then manually transformed into their

corresponding generic names before constructing the drug-gene

interaction network. Genes are the top 10 most important genes in

the DMET list, their importance being measured by the number

of drugs that are associated with them. All the drug-gene and

gene-disease relationships were retrieved from PharmGKB

(http://www.pharmgkb.org), a pharmacogenomic and pharma-

cogenetic knowledge base and GeneGo (http://www.genego.com)

software/database that consists manually-curated dada by experts,

a data mining & analysis tool in systems biology. The network was

visualized in Cytoscape (http://www.cytoscape.org).

Regulation pathways for DMET expression by GeneGo
analysis

Regulation pathways for DMET expression were analyzed

using the GeneGo MetaCore software package. For GeneGo

analysis, the gene ID number and gene expression data were

uploaded into Data Analysis Wizard (General parser), Homo

Sapiens was selected as the specie. After background processing,

the file was analyzed with enrichment analysis workflow tool,

resulting in the list of most significantly enriched pathways.

Supporting Information

Table S1 The inter-individual variability of 374 DMETs
among 427 human liver samples.

(XLS)
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