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An equilibrium optimizer slime 
mould algorithm for inverse 
kinematics of the 7‑DOF robotic 
manipulator
Shihong Yin1, Qifang Luo1,3*, Guo Zhou2, Yongquan Zhou1,3* & Binwen Zhu1

In order to solve the inverse kinematics (IK) of complex manipulators efficiently, a hybrid equilibrium 
optimizer slime mould algorithm (EOSMA) is proposed. Firstly, the concentration update operator 
of the equilibrium optimizer is used to guide the anisotropic search of the slime mould algorithm to 
improve the search efficiency. Then, the greedy strategy is used to update the individual and global 
historical optimal to accelerate the algorithm’s convergence. Finally, the random difference mutation 
operator is added to EOSMA to increase the probability of escaping from the local optimum. On this 
basis, a multi-objective EOSMA (MOEOSMA) is proposed. Then, EOSMA and MOEOSMA are applied 
to the IK of the 7 degrees of freedom manipulator in two scenarios and compared with 15 single-
objective and 9 multi-objective algorithms. The results show that EOSMA has higher accuracy and 
shorter computation time than previous studies. In two scenarios, the average convergence accuracy 
of EOSMA is 10e−17 and 10e−18, and the average solution time is 0.05 s and 0.36 s, respectively.

The inverse kinematics (IK) problem is to determine the joint angle based on the position and posture of the 
manipulator’s end-effector1. That is, the purpose is to accurately transfer the end-effector to the desired position 
and posture2. It is one of the most fundamental problems in robot technology and plays an essential role in robot 
motion control, trajectory planning, and dynamic analysis3. However, the IK of redundant manipulators is a 
complex problem due to nonlinear Equations4. The traditional methods for solving inverse kinematics mainly 
include the analytic method and numerical iteration method5,6. The IK problem has an analytical solution for 
a manipulator that conforms to the Pieper standard. However, with the increase of the types of manipulators, 
many manipulators do not meet the Pieper standard, such as serial-parallel manipulators driven by cable7 and 
super-redundant serial manipulators8. The IK of redundant manipulators may have many group solutions. Still, 
it is difficult to obtain satisfactory solutions by traditional methods, and the real-time performance is poor. As a 
result, it is preferable to solve the IK of the complex manipulator using a metaheuristic approach9. Metaheuristic 
algorithm is a random method that is a successful alternative to the precise methods for solving practical opti-
mization problems10,11. The advantages of metaheuristics include simplicity of principle, ease of implementation, 
independence form the problem, and gradient-free characteristics12. Many metaheuristic algorithms, which 
including particle swarm optimization (PSO)9, firefly algorithm (FA)13, artificial bee colony algorithm (ABC)14, 
and others, have been effectively applied to the IK of robotic manipulators. Although these algorithms have 
achieved excellent convergence accuracy, they often do not take into account the end-effector’s posture, which 
reduces the complexity of the IK problem and is inconsistent with most practical applications.

Slime mould algorithm (SMA) is an unique metaheuristic algorithm developed by Li et al.15 in 2020. Due to 
its capacity to imitate the peculiar oscillatory foraging behavior of slime mould and its remarkable performance, 
SMA has been effectively applied in a wide variety of fields in less than two years. For example, Abdel-Basset 
et al.16 and Ewees et al.17 applied the improved SMA to feature selection problems; Abdel-Basset et al.18, Naik 
et al.19 and Zhao et al.20 used hybrid and improved SMA to solve image segmentation problem (ISP); El-Fergany21, 
Kumar et al.22, Liu et al.23, Mostafa et al.24 and Yousri et al.25 used hybrid and improved SMA to estimate param-
eters of solar photovoltaic cells, respectively; Agarwal and Bharti26 applied improved SMA to the collision-free 
shortest time path planning of mobile robots; Rizk-Allah et al.27 proposed a chaos-opposition-enhanced SMA 
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(CO-SMA) to minimize the energy costs of wind turbines at high-altitude sites; Hassan et al.28 applied improved 
SMA (ISMA) to efficiently solve economic and emission dispatch (EED) problem with single and dual objectives; 
Abdollahzadeh et al.29 proposed a binary SMA to solve the 0–1 knapsack problem; Zubaidi et al.30 combined SMA 
and artificial neural network (ANN) for urban water demand prediction; Chen and Liu31 combined K-means 
clustering and chaotic SMA with support vector regression to obtain higher prediction accuracy; Ekinci et al.32 
applied SMA to the power system stabilizer design (PSSD); Wazery et al.33 combined SMA and K-nearest neigh-
bor for disease classification and diagnosis system; Wei et al.34 proposed an enhanced SMA in power systems 
for optimal reactive power dispatch; Premkumar et al.35 and Houssein et al.36 developed multi-objective SMA 
(MOSMA) for solving complicated multi-objective engineering design problems in the real world; Yu et al.37 
proposed an improved SMA (WQSMA) that enhanced the original SMA’s robustness by using a quantum rota-
tion gate (QRG) and a water cycle operator. Houssein et al.38 proposed a hybrid SMA and adaptive guided 
differential evolution (AGDE) algorithm, which makes a good combination of SMA’s exploitation ability and 
AGDE’s exploration ability.

Although SMA has been used in many fields, it has not been applied to the IK problem. SMA, like most 
metaheuristic algorithms, suffers from diversity loss and premature convergence as a result of an improper bal-
ance between exploration and exploitation (weak exploration ability) during the iterative process of addressing 
difficult optimization problems. In order to improve the searching ability of SMA, the update strategy of equi-
librium optimizer (EO) is used to replace the anisotropic operator of SMA to guide the search of slime mould 
more efficiently. Secondly, the greedy selection strategy is used to preserve the individual historical optimal 
location and search based on the information of the individual historical optimal to accelerate the algorithm’s 
convergence. Finally, to increase the possibility of escaping from the local optimal and avoid overcrowding, a 
random difference mutation operator is added to the algorithm. In EOSMA, the update operator of EO benefits 
from an appropriate balance of exploration and exploitation, the search operator of SMA is in charge of the 
main exploitation, and the random difference mutation operator expands the search range of the search agents 
during iteration while maintaining population diversity. To verify the efficiency of EOSMA in solving the IK 
problem of complex manipulator, it is compared with slime mould algorithm (SMA)15, equilibrium optimizer 
(EO)39, manta ray foraging optimization (MRFO)40, marine predators algorithm (MPA)41, pathfinder algorithm 
(PFA)42, flower pollination algorithm (FPA)43, differential evolution (DE)44, gradient-based optimizer (GBO)45, 
teaching–learning-based optimization (TLBO)46, Harris hawks optimization (HHO)47, improved grey wolf opti-
mizer (IGWO)48, hybrid PSO and gravitational search algorithm (PSOGSA)49, centroid opposition-based dif-
ferential evolution (CODE)50, multi-trial vector-based differential evolution (MTDE)51, self-adaptive spherical 
search algorithm (SASS)52 and the results of previous studies. Then, a multi-objective EOSMA (MOEOSMA) is 
proposed and compared with MOSMA35, multi-objective PSO (MOPSO)53, multi-objective MPA (MOMPA)54, 
multi-objective ant lion optimizer (MOALO)55, multi-objective dragonfly algorithm (MODA)56, multi-objective 
grey wolf optimizer (MOGWO)57, multi-objective multi-verse optimization (MOMVO)58, multi-objective salp 
swarm algorithm (MSSA)59, multi-objective evolutionary algorithm based on decomposition (MOEA/D)60 on 
the IK problem of a 7 degrees of freedom (DOF) manipulator. This paper’s primary contributions are as follows:

(1)	 A hybrid EOSMA was developed to enhance the algorithm’s search capability and balance exploration and 
exploitation;

(2)	 By introducing the archiving mechanism of non-dominated solutions, a multi-objective variant of EOSMA 
(MOEOSMA) was developed;

(3)	 EOSMA and MOEOSMA were applied to the IK of the redundant manipulator to validate the algorithm’s 
performance and broaden its application range;

(4)	 The influence of end-effector posture on the IK problem was investigated in order to provide a reference 
for relevant researchers.

The remainder of this work is structured as follows. Section “Related works” provides a synopsis of relevant 
works in the literature. Section “Preliminaries” introduces the SMA and EO algorithms, as well as the basic 
notions of multi-objective optimization. Section “The proposed EOSMA algorithm” describes the implemen-
tation steps of the EOSMA and MOEOSMA in detail. Section “Kinematics analysis of manipulator” presents 
the manipulator’s kinematics equation. The fitness function for the IK problem is defined in Sect. “EOSMA for 
inverse kinematics”. Section “Experimental results and discussions” reports and discusses the experimental 
results. Finally, Sect. “Conclusions and future directions” concludes the paper.

Related works
Inverse kinematics is a fundamental problem of robot technology, which plays a crucial role in robot trajectory 
planning, motion control, and dynamics analysis61. Due to the inverse kinematics equation being highly non-
linear, the traditional algorithm takes a long time to solve, and it is difficult to obtain ideal results. Therefore, 
previous researchers developed a variety of metaheuristic algorithms to address the IK problem of robotic 
manipulators. Huang et al.62 employed PSO to tackle the IK problem of a 7-DOF robotic manipulator; Ram 
et al.63 used a bidirectional PSO approach to address the IK problem caused by manipulator position shift; Adly 
et al.64 proposed single-objective and multi-objective versions of improved PSO, and verified the performance of 
the algorithm on 5-DOF and 7-DOF robotic manipulators; Ayyıldız and Çetinkaya65 solved IK of a 4-DOF serial 
robotic manipulator using GA, PSO, QPSO, and GSA. According to the results, QPSO has the best problem-
solving performance; Dereli and Köker9 applied QPSO to solve the IK of 7-DOF serial manipulator and compared 
it with FA, PSO, and ABC. The results show that QPSO has higher solving accuracy and shorter calculation time 
than the contrast algorithm; Liu et al.66 proposed a parallel learning PSO (PLPSO) to solve the IK problem and 
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verified the practicability and feasibility of the algorithm on UR5 manipulator; Dereli and Köker67 proposed a 
RDV-PSO that combines golf ball movements and PSO, and applied it to the IK solution of 7-DOF manipulator; 
Momani et al.68 applied the traditional GA and the continuous GA to the IK problem respectively, and the results 
showed that the continuous GA was superior to the traditional GA in all aspects; López-Franco et al.69 applied 
DE to the IK of the manipulator. Simulation and experimental results show the applicability of this method; 
Rokbani et al.70 applied FA to the IK problem and tested it on a three-link articulated planar system, and con-
ducted a statistical analysis on the convergence and solution quality of 100 tests; Dereli and Köker13 applied FA 
to the IK problem of a 7-DOF redundant manipulator and compared it with PSO and ABC; Çavdar and Milani71 
proposed a method for solving IK of a robot manipulator based on improved ABC, and the results illustrate that 
the proposed algorithm outperforms PSO and HS in positioning accuracy and solving time; El-Sherbiny et al.72 
proposed K-ABC, which used different parameters in the process of updating food sources, and then used K-ABC 
to calculate the IK of a 5-DOF manipulator. Dereli and Köker73 proposed an ABC for solving the IK of the 7-DOF 
manipulator; Zhang and Xiao14 proposed a CPABC algorithm based on ABC to solve the IK of 7-DOF manipula-
tor. The CPABC utilized chaotic mapping to optimize the population distribution of the initial food source and 
avoided local optimum; Dereli74 used the modified GWO, FPD-GWO, to solve the IK problem and compared 
it with GWO. The results reveal that FPD-GWO has a significantly higher convergence accuracy than GWO; 
Dereli75 proposed an modified WOA, ASI-WOA, which avoided the problems of sluggish convergence speed 
and frequent falling into local optimum, and evaluated the performance of ASI-WOA on the IK problem; Toz76 
proposed a vortex search algorithm based on chaotic mapping (CVS), and verified the performance of CVS on a 
6-DOF series manipulator; Wu et al.77 proposed an algorithm that combines the parameterization method with 
the T-IK method to address the IK problem in the position domain of redundant manipulators, and they tested 
the T-IK algorithm on an 8-DOF tunnel shotcrete robot. However, the posture of the end-effector is usually not 
considered in previous studies when solving IK problems, and the performance of solving accuracy, stability, 
and real-time performance of algorithms need to be further improved.

Preliminaries
Slime mould algorithm.  Slime mould algorithm (SMA) is a metaheuristic algorithm developed by Li 
et al.15 that is inspired by slime mould’s peculiar oscillatory foraging behavior. Slime mould can explore for food 
sources based on the odor concentration of food in the air during foraging. In this process, SMA mainly simu-
lates three different morphologies of slime mould foraging: (1) When rand < z , the contraction pattern of slime 
mould is unstable and becomes anisotropic, which can be searched anywhere in the search space; (2) When 
r < p , slime mould begins to form thick vein-like tube along the radius; (3) When r ≥ p , the contractile mor-
phology of slime mould no longer changes over time, and the vascular structure disappears, as shown in Eq. (1).

where −→W is the search agent’s fitness weight, 
−→
vb is a random number vector in [−a, a] , and −→vc declines linearly 

from 1 to 0, and −→Xb is the best location of the current iteration. −→XA and −→XB are two locations selected at random 
from the population. The value of p is calculated as Eq. (2).

where S signifies the fitness of the search agents and DF denotes the best fitness of all iterations. The value of a 
in the range of 

−→
vb is calculated as Eq. (3).

The −→W is calculated as Eq. (4).

where N represents the population size, r is a random number vector in the range [0, 1], bF is the best fitness in 
the current iteration, and wF is the poorest fitness, SIdx represents the result of the ascending order of fitness.

Characteristics of SMA.  SMA has the advantages of simple principle, low time complexity, and fast con-
vergence speed. The elite strategy, ranking mechanism, and archiving mechanism are not adopted. All search 
individuals simply and equally choose to be close to or away from the best food source −→Xb . The location −→X  is 
updated based on the currently obtained optimal location −→Xb , and the population of slime mould is continuously 
guided to converge to the optimal location rapidly. As a result, SMA’s exploitation ability outperforms that of 
exploration, and it is easy to fall into a local optimum. In addition, from Eq. (1), it can be seen that the perfor-
mance of SMA mainly comes from the oscillatory foraging process of simulating slime mould to form vein-like 
tubes. In fact, for most real-world application problems, the first operator and the third operator of Eq. (1) are 
inefficient. The first operator only searches randomly, and the third operator will guide the slime mould to con-
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verge to the origin, which reduces the search efficiency. Therefore, the update operator of SMA will be simplified 
and improved in this paper. Please refer to15 for the detailed steps and pseudo code of the SMA.

Equilibrium optimizer.  The equilibrium optimizer (EO) is a physically-based metaheuristic algorithm 
developed by Faramarzi et al. in 2020 that is inspired by mass balance of controlled volume and can estimate 
dynamic and equilibrium states simultaneously39. The mass balance equation describes the physical process of 
mass entering, exiting, and generating in the control volume78. In EO, search agents update their concentration 
(location) at random in order to find some genius particles known as equilibrium candidates in order to attain 
the final equilibrium state as the global optimal. Equation (6) shows the updating formula.

where −→C  is the current solution, −→Ceq is a randomly selected solution from the equilibrium pool, −→F  is an adaptive 
parameter, −→G  is the mass generation rate, 

−→
�  is a random number vector in [0, 1], and V = 1 signifies the unit vol-

ume. There are five candidate solutions in the equilibrium pool. Four are the best candidate solutions found so far, 
and another is the average concentration (center location) of these four candidate solutions, as shown in Eq. (7).

The −→F  is adaptively adjusted according to Eq. (8).

where a1 ∈ [1, 2] and a2 ∈ [1, 2] control the exploration and exploitation, respectively. The larger a1 is, the stronger 
the exploration ability is, and the larger a2 is, the stronger the development ability is, and vice versa. sign repre-
sents the symbolic function. −→r  and 

−→
�  are vectors of random numbers in [0, 1]. The −→G  is calculated by Eq. (9).

where r1 and r2 are random numbers in [0, 1] and GP = 0.5 is the generation probability. More detailed steps 
and pseudo-code for EO are given in39.

The basic notions of multi‑objective optimization.  Multi-objective optimization needs to optimize 
two or more objective functions simultaneously and cannot balance them explicitly; that is, there is no opti-
mal solution that meets all objectives at once. Without loss of generality, multi-objective optimization can be 
expressed as the following optimization problem79:

where M represents the number of sub-objectives, m denotes the number of inequality constraints, and n denotes 
the number of equality constraints, Dim represents the dimension of decision variables, [L,U] represents the 
search range of decision variables.

There is usually no optimal solution for multi-objective optimization problems that minimizes all sub-objec-
tives simultaneously. In this scenario, utilizing arithmetic relation operators to compare different solutions is 
not possible. In the multi-objective search space, we can compare the two search agents using Pareto optimal 
dominance56. The following are the definitions of Pareto dominance and Pareto optimality:

Definition 180  (Pareto dominance). Assume there are two vectors, �x and �y . If and only if the following criteria 
are met, vector �x dominates �y (expressed as �x ≻ �y):

according to Eq. (11), a solution vector �x is superior to another �y if it has better or equal values on all objectives 
and better values on at least one of them.

Definition 280  (Pareto optimality). If and only if the following criteria are met, a solution vector �x ∈ D is said 
to be Pareto optimal:

(6)
−→
C =

−→
Ceq +

−→
F
(−→
C −

−→
Ceq

)

+
(

1−
−→
F
)−→
G
/(−→

� · V
)

(7)
−−−−→
Ceq,pool =

{−−→
Ceq,1,

−−→
Ceq,2,

−−→
Ceq,3,

−−→
Ceq,4,

−−−→
Ceq,ave

}

(8)

−→
F =a1 · sign

(−→r − 0.5
)

·

(

e−
−→
� t1 − 1

)

t1 =(1− t/max _t)

(

a2·
t

max _t

)

(9)
−→
G =

{

0.5r1

(−→
Ceq −

−→
�
−→
C
)−→
F r2 ≥ GP

0 r2 < GP

(10)

Minimize: F(�x) =
(

f1(�x), f2(�x), . . . , fM(�x)
)T

s.t. :gi(�x) ≤ 0, i = 1, 2, . . . ,m

hi(�x) = 0, i = 1, 2, . . . , n

�x = (x1, x2, . . . , xDim)

Li ≤ xi ≤ Ui , i = 1, 2, . . . ,Dim

(11)∀i ∈ {1, 2, . . . ,M} : fi(�x) ≤ fi(�y) ∧ ∃i ∈ {1, 2, . . . ,M} : fi(�x) < fi(�y)

(12)¬∃�y ∈ D : �y ≻ �x



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9421  | https://doi.org/10.1038/s41598-022-13516-3

www.nature.com/scientificreports/

where D denotes the decision space. According to Eq. (12), if no other solution vector in decision space D is 
superior to �x , then �x is considered the Pareto optimal solution.

Definition 380  (Pareto optimal set). The Pareto optimal set (PS) is a set that contains all non-dominated solu-
tions to a given problem:

Definition 480  (Pareto optimal front). The Pareto optimal front (PF) is the mapping set of the PS on the objective 
space, and its expression is as follows:

The proposed EOSMA algorithm
The EOSMA for single‑objective problems.  In EOSMA, the following improvement strategies are 
mainly adopted: (1) The individual and global historical optimal of PSO are introduced81. The individual his-
torical optimal is preserved by greedy selection and memory mechanism. In the update operator of SMA, the 
individual and global historical optimal are used to update, to accelerate the algorithm’s convergence; (2) The 
concentration update operator of EO is used to replace the less efficient anisotropic search operator in SMA to 
balance the concentration of slime mould in all directions and improve the search efficiency of the algorithm; 
(3) The random difference mutation operator is introduced. After the location update, the mutation mechanism 
is employed to improve the algorithm’s exploration ability, helping it to escape from the local optimum and 
avoid premature convergence; (4) The boundary checking of the algorithm is improved, and the solution vector 
beyond the search boundary is updated to the midpoint of the current solution to the search boundary to avoid 
the invalid search. Therefore, the location update formula of EOSMA is shown in Eq. (15).

where −→Xeq is a randomly selected solution from the equilibrium pool, −→X  is the location of the search agents, −−→
gBest is the best location found so far, −−−→pBestA and −−−→pBestB are two location vectors randomly selected from the 
individual historical optimal, z = 0.5 is the parameter of the hybrid algorithm obtained by experiments, and the 
meaning of the remaining parameters are the same as in EO and SMA.

In order to improve the exploration ability of the algorithm and the probability of escaping from the local 
optimum, the search agents execute the random difference mutation strategy after updating by Eq. (15). The 
mathematical model of the mutation operator is shown in Eq. (16).

where SF is a random number taking value in [0.3, 0.6], R1,R2,R3 are three random integer vectors, the element 
takes value in [1, N], and N represents the population size.

After the search agent location is updated, check the solution to ensure it is within the search range. For the 
solution vector beyond the search range, the usual practice is to pull it back to the boundary. In this way, it is easy 
to produce invalid searches and reduce search efficiency. In EOSMA, the boundaries are checked by Eq. (17).

Finally, after each fitness evaluation, the individual historical optimal location is updated using the greedy 
strategy, as shown in Eq. (18).

In EOSMA, using the −→Xeq randomly selected in the equilibrium pool to update the location is equivalent to 
introducing a GWO-like hierarchical mechanism12. Therefore, compared with SMA, EOSMA introduces a greedy 
selection strategy, hierarchical partitioning mechanism, differential mutation mechanism, and boundary check-
ing strategy. Greedy selection and boundary checking strategy enhance the exploitation ability, and hierarchical 
partitioning and differential mutation mechanism enhance the exploration ability. As a result, the exploration 
and exploitation abilities of EOSMA are improved compared with EO and SMA. Figure 1 shows the flowchart 
of EOSMA, and Algorithm 1 presents its pseudo-code.

(13)PS = {�x|¬∃�y ∈ D : �y ≻ �x}

(14)PF = {F(�x)|�x ∈ PS}

(15)
−−−−−→
X(t + 1) =







−−−→
Xeq(t)+

�−−−−→
pBest(t)−

−−−→
Xeq(t)

�

·
−→
F +

−→
G ·

�

1−
−→
F
���−→

� · V
�

rand < z
−−−−→
gBest(t)+

−→
vb ·

�−→
W ·

−−−−−→
pBestA(t)−

−−−−−→
pBestB(t)

�

others

(16)
−−−−−→
X(t + 1) =

−−−−−−→
pBestR1(t)+ SF ·

(−−−−−−→
pBestR2(t)−

−−−−−−→
pBestR3(t)

)

(17)Xi,j(t + 1) =







�

Xi,j(t)+ UB
��

2 Xi,j(t + 1) > UB
�

Xi,j(t)+ LB
��

2 Xi,j(t + 1) < LB
Xi,j(t + 1) others

(18)
−−−−−−−−→
pBesti(t + 1) =

{−−−−−→
Xi(t + 1) S

(−−−−−→
Xi(t + 1)

)

< S
(−−−−−→
pBesti(t)

)

−−−−−→
pBesti(t) others



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9421  | https://doi.org/10.1038/s41598-022-13516-3

www.nature.com/scientificreports/

Figure 1.   Flow chart of the EOSMA.
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The EOSMA for multi‑objective problems (MOEOSMA).  Two components were added to EOSMA 
to transform it to a multi-objective version. The first component is an archive that retains all of the Pareto opti-
mal solutions discovered that so far. The second component is a technique for ranking Pareto optimal solutions 
based on congestion metrics, which updates the equilibrium pool.

The archive is used to store and retrieve PS and PF found so far, and its capacity is the same as the population 
size. The location update operator of the search agent is the same as EOSMA, but the food source (optimal loca-
tion) is selected from the archive. An archive updating approach similar to that employed in MOPSO82 is used 
to obtain a well-distributed PF. The archive always collects Pareto optimal solutions from the current population 
and updates them through the following steps:

(1)	 Combine the new solutions from each iteration with the previous Pareto optimal solutions from the archive, 
and then check the combined solutions If a solution is not dominated by other solutions, added it to the 
archive; Otherwise, discard it;
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(2)	 Check whether the same solution still exists in the archive, and then remove it;
(3)	 The solutions in the archives are graded based on congestion. The less congested the area, the more impor-

tant the solutions, and vice versa.
(4)	 If the number of solutions in the archive exceeds the capacity of the archive, the roulette selection method 

is used to remove the solution with higher congestion;
(5)	 Re-rank the solutions in the archive based on congestion.

All solutions stored in the archive obtained according to the above update rules will dominate other solutions 
in the population. The conceptual model of congestion level is shown in Fig. 2. A hypersphere with a radius of −→
dr is defined, and the number of solutions in the hypersphere is taken as the congestion level of the solutions, 
centering on the fitness of each solution. The calculation formula of distance radius 

−→
dr is Eq. (19).

where −−→max and −→min are two vectors that store the maximum and minimum fitness of each objective, respectively, 
and Archivesize is the archive size54.

The multi-objective optimization approach relies on convergence and coverage to obtain the Pareto optimal 
solution. The convergence is mainly determined by the performance of EOSMA, and the coverage is mainly 
determined by the archive update rules. As can be seen from Fig. 2, there are more non-dominant solutions 
near the solutions with higher congestion levels. In order to improve coverage of PF, the solutions with higher 
congestion levels should be removed preferentially, while the solutions with lower congestion levels need to be 
preserved vigorously. If the number of non-dominant solutions exceeds the archive capacity, the probability that 
each solution is removed is calculated using Eq. (20).

where Pi defines the probability of selecting the i-th non-dominated solution, C means the cumulative sum of the 
congestion levels of all non-dominated solutions, and Ni denotes the congestion level of the i-th non-dominated 
solution.

The equilibrium pool maintains multiple optimal solutions discovered thus far, which broadens the algorithm’s 
search range and improves EOSMA’s global search capability. The fitness of search agents can be directly com-
pared for single-objective optimization, and the search agent with the best fitness can be selected and put into 
the equilibrium pool. For multi-objective optimization, MOEOSMA’s archive stores the non-dominant solutions 
of the current iteration. The solutions with the lowest congestion level can be regarded as the best food source. 
Therefore, the solution with the lowest congestion level in the archive is put into the equilibrium pool. Each 
iteration randomly selects a solution in the equilibrium pool as the global optimal location −−→gBest in Eq. (15). It 
is worth noting that there are 5 solutions in the equilibrium pool of EOSMA, while the number of solutions in 
the equilibrium pool of MOEOSMA varies. In addition, unlike many heuristic algorithms, SMA needs to sort 
the fitness during each iteration to evaluate individual fitness weight. Due to the individual fitness of several 
objectives cannot be compared simultaneously in multi-objective optimization, this work used a rotation sorting 
approach to estimate the individual fitness weight of slime mould, as shown in Eq. (21).

(19)−→
dr =

−−→max −
−→
min

Archivesize

(20)Pi =
Ni

C

(21)Oi = rem(t,M)+ 1

Figure 2.   Model of selecting a food source or eliminating a solution from the archive.
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where Oi signifies the fitness of the i-th objective function selected for sorting, t  signifies the number of cur-
rent iterations, and M signifies the number of problem objectives. Figure 3 shows MOEOSMA’s flow chart, and 
Algorithm 2 presents the pseudo-code.

Figure 3.   Flow chart of the MOEOSMA.
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Complexity analysis.  EOSMA comprises sub-components: population initialization, fitness evaluation, 
greedy selection, fitness sorting, fitness weight update, equilibrium pool update, search agent location update, 
and mutation operator. The computational complexity of initialization is O(N ∗ Dim) , the time complexity of 
greedy selection and equilibrium pool update are O(N) , the computational complexity of fitness weight update, 
location update, and mutation operation are all O(N ∗ Dim) , and the computational complexity of fitness sorting 
is O(N ∗ logN) . Assuming that the time complexity of the fitness evaluation function is O(F) , the time com-
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plexity of EOSMA is O
(

max _t ∗
(

N ∗ Dim+ N ∗ logN + F
))

 , where N denotes population size, Dim denotes 
problem dimensionality, F denotes the time to compute the fitness function once, and max _t denotes the maxi-
mum number of iterations of the algorithm. EOSMA’s space complexity is O(N ∗ Dim).

MOEOSMA extends EOSMA components with the archive update operator. It has a time complexity of 
O(N2

A ∗M) , where NA is the archive capacity and M is the number of targets. As a result, MOEOSMA’s time 
complexity is O

(

max _t ∗
(

N2
A ∗M + N ∗ Dim+ N ∗ logN + F

))

 . MOEOSMA has the same space complexity 
as EOSMA, which is O(N ∗ Dim).

Kinematics analysis of manipulator
As illustrated in Fig. 4, the robotic manipulator’s kinematics analysis includes forward kinematics (FK) analysis 
and inverse kinematics (IK) analysis. FK calculates the end-effector’s position and posture based on the joint 
angle vector, and IK calculates the matching joint angle vector based on the position and posture.

IK is a fundamental problem in robotics, which plays an important role in motion control, and trajectory 
planning61. For the manipulator that meets the Pieper standard, the analytical method can be used to solve it. Still, 
for the more general manipulator, the analytical method cannot be used to solve it, especially for the manipulator 
with the offset wrist66. The manipulator with 7-DOF has been widely used in industry because of its easy obstacle 
avoidance, flexible movement, and working in a large space9. This work uses the previously studied 7-DOF series 
robotic manipulator9,74,75 as a test instance to validate the effectiveness and efficiency of the proposed EOSMA. 
The structure of the manipulator is shown in Fig. 5, which is composed of 7 rotating joints and 6 connecting rods 
in series, and the end-effector has an offset of 5 cm. Therefore, the structure of the manipulator does not meet 
the Pieper standard, and it is difficult to obtain its IK equation by the analytical method.

The forward kinematics model needs to be established before studying the inverse kinematics of the manipula-
tor. Denavit-Hartenberg (DH) parameters can uniquely determine the structure of manipulator and are widely 
used in FK modeling of robotic manipulator66. Table 1 lists the DH parameters of the manipulator studied in 
this paper, where ai ,αi , di , θi represent the length of the connecting rod, the torsion angle of the connecting rod, 
the offset of the connecting rod, and the joint angle, respectively.

The FK model of the manipulator is established using the standard DH parameter method, and the homo-
geneous transformation matrix of the single joint is presented in Eq. (22)5.

Figure 4.   Kinematics analysis of the robotic manipulator.

Figure 5.   The structure of the 7-DOF robotic manipulator.
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where ii−1T is the homogeneous transformation matrix of joint i − 1 to i  , sθi and cθi stand in for sin(θi) and 
cos(θi) , respectively.

By substituting each row of data in Table 1 into Eq. (22), the homogeneous transformation matrix of each 
joint can be obtained, as shown in Eq. (23).

The FK equation of the end-effector relative to the base is produced by multiplying all homogeneous trans-
formation matrices, as shown in Eq. (24).

where TEnd - Effector represents the end-effector’s homogeneous transformation matrix with regard to the base 
coordinate system. When the value of a given joint variable is in Eq. (24), the alternative representation of 
TEnd - Effector can be written as Eq. (25).

where (px , py , pz)T represents the end-effector’s position element in the base coordinate system, and (�n, �s, �a) 
represents the posture element, that is, the rotation element.

Although the rotation matrix (�n, �s, �a) has nine elements, it has only three degrees of freedom and is a unit 
orthogonal matrix with redundancy. Therefore, the Euler angle is used to describe the posture of the end-effector, 
and its calculation formula is shown in Eq. (26)66.

Thus, the position and posture can be expressed as P = (px , py , pz ,α,β , γ ) , where (px , py , pz) is the position 
vector and (α,β , γ ) is the posture vector expressed by Euler angle. The FK equation of the simplified 7-DOF 
robotic manipulator is shown in Eq. (27).

(22)i
i−1T =







cθi −sθi · cαi sθi · sαi ai · cθi
sθi cθi · cαi −cθi · sαi ai · sθi
0 sαi cαi di
0 0 0 1







(23)

1
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




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
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





cθ2 0 sθ2 l2cθ2
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




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3
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




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


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
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Table 1.   DH parameters of the 7-DOF robotic manipulator9.

Joint ai(m) αi(rad) di(m) θi(rad)

1 0 −π
/

2 l1 = 0.5 −π < θ1 < π

2 l2 = 0.2 π
/

2 0 −π
/

2 < θ2 < π
/

6

3 l3 = 0.25 −π
/

2 0 −π
/

2 < θ3 < 2π
/

3

4 l4 = 0.3 π
/

2 0 −π
/

2 < θ4 < π
/

2

5 l5 = 0.2 −π
/

2 0 −π
/

2 < θ5 < π
/

2

6 l6 = 0.2 0 0 −π
/

2 < θ6 < π
/

2

7 l7 = 0.1 0 d7 = 0.05 −π
/

6 < θ7 < π
/

2
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where si and ci stand in for sin(θi) and cos(θi) , sij and cij stand in for sin(θi) · sin(θj) and cos(θi) · cos(θj) , 
respectively.

As mentioned above, the FK equation of the 7-DOF robotic manipulator can be easily obtained by 
using DH coordinate method. Given the joint angle vector (θ1, θ2, θ3, θ4, θ5, θ6, θ7) , the position and pos-
ture (px , py , pz ,α,β , γ ) of the manipulator can be directly calculated by Eq. (27). However, given the posi-
tion and posture (px , py , pz ,α,β , γ ) of the manipulator, the IK equation used to obtain the joint angle vector 
(θ1, θ2, θ3, θ4, θ5, θ6, θ7) is highly nonlinear, which is considered to be a very challenging optimization problem76.

EOSMA for inverse kinematics
The manipulator’s IK problem is defined as determining the corresponding joint angle based on the position 
and posture of the end-effector. The IK problem of complex structure manipulator belongs to the NP problem 
group83. Due to the analytical method is extremely difficult to use, this research employs the developed EOSMA to 
address the IK problem. The relationship between the EOSMA algorithm and the IK problem is shown in Table 2.

The purpose of this study is to optimize the joint angle vector 
−→
θi = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) of the manipula-

tor to eliminate position and posture errors. The FK formula is used to calculate the end-effector’s position and 
posture corresponding to the joint angle vector. For the desired pose P0 = (px0, py0, pz0,α0,β0, γ0) , the fitness 
of the candidate joint angle vector 

−→
θi  is defined as Eq. (28).

where w1 + w2 = 1 represents the weight of position and posture error, and Pi = (pxi , pyi , pzi ,αi ,βi , γi) denotes 
the end-effector’s position and posture corresponding to the joint angle vector 

−→
θi  , which can be obtained from 

Eq. (27).
The fitness function defined by Eq. (28) consists of position and posture error. It should be noted that in pre-

vious studies, many researchers only considered position without considering posture, reducing the complexity 
of the IK problem. Although those algorithms have obtained high accuracy, they are inconsistent with many 
real-world applications. The end-effector’s position and posture are considered comprehensively in this study, 
and the complete pose of the manipulator is obtained. For EOSMA, the location of the search agents is the joint 
angle vector, i.e., −−−→pBesti =

−→
θi  . The search range of joint angles is presented in Table 1.

Due to the randomness of the metaheuristic algorithm, poor outliers may appear in a single run, which 
will affect the average solution accuracy of the algorithm. In this study, the threshold for judging whether the 
algorithm has been solved successfully is set as 10e−6. If the solution result is less than 10e−6, the algorithm is 
considered to have been solved successfully, and the solution result of the algorithm is retained; Otherwise, the 
algorithm is employed to solve again until the algorithm’s maximum number of failures is reached. The maxi-
mum number of failures of all comparison algorithms is set to 10. Figure 6 explains the flow chart of EOSMA 
for the IK problem.

Experimental results and discussions
The effectiveness and efficiency of the EOSMA in handling the IK problem were validated in two scenarios in this 
section. Firstly, EOSMA was compared with 15 well-known algorithms without considering posture and then 
compared with the results of existing studies. Then, the proposed method was compared with 15 well-known 
single-objective algorithms and 9 multi-objective algorithms in the scenario of comprehensively considering posi-
tion and posture. Finally, according to the calculated joint angle vector and the current angles of the manipulator, 
the joint change of the manipulator was simulated, and the motion trajectory of the end-effector was drawn. All 
algorithm codes were run in MATLAB R2020b, and the hardware details were Intel(R) Core (TM) i7-9700 CPU 
(3.00 GHz) and 16 GB RAM. In the experiment, the pose error and calculation time are given priority, and the 
best, worst, mean, and standard deviation are employed as the algorithm’s performance metrics.

(27)

px = d7(s5h− c5b)+ l7s7o+ n(l6 + l7c7)− l5i − l4h− l3a+ l2c12

py = −d7(s5j − c5d)− l7s7(c6k + s6p)− (l6 + l7c7)(s6k − c6p)+ l5p+ l4j + l3c + l2c2s1

pz = d7l + l7s7(s6m− c6f )− (l6 + l7c7)(c6m+ s6f )− l5m− l4e − l3c3s2 − l2s2 + l1

α = atan((s5j − c5d)/l)

β = atan((s5h− c5b)/((c7n+ s7o)
2 + (c7o− s7n)

2)0.5)

γ = atan((s7n− c7o)/(c7n+ s7o))

where a = s13 − c123 b = c3s1 + c12s3, c = c1s3 + c23s1, d = c13 − c2s13,

e = c2s4 + c34s2, f = c24 − c3s24, g = s4a− c14s2, h = c4a+ c1s24,

i = c5h+ s5b, j = c4c − s124 k = s4c + c4s12, l = s5e + c5s23,

m = c5e − s235, n = s6g − c6i, o = c6g + s6i, p = c5k + s5d.

(28)ferror(�θi) = w1 · f1(�θi)+ w2 · f2(�θi)

(29)f1(�θi) = [(pxi − px0)
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Parameter settings.  To fully demonstrate the effectiveness and efficiency of EOSMA in solving the IK 
problem, it is compared with 15 single-objective algorithms and 9 multi-objective algorithms. These algorithms 
include SMA15, EO39, DE44, TLBO46, FPA43, MRFO40, MPA42, PFA42, GBO45, HHO47, IGWO48, PSOGSA49, 
CODE50, MTDE51, SASS52, MOSMA35, MOPSO53, MOMPA54, MOALO55, MODA56, MOGWO57, MOMVO58, 
MSSA59, MOEA/D60. All algorithms use the same common parameters for a fair comparison, and other param-
eters are taken from the values suggested in the original paper, as shown in Tables 3 and 4. In scenario 1, the 
mutation probability q of EOSMA is set as 0, and the exploration factor a1 is set as 1. In scenario 2, the mutation 
probability q is set as 1, and the exploration factor a1 is set as 2.

Result obtained for scenario 1.  Comparison of EOSMA with other SI algorithms.  In this part, EOSMA 
is compared against 15 well-known algorithms for the IK problem that do not take posture into account. Due 
to the metaheuristic algorithms run at random, each run will have a higher or lower value than the preceding 
one. To avoid the influence of randomness in the selection of position points, 100 different position points were 
generated at random in the workspace of the manipulator, as shown in Fig. 7, where the color represent the posi-
tion’s height.

The results obtained by the comparison algorithm are shown in Table 5. It can be seen that EOSMA, EO, 
MRFO, PFA, and GBO can all obtain theoretical optimal solutions with zero error without considering the pos-
ture, but EOSMA has the best robustness and the shortest solution time. The average convergence accuracy of 
EOSMA is 9 orders of magnitude higher than EO and 13 orders of magnitude higher than SMA, which verifies 
the effectiveness and efficiency of EOSMA in the IK problem.

Convergence curves of EOSMA and 14 comparison algorithms are shown in Fig. 8. Since the population size 
of SASS decreases linearly with the number of iterations, its convergence curves are not comparable. The results 
show that EOSMA can quickly obtain high-precision solutions, far superior to other comparison algorithms, 
followed by GBO and PSOGSA, indicating that EOSMA is suitable for solving IK problem without considering 
posture.

The solution time of EOSMA and 15 comparison algorithms at 100 randomly selected positions is shown 
in Fig. 9. It can be seen that EOSMA takes the least amount of time, followed by EO and PFA, and IGWO takes 
the most time. Since the manipulator is a real-time control system, the algorithm with a short solution time is 
preferred when the solution accuracy is satisfied. Therefore, although PSOGSA and GBO have high convergence 
accuracy, they are not suitable for solving the IK of the manipulator. EOSMA, EO, and PFA are highly competi-
tive in the IK problem.

Figure 10 shows the distribution of the solution results of the algorithm in the form of the box plot. For the 
convenience of observation, set results less than 10e−18 to 10e−18. It is clear that EOSMA has a lower median 
and a narrower box plot with fewer outliers than most algorithms. EOSMA is superior to SMA in convergence 
accuracy and EO in robustness.

To verify whether there is a significant difference between the solution results of EOSMA and each compari-
son algorithm, the Wilcoxon rank-sum test of two paired samples was utilized84. Figure 11 illustrates the p-value 
of the Wilcoxon rank-sum test as a bar graph. If p < 0.05, it is believed that there is a substantial difference between 
the two algorithms. As can be seen, EOSMA differs greatly from all comparison algorithms, particularly SMA, 
indicating that the improvement is effective.

Comparison of EOSMA with the existing studies.  Many metaheuristic algorithms, such as quantum particle 
swarm optimization (QPSO)9, GWO74, and WOA75, have been effectively applied to the IK of 7-DOF robotic 
manipulators. Table 6 shows the results of EOSMA, SMA, and EO in the IK of 7-DOF manipulator with other 
comparable metaheuristic algorithms used in existing studies. It is clear from the results that the solution accu-
racy of EOSMA is 4 orders of magnitude higher than that of QPSO.

Result obtained for scenario 2.  Single objective optimization.  The IK of redundant manipulators is con-
sidered a challenging optimization problem83. Many previous studies did not consider the end-effector’s posture, 
which simplifies the problem but is inconsistent with most practical applications. Considering that the posture 
makes the IK problem more complex, so it is necessary to verify EOSMA’s optimization performance further. 
The linear weighting method is utilized in this section to handle the IK problem while keeping posture in con-
sideration. The fitness value of the candidate joint angle vector 

−→
θi  is calculated by Eq. (28), where w1 and w2 are 

set to 0.5, indicating that position and posture are equally important. A total of 100 different pose points were 

Table 2.   The correspondence between EOSMA and IK problem.

Biological principle EOSMA IK problem

Slime mould location Search agent location pBest Candidate joint angles of the manipulator

The venous form of slime mould Global optimum location gBest The best joint angle

Food odor concentration Fitness value S The error between the end-effector poses corresponding to the candidate joint angles and the desired pose

Positive and negative feedback Search agent location weights W Weight of candidate joint angles

Transition contraction mode Adaptive parameter z Update method of candidate joint angles

Close to or away from food sources Adaptive parameter vb Update direction of candidate joint angles
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randomly generated in the workspace of the 7-DOF manipulator, as shown in Fig. 12. In the figure, solid dots 
represent the position of the end-effector, and straight lines represent the posture.

Table 7 presents the results of EOSMA and 15 comparison algorithms. When considering the end-effector’s 
position and posture, it can be seen that only EOSMA, MPA, DE, and SASS can effectively solve the IK problem. 
EOSMA and SASS produced acceptable results, with an average solution accuracy of 10e-18. Although EOSMA’s 
solution accuracy is not as good as SASS’s, its solution time is shorter, making it more suitable for manipulator 

Figure 6.   Flow chart of the EOSMA implementation for the IK problem.
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real-time control. As a result, EOSMA is a viable alternative method for solving the IK problem of complicated 
manipulators.

Figure 13 presents the convergence curves of EOSMA and various comparison algorithms. As can be seen, 
EOSMA has the fastest convergence speed and the highest convergence accuracy, considerably outperforming 
EO and SMA. Furthermore, the convergence curve of EOSMA is remarkably smooth, indicating that the algo-
rithm has achieved a reasonable balance between exploration and exploitation. The random difference mutation 
operator is used in EOSMA to expand the search space of search agents during the iterative process, avoid over-
crowding of search agents, and increase the probability of finding the optimal solution. As shown in Fig. 13, the 
average solution accuracy of most algorithms is less than 10e-7, indicating that the proposed EOSMA improves 
the average solution accuracy by 10 orders of magnitude.

Table 3.   Parameter settings of the single-objective algorithms. For scenario 1, N = 50, Max_t = 500; For 
scenario 2, N = 100, Max_t = 1000.

Algorithms Parameters Values Algorithms Parameters Values

EOSMA

Hybrid parameter z 0.5 IGWO Convergence factor a [2, 0]

Mutation probability q 0 and 1

PSOGSA

Inertia weight w [1, 0]

Control volume V 1 Personal cognition coefficient c1 0.5

Generation probability GP 0.5 Social cognition coefficient c2 1.5

Exploration factor a1 1 and 2 Gravitational constant G0 1

Exploitation factor a2 2 Constant α 23

SMA Constant z 0.03

CODE

Scale factor F 0.5

EO

Control volume V 1 Crossover rate Cr 0.9

Generation probability GP 0.5 Generation jumping rate Jr 0.3

Exploration factor a1 2

MTDE

Constant WinIter 20

Exploitation factor a2 1 Constant H 5

MRFO Somersault factor S 2 Constant initial 0.001

MPA
Constant p 0.5 Constant final 2

Constant FADs 0.2 Parameter Mu log(Dim)

FPA

Scale factor a 2 Constant μf 0.5

Constant b 0.5 Constant σ 0.2

Proximity probability p 0.2

SASS

Constant pr 0.11

DE
Scale factor F 0.5 Population size N [18*Dim, 4]

Crossover rate Cr 0.9 Rank of diagonal matrix rd 0.5

GBO Constant pr 0.5 Scale factor c 0.7

TLBO Teaching factor TF {1, 2} Archiving size Ar 1.4

HHO Constant β 1.5 Memory size Ms 100

Table 4.   Parameter settings of the multi-objective algorithms. For all algorithms, archive size was set to 100, 
N = 100, Max_t = 1000.

Algorithms Parameters Values Algorithms Parameters Values

MOEOSMA

Hybrid parameter z 0.5

MOPSO

Inertia weight w 0.5

Mutation probability q 1 Damping rate 0.99

Control volume V 1 Personal cognition coefficient c1 1

Generation probability GP 0.5 Social cognition coefficient c2 2

Exploration factor a1 2 Number of grids 7

Exploitation factor a2 2 Grid inflation rate α 0.1

MOSMA Constant z 0.03 Leader selection pressure β 2

MOMPA
Constant p 0.5 Deletion selection pressure γ 2

Constant FADs 0.2 Mutation rate μ 0.1

MOGWO

Grid inflation rate α 0.1 MODA Inertia weight w 0.9–0.7

Number of grids n 10
MOMVO

Minimum probability WEPmin 0.2

Leader selection pressure β 4 Maximum probability WEPmax 1

Deletion selection pressure γ 2 MOEA/D Crossover parameter γ 0.5

MOALO Parameter less NA MSSA Parameter less NA



17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:9421  | https://doi.org/10.1038/s41598-022-13516-3

www.nature.com/scientificreports/

The solution time of each algorithm at 100 pose points is shown in Fig. 14. It can be seen that the solution 
time of EOSMA fluctuates little when solving different pose points. The average solution time of EOSMA is the 
shortest, about 0.36 s, followed by MPA, about 0.42 s. This may not be an entirely satisfactory result, but it shows 
that EOSMA can still be used for some robotic manipulators with low real-time performance, such as in the 
service industry and offline computing online operations66.

The box plot in Fig. 15 displays the solution outcomes of EOSMA and other comparison algorithms at 100 
pose points. EOSMA and SASS have the lowest median and few outliers, making them considerably superior to 
other comparison algorithms. Overall, EOSMA and SASS performed well on the IK problem, with little difference 
in performance between the two. However, EOSMA has a lower time complexity than SASS.

Figure 16 shows the Wilcoxon p-value test results of EOSMA and each comparison algorithm. It can be seen 
that, except for SASS, there are significant differences between the optimization results of EOSMA and com-
parison algorithms at the confidence level of 0.05. It shows that the search principle of EOSMA is different from 
other algorithms and can solve the IK more effectively.

Multi objective optimization.  If the desired position and posture of the end-effector are considered compre-
hensively, there may be no inverse kinematics solution due to the structural restrictions of the manipulator, 
that is, the position and posture errors cannot be optimized simultaneously. As a result, the manipulator’s IK 
can be regarded as a multi-objective optimization problem. Obviously, the closer to the workspace boundary, 
the less selectable posture of the end-effector. In this case, it is difficult to obtain a satisfactory solution using 
the single-objective algorithm. In this study, MOEOSMA was proposed to solve IK problems. The desired pose 

Figure 7.   Randomly selected position points in the workspace of the manipulator.

Table 5.   Comparative results of inverse kinematics problem. The optimal values are shown in bold.

Algorithm EOSMA SMA EO MRFO MPA PFA FPA DE

Worst 7.85E−16 3.09E−02 7.99E−07 9.92E−07 4.28E−07 2.66E−07 5.99E−02 9.93E−07

Mean 2.64E−17 9.57E−04 2.45E−08 1.37E−07 7.75E−08 5.73E−09 6.57E−03 2.97E−07

Best 0.00E+00 4.17E−05 0.00E+00 0.00E+00 1.43E−08 0.00E+00 3.26E−12 5.00E−14

Std 9.93E−17 3.27E−03 1.06E−07 2.27E−07 6.73E−08 3.43E−08 9.19E−03 2.80E−07

Time(s) 0.0567 0.5382 0.0649 0.1302 0.1284 0.0812 1.2808 0.2809

Algorithm GBO TLBO HHO IGWO PSOGSA CODE MTDE SASS

Worst 1.10E−11 2.42E−03 3.99E−02 1.35E−02 3.13E−13 2.76E−01 6.15E−03 1.01E−03

Mean 2.54E−13 2.23E−04 1.64E−03 2.84E−03 1.57E−13 5.79E−02 1.07E−03 1.99E−04

Best 0.00E+00 9.12E−09 9.03E−12 3.86E−05 4.37E−14 3.11E−03 1.27E−05 7.04E−11

Std 1.48E−12 4.56E−04 4.54E−03 3.26E−03 6.78E−14 5.71E−02 1.16E−03 2.28E−04

Time(s) 0.3058 1.6861 1.7444 5.5963 0.2084 0.4410 2.1214 1.2234
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P1 = (−25, 100, 50, 0, 0, 0) and P2 = (50,−25, 75, 0, 0, 0) were selected as test cases. It was verified that P1 did 
not have inverse kinematic solutions while P2 had inverse kinematic solutions through the Robotics Toolbox 
for MATLAB. Due to the IK problem of the 7-DOF manipulator has not been studied using the multi-objective 
method in the previous literature, MOEOSMA is compared with MOSMA35, MOPSO53, MOMPA54, MOALO55, 
MODA56, MOGWO57, MOMVO58, MSSA59, and MOEA/D60. For a fair comparison, the population size of 
all algorithms was set to 100, the maximum number of iterations was set to 1000, the archive size was set to 
100, and each example was independently run 20 times. Since the true PF is unknown, the hypervolume (HV) 
metric85,86 was used to evaluate the performance difference of the algorithms. The HV metric can evaluate both 
the advancement and distribution of the obtained PF simultaneously87. The larger HV value, the better conver-
gence and distribution of the algorithm. The reference points for the test cases used in this study were 1.1 times 
the maximum objective function value found in all algorithms and all optimization runs. The reference points 
for calculating the HV values of the desired poses P1 and P2 are (2.088567, 2.466816) and (1.695669, 2.524178), 
respectively. Table 8 provides the statistical data of the HV results obtained by each algorithm. The PF obtained 
by the algorithms under the two desired poses is shown in Figs. 17 and 18, respectively.

The data provided in Table 8 show that MOEOSMA obtains the best mean and standard deviation in the 
two scenarios, while MOMPA and MOMVO also show strong competition. For the pose without inverse kin-
ematic solution, MOEOSMA has a longer solution time than MOMPA, MOMVO and MSSA, but the quality of 
PF obtained is better. For the pose with inverse kinematic solution, MOEOSMA is much better than the other 
comparison algorithms in both accuracy and speed. As can be seen from Fig. 17, the PF obtained by MOEOSMA 

Figure 8.   Average convergence curve of randomly selected position points.

Figure 9.   Solution time of comparison algorithms at randomly selected position points.
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is closer to the true PF, and extreme Pareto solutions are more widely distributed. As can be seen from Fig. 18, 
the PF of MOEOSMA is convex, and the rest is concave, indicating that the proposed algorithm can minimize 
both position and posture errors, while the other algorithms tend to optimize one of the objectives. This fully 
reveals that MOEOSMA is a good optimization tool for solving the IK problem of redundant manipulators.

Figure 10.   Box plot of optimization results of randomly selected position points.

Figure 11.   Wilcoxon rank-sum test results of randomly selected position points.

Table 6.   Comparative results of inverse kinematics problem.

Algorithm Swarm size Position error (MSE) Algorithms Swarm size Position error (MSE)

PSO9 300 2.1162E−04 WOA75 50 9.5460E−04

ABC9 100 1.1105E−06 SMA 50 9.5688E−04

FA9 50 1.4547E−05 EO 50 2.4514E−08

QPSO9 150 6.9347E−13 EOSMA 50 2.6428E−17

GWO74 50 9.4745E−08
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Figure 12.   Randomly generated pose points in the workspace of the manipulator.

Table 7.   Optimization results take into account the posture of the end-effector. The optimal values are shown 
in bold.

Algorithm EOSMA SMA EO MRFO MPA PFA FPA DE

Worst 5.55E−17 0.242342 0.289362 0.26697 9.71E−07 0.23774 0.230746 1.28E−12

Mean 7.79E−18 0.043938 0.02786 0.009398 4.55E−07 0.020017 0.037691 1.04E−13

Best 0.00E+00 0.001052 5.82E−11 1.99E−16 4.01E−08 2.95E−13 6.58E−05 5.26E−16

Std 1.21E−17 0.050096 0.047801 0.035825 2.54E−07 0.044404 0.045514 1.95E−13

Time (s) 0.360804 1.680179 2.207461 1.395682 0.424897 2.057285 9.616893 0.896265

Algorithm GBO TLBO HHO IGWO PSOGSA CODE MTDE SASS

Worst 0.229208 0.053045 0.473011 0.101893 0.410281 0.117581 0.016585 8.09E−17

Mean 0.007624 0.004314 0.147295 0.0027 0.07595 0.027037 0.000283 5.35E−18

Best 0.00E+00 8.53E−11 0.005506 0.000123 1.76E−13 0.005138 1.85E−09 0.00E+00

Std 0.035906 0.009956 0.10784 0.010879 0.091469 0.0198 0.002008 1.06E−17

Time (s) 4.995488 5.640442 8.849817 22.94664 12.72971 7.604563 2.485424 0.61688

Figure 13.   Average convergence curve of randomly generated pose points.
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Simulation and test.  The motion state of the 7-DOF robotic manipulator was simulated in this section 
by using the Robotics Toolbox for MATLAB. Assume the beginning joint angle vector of the manipulator 
is 
−→
θ1 = (45◦, 0◦, 45◦, 0◦, 45◦, 0◦, 0◦) , the position and posture of the end-effector corresponding to the joint 

angle vector 
−→
θ1 is P1 = (−24.748737, 100.961941, 50.000000, 90,−45, 0) , and the desired end-effector pose is 

P2 = (50,−75, 75, 0, 0, 0) . According to the desired pose, many joint angle vectors can be obtained through 
EOSMA. For the current state of the manipulator, the cost of changing to those joint angles is different. In this 
study, the joint angle vector with the slightest overall angle change is the best candidate joint angle vector, which 
can minimize the movement time of the manipulator. The penalty function of joint angles difference was added 
into the fitness function to evaluate the pose error, as shown in Eq. (31).

where O(�θi) represents the objective function, �θi represents the i-th candidate joint angle vector, �θ1 represents 
the joint angle vector in the starting state, w is the penalty coefficient, the value in this paper is 10e−15, and �·� 
represents the calculated Euclidean distance.

(31)O(�θi) = ferror(�θi)+ w ·
∥

∥

∥

�θi − �θ1

∥

∥

∥

Figure 14.   Solution time of comparison algorithms at randomly generated pose points.

Figure 15.   Box plot of optimization results of randomly generated pose points.
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The joint angles of the manipulator obtained by EOSMA, SMA, and EO are shown in Table 9. The manipula-
tor can read the starting and the ending joint angles from Table 9 to control the rotation of each joint angle and 
move the end-effector to the desired position and posture.

Figure 19 shows the optimization process of EOSMA, Fig. 20 shows the trajectory of the end-effector and 
the curve of the joint angle change with time. The simulation results show that the three algorithms can reach 
the desired position and posture, and in which the angle change of SMA is the least, but the solution accuracy is 
the lowest. The angle change of EOSMA is very close to that of SMA, but the pose error is reduced by 8 orders 
of magnitude, as shown in Table 9 and Fig. 19b. EO has the largest angle variation, and its accuracy is between 
SMA and EOSMA. As shown in Fig. 19b, the optimal candidate joint angle does not exceed the search range of 
each joint angle during iteration. At the beginning of the iteration, the angle of each joint changed obviously, 
indicating that EOSMA has a strong exploration ability. After 200 generations, the optimal candidate joint angle 
did not change significantly. EOSMA used the SMA search operator to fine-adjust the optimal candidate joint 
angle found so far, achieving high convergence accuracy. As can be seen from Fig. 20a, all three algorithms obtain 
a very smooth trajectory, but EOSMA has the highest accuracy in reaching the desired pose. It can be seen from 
Fig. 20b–d that the angle, velocity, and acceleration curves of each joint are continuous and smooth, and the 
angle change of each joint is evenly distributed. It indicates that there is no obvious jitter during the movement 
of the manipulator, and the overall change range of the manipulator is small.

Results discussion.  The EOSMA proposed in this study enhances the search ability of EO and SMA, 
increases population variety, and reduces the probability of falling into the local optimum. In fact, the most 
important obstacle in many metaheuristic algorithms is frequently falling into local optimum, which dramati-
cally limits the optimization performance. When evaluated from this perspective, EOSMA is ahead of many 
heuristic algorithms (Figs. 8 and 13). By comparing the convergence curves of the two scenarios, it can be found 
that many algorithms can obtain high precision solutions in the scenario without considering the posture. Only 
EOSMA, DE, and MPA can effectively solve the scenarios comprehensively considering the position and pos-
ture. It shows that it is difficult to solve the scenario considering posture, and many algorithms will fall into local 

Figure 16.   Wilcoxon rank-sum test results of randomly generated pose points.

Table 8.   HV results of multi-objective algorithms on two desired poses. The optimal values are shown in bold, 
and FR stands for Friedman’s Rank.

Pose Index MOEOSMA MOSMA MOPSO MOMPA MOALO MODA MOGWO MOMVO MSSA MOEA/D

P1

Mean 5.07631 4.65143 5.00599 5.04500 4.86302 4.81951 4.94830 5.02802 5.00469 4.88152

Std 0.02007 0.06950 0.04402 0.02733 0.09082 0.22506 0.08276 0.04602 0.05326 0.26105

FR (Rank) 1.40 (1) 9.80 (10) 4.60 (4) 2.95 (2) 7.95 (9) 7.90 (8) 5.95 (6) 3.50 (3) 4.80 (5) 6.15 (7)

Time (s) 5.87559 41.00294 28.82177 3.98753 25.23976 119.88871 138.56085 3.60248 5.12301 249.77852

P2

Mean 4.28017 4.00487 4.22408 4.27983 4.19377 4.16979 4.24412 4.25582 4.26781 4.22517

Std 3.17E-13 0.05168 0.07739 0.00148 0.08250 0.09992 0.03762 0.02288 0.02584 0.08037

FR (Rank) 1.00 (1) 9.70 (10) 5.75 (6) 2.80 (2) 7.10 (8) 8.10 (9) 5.45 (5) 5.30 (4) 3.60 (3) 6.20 (7)

Time (s) 0.81779 38.63682 25.27879 1.41943 25.87101 152.13011 67.21598 2.35827 2.65555 229.49681
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optimum. On the contrary, DE obtains higher convergence accuracy in the scenario considering posture, which 
indicates that the IK problem considering posture requires the algorithm to have strong exploration ability. 
In contrast, the IK problem not considering posture requires the algorithm to have strong exploitation ability. 
Therefore, in scenario 1, the parameters of EOSMA were set as follows: exploration coefficient a1 = 1 , exploita-
tion coefficient a2 = 2 , and mutation probability q = 0 ; In scenario 2, the parameters of EOSMA were set as: 
exploration coefficient a1 = 2 , exploitation coefficient a2 = 2 , and mutation probability q = 1.

Due to the performance of many algorithms in these two scenarios differing greatly, previous studies did 
not compare the two scenarios. EOSMA can be well adapted to the IK problem in different scenarios by simply 
adjusting the parameters that control exploration and exploitation abilities, demonstrating the hybrid EOSMA 
has a strong generalization ability. The excellent performance of EOSMA can be summed up as follows.

Figure 17.   The PF obtained by multi-objective algorithms at desired pose P1.

Figure 18.   The PF obtained by multi-objective algorithms at desired pose P2.
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(1)	 SMA has strong exploitation ability and EO exploration ability. The concentration update operator of EO 
was used to guide the global search of SMA to keep the balance between exploration and exploitation, 
increase population diversity and enhance the robustness and generalization ability.

(2)	 The update operator of SMA in the exploitation stage is defective, and it is easy to guide the search agents 
to converge to the origin in the late iteration, resulting in an invalid search. The structure of SMA was 
simplified, the parameters and calculation time were reduced.

(3)	 The greedy selection strategy was used to retain the individual historical optimal and global historical 
optimal locations and then update them based on the individual historical optimal and global historical 
optimal, which improves the search efficiency.

(4)	 The random difference mutation strategy was included after upgrading the location of EOSMA to widen the 
search range of the search agents, enhance the possibility of search agents escaping from the local optimum, 
and avoid premature convergence.

Although the results of this study show that EOSMA and its multi-objective version outperform majority of 
comparison algorithms, it still has some limitations. There are many adjustable parameters in EOSMA. It may 
be difficult to set the parameters for different applications. It is necessary not only to know the influence of dif-
ferent parameters on the algorithm’s exploration and exploitation but also some properties of the problem. In 
addition, the EOSMA proposed in this paper is designed for the IK problem and its effectiveness in other real-
world problems needs to be further tested.

Conclusions and future directions
In this paper, an EO-guided SMA was developed to improve search efficiency by widening the search range 
of slime mould in order to tackle the IK problem of redundant manipulators efficiently. The performance of 
EOSMA for the IK problem is verified by comparison with 15 single-objective and 9 multi-objective algorithms, 
and comparable algorithms used in previous studies. Without considering the posture, EOSMA is superior to 15 
comparison algorithms in terms of best, worst, mean, standard deviation, and average solution time. EOSMA 
can converge to the global optimal with an average convergence accuracy of 10e−17 m, which is 4 orders of 
magnitude higher than the best comparison algorithm PSOGSA. The average solution time is about 0.05 s, 
and the robustness is the best. When considering position and posture, the performance of EOSMA is similar 
to SASS, but EOSMA has a shorter solution time. The average solution accuracy of EOSMA can reach 10e-18, 
and the average solution time is about 0.36 s. Compared with the 9 multi-objective optimization algorithms, 
EOSMA’s multi-objective version obtains higher accuracy, more comprehensive coverage, and more uniform 
distribution of PF. Simulation results show that the overall change of joint angle obtained by EOSMA is small, 

Table 9.   Inverse solution results of the 7-DOF robotic manipulator.

Posture Algorithms θ1(°) θ2(°) θ3(°) θ4(°) θ5(°) θ6(°) θ7(°) Distance

P1 – 45 0 45 0 45 0 0 –

P2

EOSMA 43.506898 − 90.000000 − 90.000000 − 38.841935 − 2.78E− 14 64.745704 20.589333 185.6794

SMA − 0.014719 − 90.000000 − 90.000000 24.224333 2.93E− 12 53.065842 12.725225 184.2310

EO − 174.758930 − 86.555831 79.782405 − 18.741263 10.776619 − 51.677450 − 14.648226 247.7969

Figure 19.   Optimization process of the algorithm. (a) Optimal candidate joint angle of EOSMA varies with the 
number of iterations. (b) Convergence curve of the algorithms.
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and the motion trajectory is smooth without obvious jitter. Statistical results show that EOSMA has better per-
formance for the IK problem, which is significantly different from other algorithms. For some desired poses, the 
position and posture errors cannot be eliminated synchronously and must be compromised between the two. 
MOEOSMA can provide users with a well-distributed PF to pick from, and it is an efficient alternative method 
for solving the IK problem of complicated manipulators. Although promising results have been achieved, there 
are still some problems that need to be studied in the future. EOSMA has many parameters and depending on 
the problem to be solved, parameter adaptive selection methods can be considered for the algorithm, such as 
parameter adaptive mechanism based on success history88 or parameter adaptive mechanism based on reinforce-
ment learning89. In addition, EOSMA can be applied to other fields, such as photovoltaic parameter extraction 
and satellite posture adjustment.

Data availability
All data, models, and code generated or used during the study appear in the submitted article.
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