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Identification and molecular characterisation of a
homozygous missense mutation in the ADAMTS10
gene in a patient with Weill–Marchesani syndrome

Hannes Steinkellner1,3, Julia Etzler1,3, Laura Gogoll1, Jürgen Neesen1, Eva Stifter2, Oliver Brandau1

and Franco Laccone*,1

Weill–Marchesani syndrome is a rare disorder of the connective tissue. Functional variants in ADAMTS10 are associated with

Weill–Marchesani syndrome-1. We identified a homozygous missense mutation, c.41T4A, of the ADAMTS10 gene in a 19-year-

old female with typical symptoms of WMS1: proportionate short stature, brachydactyly, joint stiffness, and microspherophakia.

The ADAMTS10 missense mutation was analysed in silico, with conflicting results as to its effects on protein function, but it was

predicted to affect the leader sequence. Molecular characterisation in HEK293 Ebna cells revealed an intracellular mis-targeting

of the ADAMTS10 protein with a reduced concentration of the polypeptide in the endoplasmic reticulum. A large reduction in

glycosylation of the cytoplasmic fraction of the mutant ADAMTS10 protein versus the wild-type protein and a lack of secretion

of the mutant protein are also evident in our results.In conclusion, we identified a novel missense mutation of the ADAMTS10
gene and confirmed the functional consequences suggested by the in silico analysis by conducting molecular studies.
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INTRODUCTION

Weill–Marchesani syndrome (WMS) is a very rare disorder of the
connective tissue. It is characterised by the presence of symptoms in
several structures, such as the skeleton (proportionate short stature,
joint stiffness, brachydactyly, scoliosis, lumbar lordosis, and maxillary
hypoplasia), the eye (microspherophakia, ectopia lentis, severe myopia,
glaucoma, shallow anterior chamber, cataract, and blindness), and the
cardiovascular system (aortic valve stenosis, pulmonary valve stenosis,
mitral valve insufficiency, persistent ductus arteriosus, and ventricular
septal defect).1–5 The disease is inherited mostly as an autosomal
recessive trait due to variants of the ADAMTS10 gene.6,7 Recently, a
family with autosomal recessive WMS3 has been described for the
LTBP2 gene.8 Additionally, in-frame deletions of the FBN1 gene have
been described in dominantly inherited cases of WMS29,10 and some
families with WMS or WMS-like syndrome due to variants of the
ADAMTS17 gene.11

To date, only three missense variants,11,12 two non-sense variants6

and two splice site variants6 have been reported for the ADAMTS10
gene. Here we report a new missense variant affecting the leader
peptide of the ADAMTS10 protein and its functional characterisation
in a patient with a classic form of WMS1.

MATERIALS AND METHODS

Sequence analysis of the ADAMTS10 gene
Mutation screening was performed by PCR amplification of all coding exons of
the ADAMTS10 gene (NM_030957.2) and subsequent sequence analysis by
Sanger sequencing. The identified variant was confirmed with an independent
PCR and sequencing reaction for the patient’s and her parents’ DNA
(Supplementary Figure S3). The identified variant and relevant patient

information were submitted to the LOVD ADAMTS10 mutation database
(http://grenada.lumc.nl/LOVD2/eye/home.php?select_db=ADAMTS10).

Construction of wild-type and mutant ADAMTS10 expression
plasmids
The complete wild-type ADAMTS10 coding sequence was amplified from
human fibroblast RNA by RT-PCR using the primers 5′-ATGGCTCCCGCCTG
CCAGATCCTCC-3′ and 5′-GGGTGCCGCGCGCCCCCTAGTGG-3′. The
PCR product was cloned into pcDNA 3.1(+)/Myc-His B (Invitrogen, Carlsbad,
CA, USA) for the expression of full-length ADAMTS10 with C-terminal
tandem Myc and His6 tags. For introduction of the mutation c.41T4A, 5′-ATG
GCTCCCGCCTGCCAGATCCTCCGCTGGGCCCTCGCCCTGGGGCTGGGC
C-3′ was used as the forward primer. Complete coding sequences of wild-type
and mutant ADAMTS10 cDNAs were cloned into the pd2eGFP-N1 vector
(BD Biosciences/Clontech, Heidelberg, Germany) for expression of both
wild-type and mutant ADAMTS10-d2eGFP fusion proteins. All expression
plasmids were sequence verified.

In silico analysis of the ADAMTS10 c.41T4A mutation
In silico mutation prediction analysis was performed using Mutation Taster
(http://www.mutationtaster.org), PolyPhen-2,13 and SIFT.14 Analysis of a
potential change in the ADAMTS10 signal peptide properties was performed
on the first 60 N-terminal amino acids of the wild-type and mutant (c.41T4A)
human ADAMTS10 proteins using the publicly available SignalP World Wide
Web prediction server version 4.1 (http://www.cbs.dtu.dk/services/SignalP/).15

The method incorporates testing for cleavage sites and signalling function based
on neural networks.

Cell culture and transient transfection
HEK 293 Ebna (HEK 293E) cells were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% foetal bovine serum (from PAA
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Laboratories, Pasching, Austria) and penicillin/streptomycin (Gibco/Life Tech-
nologies, Darmstadt, Germany). The cells were plated on 35-mm dishes 12 h
before 4 μg of plasmid DNA was added using jetPrime transfection reagent
(Peqlab Biotechnologie, Erlangen, Germany) according to the manufacturer’s
protocol. After 6 h of incubation, the medium was removed, and the cells were
cultured in fresh medium or serum-free medium (Pro293 CD serum-free
medium from Lonza, Visp, Switzerland) for another 18–42 h. The cells were
then used for distribution studies or the deglycosylation assay.

Expression and characterisation of ADAMTS10 and
ADAMTS10_L14Q polypeptides
Six hours after transient transfection of HEK 293E cells with ADAMTS10-Myc-
His6 or ADAMTS10_L14Q-Myc-His6 plasmid DNA, the medium was
removed, and the cells were cultured in Pro293 CD serum-free medium for
another 42 h, when the cells reached confluence. The medium was collected
and concentrated 10-fold using a centrifugal ultrafiltration concentrator
(Centrisart I 20 kDa, Sartorius AG, Göttingen, Germany). The cells were
harvested and lysed in ice-cold 1× lysis reagent (Promega, Heidelberg,
Germany) with 1× protease inhibitor cocktail (no. P8340) and 1mM

phenylmethyl sulphonylfluoride (both from Sigma-Aldrich, St Louis, MO,
USA). After a 20-min incubation on ice, the cell lysates were centrifuged at
10 000 g for 10min at 4 °C. The supernatant was collected, and the protein
concentration was determined by a modified Bradford assay (Bio-Rad, Vienna,
Austria). Western blotting with anti-His6 polyclonal antibody (Cell Signaling
Technology, Danvers, MA, USA) was used to determine the expression of
ADAMTS10 and ADAMTS10_L14Q in the media and cell lysates.

Immunofluorescence
HEK 293E cells were grown on glass coverslips for 24 h. After transient
transfection with ADAMTS10-d2eGFP and ADAMTS10_L14Q-d2eGFP plas-
mid DNA, the cells were fixed with DPBS-buffered 3% formaldehyde for
30min and permeabilised with ice-cold methanol for 20 s. For simultaneous
staining of the endoplasmic reticulum (ER), rabbit anti-ERp72 (1:100, from
Cell Signaling Technology) was used and visualised with Alexa 568 goat anti-
rabbit antibodies (1:250, from Invitrogen). For nuclear staining, the cells were
incubated with DAPI (1:1000 in DPBS) for 5 min and analysed by fluorescence
microscopy (Zeiss, Oberkochen, Germany).

Deglycosylation assay
Following transient transfection with ADAMTS10-Myc-His6 or
ADAMTS10_L14Q-Myc-His6 constructs, cells were harvested when cultures
reached 90% confluence and dissolved in ice-cold 1 × lysis reagent, as described
above. The supernatant was collected, and the protein concentration was
determined by a modified Bradford assay (Bio-Rad). As described elsewhere,16

40 μg of protein extract was treated with 1000 units of peptide N-glycosidase
(PNGase F, New England Biolabs, Beverly, MA, USA). The reactions were
stopped in sodium dodecyl sulphate sample buffer at 95 °C for 5min. Finally
40 μg of protein were loaded onto a 10% SDS-polyacrylamide gel electrophor-
esis using Prosieve 50 Gel solution (Lonza) and Tris/tricine electrode buffer
(0.1M Tris, 0.1M Tricine, 0.1% SDS, pH 8.3) and electroblotted onto
nitrocellulose membrane. Protein expression was assessed by western blotting
analysis using a primary antibody directed against the Myc tag (monoclonal
mouse anti-myc antibody 9E10 (1:100), from Invitrogen) and as a secondary
antibody a horseradish peroxidase-labelled goat anti mouse antibody (Sigma-
Aldrich) was used.

RESULTS

Patient data
An 18-year-old woman was initially referred to our Department for
genetic evaluation of suspected atypical Noonan syndrome with
pulmonic stenosis, short stature, and brachydactyly. The patient was
born at term after an uneventful pregnancy from consanguineous
parents (second-degree cousins, Supplementary Figure S2). After birth,
a valvular pulmonary stenosis and a small muscular ventricular septal
defect were observed. The VSD closed spontaneously. The valvular

stenosis underwent an unsuccessful balloon catheterisation when the
patient was 8 years old, with subsequent spontaneous regression. She
developed a high degree of myopia (−10 dpt) in early childhood, but
no further ophthalmological abnormalities were reported.
Upon examination at age 19 years, the patient presented with short

stature (140 cm), muscular build, scoliosis, and an accentuated lumbar
lordosis. She was highly myopic (−13.5 dpt OD and − 16 dpt OS). She
had joint stiffness at the elbows with reduced motility (supination
− 23°) and was unable to make a fist with both hands. Her knees were
also affected, and contracture of the calf musculature had led to an
inability to stand with both feet parallel and simultaneously on the
ground. She had marked brachydactyly. Her father had also brachy-
dactyly and was of short stature, as well as her mother (145 cm).
No other family members were affected.
The referral diagnosis of Noonan syndrome was based on her

short stature and the presence of pulmonic stenosis. Brachydactyly
was considered an independent familial dominant trait. Genetic
analysis did not reveal functional variants in the PTPN11, SOS1,
KRAS, and RAF1 genes. However, the pattern of brachydactyly,
joint stiffness, ophthalmological symptoms, and heart defect led us
to suspect a diagnosis of WMS, which was further strengthened by
the finding of microspherophakia in a scheduled ophthalmological
examination.

Molecular genetics and in silico prediction
We sequenced all exons of the ADAMTS10 gene in the patient and
identified a homozygous nucleotide exchange, c.41T4A. Both parents
were heterozygous carriers. The variant is not listed in 1000 Genomes
or in the exome variant browser. In silico mutation prediction analysis
using Mutation Taster (http://www.mutationtaster.org) and PolyPhen-213

suggested that the variant was a benign variant. However, analysis with
the SIFT program14 suggested that the variant affects function.
ADAMTS10 enters the secretory pathway during posttranslational

modification.17 The base pair exchange described here affects the
leucine at position 14, which is in the hydrophobic region of the leader
peptide, resulting in an exchange to glutamine (p.(Leu14Gln)). Insight
into the possible effect of an amino-acid exchange within a signal
sequence can be gained with the SignalP signal peptide prediction
program (http://www.cbs.dtu.dk/services/SignalP/).15 To assess whether
the amino-acid exchange might result in protein mis-localisation
because of a disrupted signal peptide, the N-termini of the wild-type
and mutant ADAMTS10 proteins were submitted to the SignalP V4.1
signal peptide prediction program. Analysis of the 60 N-terminal
amino acids of the ADAMTS10 wild-type protein predicted a cleavage
site between amino-acid positions 25 and 26, with a d-score value of
0.759 for amino acids 1–25, considerably exceeding the default d-score
cutoff value of 0.450 (Figure 1a). In silico analysis of the c.41T4A
mutant, however, yielded a d-score value of only 0.446 for the first 25
amino acids, which are thereby no longer predicted to function as a
signal peptide (Figure 1b).

Disruption of the signal peptide leads to mis-localisation
of ADAMTS10_L14Q
To investigate whether the ADAMTS10 c.41T4A exchange leads to
intracellular mis-localisation of the protein, plasmids containing eGFP
fused to wild-type and ADAMTS10 c.41T4A cDNAs were transiently
transfected in HEK 293E cells and examined by immunocytochemistry
and fluorescence microscopy. In cells transfected with ADAMTS10-
d2eGFP, a considerable amount of the protein was present in the ER,
as shown by co-visualisation with the ER marker ERp72 (Figure 2c).
In contrast, ADAMTS10_L14Q-d2eGFP is localised to the cytosol in a
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uniform diffuse pattern (Figure 2f). This finding confirms the in silico
prediction and suggests that the leucine to glutamine exchange in the
leader peptide leads to mis-targeting of the mutant protein to the
cytoplasm. Next, we investigated the size of ADAMTS10 polypeptides
by immunoblotting the media and cell lysates from HEK 293E cells
transiently transfected with ADAMTS10-Myc-His6 and ADAMTS10_
L14Q-Myc-His6 constructs (Figure 3). In the cell lysates and
supernatants of ADAMTS10-Myc-His6-transfected cells, we observed
an anti-His6 reactive band at the expected size (approximately 140
kDa). In cell lysates from ADAMTS10_LQ14-Myc-His6-transfected
cells, a band at approximately 130 kDa was observed, but no reactive
band was present in the serum-free medium.

Impact of the ADAMTS10 c.41T4A variant on posttranslational
modification
The different kDa values for the expressed ADAMTS10 fusion proteins
prompted us to investigate whether the mobility shift is due to
posttranslational modification. Protein extracts of HEK 293E cells
transfected with the ADAMTS10-Myc-His6 and ADAMTS10_L14Q-
Myc-His6 plasmid DNA were treated with endoglycosidase PNGase F
(Figure 4). Endoglycosidase PNGase F cleaves N-acetylglucosamine
side chains from asparagine residues and thus removes all asparagine-
associated glycans.18 Treatment with PNGase F markedly increased the
electrophoretic mobility of wild-type ADAMTS10 but had no effect on
mutant ADAMTS10_L14Q, indicating that the mobility shift observed
in untreated protein extracts is caused by a diminished N-glycosylation
of the mutated ADAMTS10 protein.

DISCUSSION

WMS is a very rare disease. In cases where the cardinal symptoms,
such as microspherophakia, are not evident, this condition may be a
clinically difficult diagnosis. In our case, at least two differential
diagnoses were considered before a diagnosis of WMS was made.
Because of the short stature, joint stiffness, and hyperlordosis, a hypo-
or achondroplasia was suggested. However, additional features, such as
pulmonic stenosis and a missing rhizomelia, made this diagnosis
unlikely. The association of short stature with micrognathia and
pulmonary stenosis was also suggestive of Noonan syndrome, in which
case the brachydactyly was considered a familial trait, due to the
presence of brachydactyly in the father and, as reported by the patient,
in other family members. This diagnosis was not confirmed by
molecular analysis of genes that are commonly mutated in Noonan
syndrome patients. Considering the co-occurrence of myopia, brachy-
dactyly, and joint stiffness along with short stature, it became apparent
that our patient might have a classic form of WMS. A new
examination of her lens morphology strengthened this suspicion due
to the identification of microspherophakia as the cause of the myopia
in our patient. Subsequent variant analysis identified an unpublished
missense variation in the ADAMTS10 gene. Using standard computer
prediction programs (PolyPhen-2, Mutation Taster, and SIFT) for the
analysis of unverified missense variants, no clear results could be
obtained.
ADAMTS10 is a secreted protein with a signal peptide. Signal

peptides co-translationally direct a nascent polypeptide chain from the
cytosol to the ER and mediate the attachment of the ribosome to the
ER membrane19 and the membrane insertion of newly synthesised
secretory and membrane proteins. After fulfilling their function, signal
peptides are cleaved from the precursor protein by a membrane-
bound signal peptidase.20 Despite a great variation in both the overall
length and amino-acid sequence, all export signal sequences contain a
characteristic hydrophobic core (h-) region of 6–15 amino-acid
residues for cleavable signal peptides. The sequence is flanked on its
N-terminal side by a polar (n-) region that usually has a net positive
charge and on its C-terminal side by a polar (c-) region containing the
signal peptidase cleavage site, which is determined by small, uncharged
residues at positions − 1 and − 3.21

Although SignalP V4.1 predicted amino acids 1–25 of the wild-type
ADAMTS10 protein to be a signal sequence, with a cleavage site
located between Ala25 and Phe26, the substitution of a hydrophobic
leucine with a hydrophilic polar glutamine within the centre of the
hydrophobic core was suspected to have a detrimental effect on the
function of the export signal peptide of ADAMTS10. In silico analysis
thus supports the hypothesis that the reported variant c.41T4A has a
detrimental effect on the ADAMTS10 signal sequence, possibly leading

Figure 1 SignalP V4.1 graphic output for wild-type and mutant ADAMTS10
signal peptides. The c-score (raw cleavage site score) predicts the first
amino-acid residue of the mature protein. The s-score (signal peptide score)
calculates the probability of amino-acid residues to be part of a functioning
signal peptide. The y-score combines the c-score and s-score, resulting in
better cleavage site prediction. The d-score (discrimination score) is a
weighted average of the mean s-score and the maximum y-score. (a) Analysis
of the wild-type protein predicts a cleavage site between amino-acid
positions 25 and 26 and yields a d-score value of 0.759, well above the
default cutoff for signal peptides. (b) The presence of a polar glutamine in
exchange for leucine is predicted to disrupt the hydrophobic core of the
ADAMTS10 signal peptide, thus reducing the probability that the amino-acid
sequence acts as a signal peptide. The d-score value drops below the cutoff
of 0.450.
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to impaired intracellular targeting. The hydrophobic core is required
for targeting and membrane insertion. Most signal peptide variants
affecting this region result in defective targeting to the ER and failed
protein translocation.12,22–24

Therefore we expressed ADAMTS10-d2eGFP and ADAMTS10_
L14Q-d2eGFP proteins in HEK 293E cells and analysed their
distribution by immunofluorescence staining for intracellular
markers. Both wild-type and c.41T4A ADAMTS10 mRNA are
readily translated into protein. The ADAMTS10-d2eGFP protein
co-localised with the ER, but the ADAMTS10_L14Q-d2eGFP protein

showed a more uniform, diffuse cytoplasmic distribution. Further
analysis of the posttranslational processing revealed that in contrast to
wild-type ADAMTS10, ADAMTS10_L14Q was not secreted into the
extracellular matrix. Mis-targeting of the protein might also influence
the posttranslational modification of ADAMTS10, as suggested by the
reduced molecular weight of the intracellular ADAMTS10_L14Q
protein. ADAMTS10 is a glycoprotein containing several N-linked
glycosylation sites in various protein domains.17 Deglycosylation of
wild-type ADAMTS10 and ADAMTS10_L14Q with endoglycosidase
PNGase F revealed a mobility shift of the wild-type protein, indicating

Figure 2 Localisation of ADAMTS10 and ADAMTS10_L14Q in HEK 293E cells. HEK 293E cells were transfected with ADAMTS10-d2eGFP (a–c) and
ADAMTS10_L14Q-d2eGFP (d–f). To determine the localisation of ADAMTS10-d2eGFP and ADAMTS10_L14Q-d2eGFP, the cells were stained with the ER
marker ERp72 (red). Cell nuclei were visualized by blue fluorescence (4,6-diamidino-2-phenylindole) in the merged images. The scale bar represents 10 μm.
Most of ADAMTS10-eGFP protein is present in the ER (c), whereas ADAMTS10_L14Q-eGFP localises to the cytosol in a uniform, diffuse pattern (f).

Figure 3 The expression pattern of ADAMTS10 and ADAMTS10-L14Q in HEK 293E cells. HEK 293 E cells were transfected with ADAMTS10-Myc-His6 and
ADAMTS10_L14Q-Myc-His6 constructs. The polypeptides from supernatants (a) and cell lysates (b) were immunoblotted, and ADAMTS10 and
ADAMTS10_L14Q protein detection in the cell lysate and the supernatant was performed using a polyclonal anti-His6 antibody. The ADAMTS10_L14Q
protein was detected in the cell lysate as well as in the supernatant, whereas the ADAMTS10_L14Q polypeptide was only observed in the cell lysate, showing
a mobility shift.
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defective glycosylation of the ADAMTS10_L14Q protein. Moreover,
we found that ADAMTS10_L14Q exchange leads to protein instability
in HEK 293E cells by cycloheximide translation inhibition experiments
(see Supplementary Figure S1).
Although a missense variant at position − 1 from the ADAMTS10

signal peptide cleavage site (p.Ala25Thr) has been described,11 this is
the first report of an ADAMTS10 variant disrupting the hydrophobic
core of the export signal sequence. Based on our results, we propose
that the missense substitution leads to mis-targeting of the protein.
The mutant RNA is translated, but eGFP-tagged ADAMTS10_L14Q
could not be observed in the ER. Mutant ADAMTS10_L14Q protein
translation might take place in free ribosomes instead, with cytosolic
deposition and no secretion of the protein. N-glycosylation takes place
co-translationally in the ER, and mis-targeting therefore inhibits
effective glycosylation of ADAMTS10_L14Q. Extracellular secretion
of ADAMTS10 is essential for its function in the extracellular matrix.
The altered cytosolic unglycosylated ADAMTS10 cannot act as wild-
type ADAMTS10, resulting in the WMS phenotype of the patient.
Taken together, our findings suggest that the exchange of a leucine for
a hydrophilic polar glutamine within the hydrophobic core disrupts
the function of the ADAMTS10 signal peptide, thereby impairing
correct intracellular trafficking and co-translational glycosylation of
the protein. The ADAMTS10 mutated protein is secretion-deficient.
We conclude that the homozygous ADAMTS10 c.41T4A missense
variant reported here is causative for WMS.
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