
materials

Article

Relationship Between Matrix Cracking and
Delamination in CFRP Cross-Ply Laminates
Subjected to Low Velocity Impact

Riming Tan 1, Jifeng Xu 2, Wei Sun 3, Zhun Liu 4 , Zhidong Guan 1,* and Xia Guo 5

1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
tanriming@buaa.edu.cn

2 Beijing Aeronautical Science and Technology Research Institute, COMAC, Beijing 102211, China;
xujifeng@comac.cc

3 Unmanned Aerial Vehicle Technology Institute, the Third Academy of CASIC, Beijing 100074, China;
wsiune@163.com

4 Tactical Weapons Division, China Academy of Launch Vehicle Technology, Beijing 100076, China;
zhunliu@139.com

5 Beijing Center for Physical and Chemical Analysis, Beijing 100094, China; guoxialihua@163.com
* Correspondence: zdguan@buaa.edu.cn; Tel.: +86-10-8233-8873

Received: 24 October 2019; Accepted: 28 November 2019; Published: 2 December 2019
����������
�������

Abstract: The effect of matrix cracking on the delamination morphology inside carbon fiber reinforced
plastics (CFRP) laminates during low-velocity impact (LVI) is an open question. In this paper,
the relationship between matrix cracking and delamination is studied by using cross-ply laminates.
Several methods, including micrograph, C-scan, and visual inspection, were adopted to characterize
the damage after LVI experiments. Based on the experimental results, finite element (FE) models
were established to analyze the damage mechanisms. The matrix cracking was predicted by the
extended finite element method (XFEM) and the Puck criteria, while the delamination was modeled
by cohesive elements. It was revealed that the matrix crack in the bottom ply not only promoted
the outward propagation of delamination but also contributed to the narrow delamination beneath
the impact location. Multiple matrix cracks occurred in the middle ply. The ones close to the plate
center initiated the delamination and prevented large-scale delamination beneath the impact location.
For the cracks that were far away, no significant effect on delamination was found. In conclusion,
the stress redistribution caused by the crack opening determines the delamination.

Keywords: low-velocity impact; matrix cracking; delamination; extended finite element method;
cohesive element

1. Introduction

Carbon fiber reinforced plastics (CFRP) have been widely applied to aeronautical engineering for
several decades due to their high specific strength and stiffness [1]. Notwithstanding, delamination
caused by low-velocity impact (LVI) remains a major concern to researchers since it reduces the residual
strength considerably.

Although researchers have made numerous efforts in the impact mechanisms study and revealed
that the delamination is induced by matrix cracking [2–4], the formation of the undelaminated region
beneath the impact location is still an open question. According to the opinion of Aymerich [5],
the through-thickness compression under the impactor during LVI suppressed the delamination.
However, some researchers attributed this phenomenon to the friction between two plies [6,7]. During
compression after impact (CAI), the delamination inside a laminate grew into the undelaminated
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region, leading to the final failure [8,9]. Therefore, it is meaningful to further investigate the reason
why the delamination is suppressed.

With the purpose of analyzing the impact mechanisms and predicting the damage, many finite
element (FE) models were proposed by researchers. Since the matrix cracking has a close relationship
with the delamination initiation, it is necessary to take their interaction into consideration in FE
modeling for an accurate prediction in delamination. In some studies, FE models were established
based on continuum damage mechanics (CDM). The effect of matrix damage on stress redistribution
was considered by modifying the damage evolution behaviors of CDM [10,11]. However, when using
CDM, the damage is represented by the material degradation of a traditional FE. Due to the lack of
any additional degree of freedom (DOF) to simulate the crack opening inside, the element fails to
represent the displacement discontinuity across a matrix crack, leading to inaccurate predictions of
the delamination propagation. In several studies, to consider this discontinuity, cohesive elements
were not only positioned at interlaminar interfaces to model delamination but also placed in the plies
to simulate the matrix cracking [12,13]. Although this method enables the model to simulate the
interaction between matrix cracking and delamination, it exhibits some drawbacks, including the
requirements of knowing crack paths beforehand and mesh alignment. Moreover, this technique fails
to define the intralaminar damage initiation correctly, since not all components of the mechanical
constitutive behavior are computed in a cohesive element.

The extended finite element method (XFEM) proposed by Belyschko and Blacks [14] is an
attractive method to model cracking. It is suitable to represent the displacement discontinuity and
stress concentration near the crack tip. Combined with cohesive zone models (CZM), it is capable of
modeling cohesive crack propagation without remeshing or defining any crack path in FE models.
Proved by several studies [15–17], XFEM can be an ideal technique in matrix cracking modeling if an
appropriate failure theory is employed. Compared to other failure theories of composite materials,
for example, the Tsai-Wu criterion and Hashin criteria, the Puck criteria [18] have obvious advantages
in the matrix failure prediction since they can describe the relationship between the matrix crack
direction and stress state. The combination of XFEM and the Puck criteria is expected to fully explain
the interaction between the matrix cracking and stress distribution.

The main goal of this paper is to figure out the influence of matrix cracking on delamination
morphology during LVI, especially the undelaminated region beneath the impact location. An FE
modeling strategy based on XFEM, the Puck criteria, and cohesive elements is proposed to predict
matrix cracking and delamination accurately. The simulations are verified by the experimental results.
Cross-ply laminates were utilized in this paper due to their simple damage mechanisms. Although many
researchers studied the damage mechanisms by applying cross-ply laminates [2,3,19–21], the impact
experiment results in these studies are hard to reproduce since their experiments were not standardized.
In this paper, the cross-ply laminates were tested according to ASTM D7136 [22]. How the stress
redistribution caused by the matrix cracking determines the undelaminated region is discussed, which
has not been studied by other researchers to the best of the authors’ knowledge.

2. Materials and Experiments

Cross-ply laminates tested in this paper were manufactured from carbon fiber reinforced epoxy
resin composite IMA/M21 prepregs by an automatic tape-laying technique. The prepregs were supplied
by Hexcel Corporation (Stamford, Connecticut, USA). The stacking sequence was designed to be
[03/903]S. All laminates were cured in an autoclave with steel plate mold. A vacuum bag was used to
apply a full vacuum. The heat-up rate from room temperature was controlled between 1–2 ◦C/min.
The temperature was held at 180 ◦C for 120 min under 7 bar gauge autoclave pressure before cooling
down to room temperature with a slow rate (2–5 ◦C/min). After curing, the thickness was 2.16 mm
on average. To satisfy the requirement of the standard, the nominal length and width were 150 and
100 mm, respectively.
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Impact damage was introduced to the center of each specimen at room temperature by applying a
drop-weight impact instrument, which was designed according to ASTM D7136. The impactor used in
this test consisted of a hemispherical nose with a diameter of 16 mm. The total weight of the impactor
was 5.495 kg. The specimens were placed on a fixture base with a 125 × 75 mm cut-out. Meanwhile,
the corners of the specimens were restrained by four clamps. The boundary condition of the impact
experiments is presented in Figure 1. In this research, the impact energy levels were decided to be 4, 8,
and 12 J to induce damage at different degrees inside the specimens. Correspondingly, the specimens
were divided into three groups, which were labeled as Group A, B, and C. Each group contained
four specimens.
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Figure 1. Boundary condition of the impact experiments.

After the impact experiments, the impact dent depth was measured with a Syntek micrometer
gauge (Syntek Corporation, Huzhou, China) immediately. The impact damage was inspected by visual
inspection and ultrasonic C-scan. A UC-120 C-scanner equipped with a 10 MHz ultrasonic probe
was used. Both the C-scanner and probe were products of Physical Acoustics Corporation (Princeton,
NJ, USA). To characterize internal impact damage, one specimen in each group was cut along the
longitudinal direction. The internal damage was observed with an MV-GED500M industrial camera
manufactured by Shenzhen Mindvision Technology CO., LTD (Shenzhen, China).

3. Finite Element Modeling Strategy

FE models were established in the commercial FE software ABAQUS 6.13 to simulate the impact
processes using subroutines UDMGINI and UMAT. As shown in Section 4.1, no fiber breakage occurred
in the experiments; thus, only matrix cracking and delamination were taken into consideration.
The matrix cracking initiation was predicted by the Puck criteria, while the cracking opening was
governed by XFEM-based CZM. Delamination was modeled by cohesive elements.

3.1. Intralaminar Damage Model

3.1.1. Puck Criteria

In this study, the Puck criteria proposed by Puck and Schürmann [18] were employed for the
matrix cracking prediction. Puck criteria have been widely used [23–25] since they can predict the crack
initiation and its angle successfully. The fracture angle is important in LVI simulations. It influences
the stressing significantly when the damage initiates. The stress exposure factor fE of the Puck criteria
for matrix cracking prediction is expressed as [26]: for σn(θ) ≥ 0:
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, the in-plane shear strength S12, and transverse tensile strength YT respectively [18];

σn(θ), τnt(θ), and τnl(θ) are stress components on an arbitrary fiber parallel action plane with an
inclination angle θ and obtained by the following equations:

σn = σ22 cos2 θ+ σ33 sin2 θ+ 2τ23 cosθ sinθ
τnt = (σ33 − σ22) sinθ cosθ+ τ23

(
cos2 θ− sin2 θ

)
τnl = τ13 sinθ+ τ12 cosθ

(5)

To determine the angle θ f p of the potential fracture plane efficiently, an algorithm [28] was
proposed by modifying the ones established by Wiegand [29] and Schirmaier [30]. Four steps are
conducted: (1) calculate N + 1 supporting points of the fE − θ curve at intervals of 180◦/N; (2) localize
the subranges containing a local maximum; (3) determine the local maxima by inverse parabolic
interpolation (IPI) [29]; (4) compare the local maxima to find the global maximum fE

(
θ f p

)
and its

corresponding angle θ f p. Considering the fact that the minimum distance between two local maxima
is greater than 25◦ [30], the numerical error of this algorithm is acceptably small if N = 20. When
fE
(
θ f p

)
reaches 1, a matrix crack occurs.

3.1.2. XFEM in ABAQUS

XFEM framework embedded in ABAQUS was used. In ABAQUS, cohesive segments method
and phantom nodes are adopted when modeling the moving cracks. Before the crack initiation,
the phantom nodes are superposed on the corresponding real nodes. When an element is cut by a
crack, DOFs of phantom nodes are independent of those of real nodes. Consequently, the element is
cut into two segments. The separation between these two segments leads to the stress discontinuity in
a cracked region. Such separation is governed by the following traction-separation cohesive behavior:

tn =

{
(1−D)Tn = (1−D)Knnδn, Tn ≥ 0

Tn = Knnδn, Tn < 0
ts = (1−D)Ts = (1−D)Kssδs

tt = (1−D)Tt = (1−D)Kttδt

(6)

where D is the damage variable (STATUSXFEM); δn, δs, and δt are the separations in the normal and
two shear directions; Knn, Kss, and Ktt are the corresponding stiffness components, and calculated by
the material properties of the element.
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The critical energy release rate Gc of a mixed-mode XFEM cohesive crack was determined by the
Benzeggagh–Kenane (B-K) law model [31]:

Gc = GIc + (GIIc −GIc)
( GII + GIII

GI + GII + GIII

)η
(7)

where GIc and GIIc are the critical energy release rates of Mode I and II, respectively; GI, GII, and GIII

are the energy release rates of the pure modes; η is a material parameter. η = 1.45 was used [32].
When the energy release rate is greater than Gc, the crack is fully opened, and the tractions between
segments reduce to zero.

To enhance the numerical convergence, the viscous regularization technique with a small viscosity
coefficient (0.0001) was adopted [33]. In a typical simulation in this paper, the energy dissipated by
viscous regularization was about 3.5% of the total energy, proving that the viscosity coefficient was
small enough.

3.1.3. Nonlinear Shear Behavior

It has been revealed by many researchers that the transverse/parallel shear behavior of composites
exhibits high nonlinearity [34–36]. When a ply is under the shear loading, the matrix between
fibers is under local tensile stress due to the Poisson ratio mismatch of the fiber and matrix. Hence,
the micro-cracking forms in the matrix and leads to the nonlinearity [37,38]. For the cross-ply laminates
tested in this paper, high-level shear strain γ13 occurred near the impact location during LVI. The widely
used Ramberg–Osgood equation with three parameters was adopted to describe the nonlinear τ13 −γ13

behavior [36,39,40]:

τ13 =
G0

13γ13(
1 +

(
G0

13γ13
τb

)n) 1
n

(8)

where G0
13 is the initial shear modulus, τb is the asymptotic stress level, which is assumed to be equal

to S12, and n is the shape parameter for the curve. In this paper, G0
13, τb, and n were 4.20 GPa, 105 MPa,

and 2.0 respectively.

3.2. Interlaminar Damage Model

The constitutive response of cohesive elements was also described by the traction–separation
relationship (see Equation (6)), indicating that only three stress components (σ33, τ13, and τ23) were
computed. The stiffness components Knn, Kss, and Ktt of cohesive elements are assumed to be large
numbers [41]. In this study, 106N/mm3 proposed by Camanho [42] was used. The delamination
initiation and evolution were modeled with a quadratic nominal stress criterion and the B-K law (see
Equation (7)), respectively. The quadratic nominal stress criterion can be represented as:(

〈σ33〉

N

)2
+

(
τ13

S

)2
+

(
τ23

S

)2
= 1 (9)

where N and S are the normal and shear strengths of the interface; the symbol 〈〉 is the Macaulay bracket.

3.3. Finite Element Modeling

A quarter of the cross-ply laminate was built in FE models due to the symmetry (see Figure 2).
As to verify the validity of the modeling method, all impact cases in the experiments were analyzed by
ABAQUS/Implicit solver. The FE models corresponding to the aforementioned impact energy levels
were named as Model A, B, and C. The ply coordinate systems were presented as the yellow ones in
Figure 2c. It should be mentioned that the stress components in the ply coordinate systems were used
in the following discussion about the intralaminar stress distributions.



Materials 2019, 12, 3990 6 of 21

Materials 2019, 12, x FOR PEER REVIEW 6 of 22 

 

the B-K law (see Equation (7)), respectively. The quadratic nominal stress criterion can be represented 
as: 

2 2 2
33 13 23+ + =1
N S S

σ τ τ     
     

    
 (9) 

where N  and S  are the normal and shear strengths of the interface; the symbol  is the 
Macaulay bracket. 

3.3. Finite Element Modeling 

A quarter of the cross-ply laminate was built in FE models due to the symmetry (see Figure 2). 
As to verify the validity of the modeling method, all impact cases in the experiments were analyzed 
by ABAQUS/Implicit solver. The FE models corresponding to the aforementioned impact energy 
levels were named as Model A, B, and C. The ply coordinate systems were presented as the yellow 
ones in Figure 2c. It should be mentioned that the stress components in the ply coordinate systems 
were used in the following discussion about the intralaminar stress distributions. 

 
Figure 2. Finite element (FE) model of the cross-ply laminate: (a) isometric view; (b) details of side 
view; (c) ply coordinate systems (in yellow) of each ply. 

To model the boundary conditions, a base and clamp were established. Both of them were 
constrained as rigid bodies; meanwhile, all DOFs were fixed. For the purpose of improving the 
convergence, the impactor was modeled as a deformable part and meshed with linear solid elements 
with reduced integration (C3D8R). Symmetric boundary conditions were applied to the symmetric 
planes. Interactions between parts were all defined as surface-to-surface contact. The contact between 
plies after delamination was also taken into consideration. Friction coefficients of all contact pairs 
were set as 0.3. Composite plies were modeled with linear solid elements (C3D8) to improve the crack 
calculation accuracy. Two interlaminar interfaces were simulated with cohesive elements (COH3D8). 

Figure 2. Finite element (FE) model of the cross-ply laminate: (a) isometric view; (b) details of side
view; (c) ply coordinate systems (in yellow) of each ply.

To model the boundary conditions, a base and clamp were established. Both of them were
constrained as rigid bodies; meanwhile, all DOFs were fixed. For the purpose of improving the
convergence, the impactor was modeled as a deformable part and meshed with linear solid elements
with reduced integration (C3D8R). Symmetric boundary conditions were applied to the symmetric
planes. Interactions between parts were all defined as surface-to-surface contact. The contact between
plies after delamination was also taken into consideration. Friction coefficients of all contact pairs
were set as 0.3. Composite plies were modeled with linear solid elements (C3D8) to improve the crack
calculation accuracy. Two interlaminar interfaces were simulated with cohesive elements (COH3D8).
For composite plies, a fine mesh with 0.3 mm for the in-plane size was used near the impact location.
The element size increased to 2 mm at the edges of the laminate. To improve the accuracy of modeling
delamination shape, the size of cohesive elements was determined to be 0.2 mm in the prospective
delaminated regions. These mesh sizes satisfied the mesh convergence according to the preliminary
simulations. The total number of elements was 95,178.

The material properties were listed in Table 1. For the interlaminar interfaces, the typical GIc

and GIIc of carbon fiber/epoxy resin composites reported by Caminero [43] were adopted. The ones
of matrix cracking were assumed to be the same. In the preliminary simulations, the delamination
sizes and length of the crack in the bottom ply were considerably smaller than the experimental ones.
As revealed in the simulations, this crack was caused by the transverse tensile stress σ22, and its
insufficient propagation restricted the delamination. The experimental study of Mortell [44] indicated
that during bending, the transverse stress for matrix crack initiation in the outmost ply was lower than
YT of unidirectional plies, and decreased when the ply thickness increased, which was the so-called
“in-situ” effect [45]. This was believed to be related to the residual thermal stress [45] and stress
concentration due to the non-uniform distribution of carbon fiber [46]. In addition, the defects which
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reside on the carbon fiber surface also contribute to this phenomenon, since they reduce the fiber/matrix
interfacial strength [47,48] and further lead to the matrix cracking [45,46]. In this research, YT of the
bottom ply was decreased to 20 MPa.

Table 1. Material properties of IMA/M21.

Properties Values

Intralaminar Elastic modulus (GPa) E11 = 154, E22 = E33 = 8.50,
G12 = G13 = 4.20, G23 = 2.76

Poisson’s ratio ν12 = ν13 = 0.35, ν23 = 0.43

Fracture resistance (MPa)
R(+)A
⊥

= 55.0, RA
⊥||

= 105.0,

RA
⊥⊥

= 109.6

Inclination parameter
p(+)
⊥⊥

= 0.30, p(−)
⊥⊥

= 0.30,

p(+)
⊥||

= 0.35, p(−)
⊥||

= 0.30
Critical energy release rate of matrix

cracking (N/mm) GIc = 0.30, GIIc = 0.60

Interlaminar Strength (MPa) N = 55.0, S = 68.0
Critical energy release rate (N/mm) GIc = 0.30, GIIc = 0.60

According to the study of Chen [49], a matrix crack can introduce damage to all integration
points of its adjacent cohesive element, since this element is unable to be partitioned by a crack.
The damaged element further cause damage to all adjacent elements at the interface. In this study,
a shear crack induced such artificial damage between the crack and impact location. This phenomenon
was inevitable, no matter how small the element size was used [6]. However, for the elements in
this region, the increases in their damage variables (SDEG) were inhibited by the stress release as
detailed in Section 4.2.2, and these elements were still capable of bearing the stress (at least 20 MPa),
even though their SDEG were larger than 0.9. Therefore, only the cohesive elements whose SDEG
became 1.0 were considered as failure [50] and regarded as the delaminated region.

4. Results and Discussion

In this section, the experimental results, mainly the damage modes and their sizes, are presented
firstly. During the experiments, these damage sizes, including the delamination sizes and angles of
matrix crack, were measured by the image analysis of C-scan data and micrograph. Later, the damage
modes and sizes are used for qualitative and quantitative verification of the modeling strategy.
As revealed by the Puck criteria, the angle of a matrix crack is determined uniquely by the stress state.
Hence, the numerical results of crack angles can be used for the verification of the stress calculation.
After the simulations are verified, the stress distributions and damage formation in the simulations are
used for the damage mechanisms analysis with the aid of the failure theories mentioned in Section 3.

4.1. Experimental Results

As revealed by the C-scan and micrograph of the internal damage, delamination only existed at
the lower interface. The typical delamination detected by C-scan from the lower surface is displayed
in Figure 3a. The delamination was in a “peanut shape” [5]. The main delaminated region (MDR)
consisted of two lobes. They were almost symmetric regardless of the dynamic effect. A narrow
delaminated region (NDR) beneath the impact location connected these two lobes. Each lobe was
sharp at the tip and shrank near the impact location.
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For each specimen, the outline of the delamination was idealized, as in Figure 3b. The sizes of the
simplified shape were measured by the positional data obtained from C-scanner. As detailed in Table 2,
“c” almost remained as a constant, while the other sizes increased with the energy monotonically.
Figure 4 presents the changes in the delamination sizes for all specimens and simulations. Since “c”
was independent of the impact energy, the change trends of the other sizes are shown. The values of
“a” and “d” were below 10 mm for the impact energy of 4 J, but increased to about 15 mm for 12 J.
As for “e”, it increased with the impact energy in a large scale, which was larger than 30 mm when
energy increased from 4 to 12 J, but the growth of “b” was relatively small.

Table 2. Delamination sizes for three impact energy levels (unit: mm): average sizes and coefficients of
variation of experimental results, sizes of numerical results.

4 J 8 J 12 J

Experiments Simulations Experiments Simulations Experiments Simulations

a 8.16 (8.89%) 10.2 14.95 (6.95%) 14.2 17.59 (2.29%) 15.2
b 2.44 (10.26%) 1.0 4.48 (13.32%) 1.0 5.48 (16.36%) 1.0
c 2.92 (11.21%) 2.8 2.38 (7.56%) 2.8 2.54 (20.81%) 2.8
d 8.07 (7.33%) 10.0 12.60 (5.57%) 14.6 14.97 (5.09%) 14.8
e 23.08 (7.62%) 24.0 41.91 (8.01%) 39.6 49.60 (5.54%) 46.0

A micrograph was used for revealing the internal damage at different locations (see Figure 5a,b).
In the numerical results, delamination occurred at the upper interface and was close to the impact
location (see black solid lines in Figure 5a). To verify whether such delamination existed in the
experiments, the damage on Section 1-1 of a specimen was studied. As shown in Figure 5a, Section 1-1
was parallel to Section 2-2, which was the longitudinal symmetric plane. Their distance was determined
by the sizes of the aforementioned delamination in the simulations. For each group, the damage on
Section 2-2 was recorded. The angles and distances of the matrix crack were measured as in Figure 5c.
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A micrograph was used for revealing the internal damage at different locations (see Figure 5a,b). 
In the numerical results, delamination occurred at the upper interface and was close to the impact 
location (see black solid lines in Figure 5a). To verify whether such delamination existed in the 
experiments, the damage on Section 1-1 of a specimen was studied. As shown in Figure 5a, Section 
1-1 was parallel to Section 2-2, which was the longitudinal symmetric plane. Their distance was 
determined by the sizes of the aforementioned delamination in the simulations. For each group, the 
damage on Section 2-2 was recorded. The angles and distances of the matrix crack were measured as 
in Figure 5c. 

 
Figure 5. Details of micrograph approach: (a) locations of the sections for observation (unit: mm);
(b) locations for damage photograph on Section 2-2 (in the blue and green boxes); (c) measurement of
the crack angles and distances.

Figure 6 indicates that no delamination occurred at the upper interface. LVI caused only matrix
damage and delamination at the lower interface for all impact energy levels in this research (see
Figure 7).
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Figure 7. Damage observed by micrograph on Section 2-2 for three impact energy levels.

Delamination extended along the longitudinal direction with a long distance, including the region
beneath the impact location. Due to the permanent deformation of the bottom ply after delamination
and debris between the delaminated surfaces [12], the gap between the bottom ply and middle one
formed in the delaminated region of the lower interface. This gap became evident when the impact
energy was high enough, as shown in the subgraphs for 12 J in Figure 7.
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Multiple matrix cracks started at the lower interface and propagated towards the impact location.
All of them were confined in the middle ply. When the impact energy increased to 12 J, matrix crushed
in the middle ply beneath the impact location. Although the numerical results showed that both the
tensile transverse stress σ22 and out-of-plane shear stress τ23 triggered off these cracks, they were still
named as shear cracks for simplicity, similarly to Bouvet [12].

For each impact case, the crack that was far from the impact location usually propagated with a
larger inclination compared to the crack close to the impact location. The angles of the farthest crack
for three impact energy levels (4, 8, and 12 J) were 58.0◦, 61.2◦, and 64.6◦, respectively. As for the
closet crack, its angles were 53.6◦, 51.7◦, and 50.7◦ for the three impact cases. Probably related to the
randomness of defects, the crack spacing varied from 2 to 7 mm without regularity.

The typical external impact damage was presented in Figure 8. No severe damage, for example,
fiber breakage, was caused by LVI on either surface. On the upper surface, only a shallow dent was
found (see Figure 8a). The average dent depths were 0.054, 0.125, and 0.228 mm for Group A, B,
and C, respectively. As for the lower interface, only a long tensile crack was found (see Figure 8b).
This crack consisted of two zones: Tension Zone at the tips and Delamination Zone beneath the impact
location (see Figure 8c). They were named because the initiation of the former was only related to the
transverse tensile stress σ22; however, the latter also had a close relationship with the delamination.
The most significant difference between these two zones was that the crack opening distance (COD) of
the Delamination Zone was larger than that of the Tension Zone. It can be explained as follows: during
the unloading stage of LVI, the crack closure of the Delamination Zone was hindered by the debris [12]
and permanent deformation of the bottom ply after delamination. Additionally, the Tension Zone
constituted at least half of the total length of the crack. Meanwhile, the length of the Delamination
Zone was almost identical to the delamination length. For example, they were 49.20 and 49.69 mm,
respectively, for a specimen in Group C.
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tensile crack observed by micrograph.

Since the damage modes and their symmetry remained unchanged in all impact cases in the
experiments, the modeling strategy proposed in this paper was reasonable.
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4.2. Numerical Results

4.2.1. Damage Modes and Sizes Verification

The numerical results verified the ability of the modeling strategy to capture the main damage
modes and their sizes, i.e., the delamination at the lower interface and matrix cracks. Although isolated
artificial delamination occurred near the NDR, it was neglected in the discussions about damage
mechanisms, since it was only induced by the limitations of cohesive elements and had no influence
on the damage mechanisms.

The comparison in Figure 9 indicates that the delamination shapes in the numerical results
were in good agreement with the experimental ones for all impact energy levels. In each model,
the delamination was in the peanut shape in which the major axis lay along the longitudinal direction.
The shape was composed of two lobes (MDR) and a narrow tape (NDR) that connected these lobes.

Materials 2019, 12, x FOR PEER REVIEW 13 of 22 

 

 
Figure 9. Comparison between experimental and numerical results of delamination for three impact 
energy levels. The outlines of the numerical results of the delamination are represented by the thick 
lines (the red ones in the left figures and the black ones in the right figures). 

In FE models, two kinds of matrix cracks were also observed, including multiple shear cracks in 
the middle ply and a tensile crack in the bottom ply (see Figure 10). The comparison in Figure 11 
verifies that the numbers and angles of the shear cracks in the numerical results were consistent with 
the experimental ones. The case with an impact energy of 8 J is selected as an illustrative example for 
the discussion about the shear cracks. 

Figure 9. Comparison between experimental and numerical results of delamination for three impact
energy levels. The outlines of the numerical results of the delamination are represented by the thick
lines (the red ones in the left figures and the black ones in the right figures).



Materials 2019, 12, 3990 13 of 21

The FE modeling strategy could also predict the delamination sizes successfully since the
differences in most sizes between the experimental and numerical results were acceptably small (see
Table 2 and Figure 4). In the simulations, “a”, “d”, and “e” also increased with the impact energy.
For “c”, it remained as a constant regardless of the impact energy. Only for “b”, the simulation results
and experimental ones were not in good agreement. This phenomenon was believed to be related to
the insufficient COD of the tensile crack. During the impact, the COD was smaller than 0.6 mm, which
limited the deformation of the cohesive elements at the edges of the NDR, including the normal tension
and shear deformation in the Y-Z plane. As revealed in Section 4.2.2, the failure of a cohesive element
in this region was mainly caused by the deformation in these two directions. Therefore, the widening
of the NDR of the bottom interface lagged behind the growth of other delamination sizes.

In FE models, two kinds of matrix cracks were also observed, including multiple shear cracks
in the middle ply and a tensile crack in the bottom ply (see Figure 10). The comparison in Figure 11
verifies that the numbers and angles of the shear cracks in the numerical results were consistent with
the experimental ones. The case with an impact energy of 8 J is selected as an illustrative example for
the discussion about the shear cracks.
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Figure 10. Matrix cracks: (a) in the middle ply; (b) in the bottom ply.

Similar to the experimental results, most shear cracks propagated upwards linearly with different
inclines and stopped in the middle ply. For simplification, these cracks are hereinafter referred to as
Crack A’, B’, C’, and D’ according to their locations. Crack A’ was the one closest to the impact location.
As mentioned in Section 4.1, in the experiments, the inclination angles increased with the distance
to the impact location in general. This tendency was also captured by the simulations. For instance,
the experimental angles of Crack A’ and D’ were 51.7◦ and 61.2◦, respectively, while the corresponding
angles in Model B were 50.7◦ and 66.6◦. It indicates that the models predicted the stress distributions
accurately since the crack angles were dependent on the stress components ratio σ22 : τ23 according
to the Puck criteria for matrix cracking initiation. The ratios for Crack A’ and D’ were 0.45 and 2.41.
When the impact energy increased, more shear cracks occurred in both experimental and numerical
results. The numbers of shear cracks in the specimens for micrograph were 7 (4 J), 8 (8 J), and 11
(12 J). The numbers in the corresponding FE models were 6, 8, and 10. Like the experimental results,
the impact resulted in the tensile crack with a long cohesive zone. Due to the downward movement of
the impactor, the crack was fully opened beneath the impact location. The cohesive crack tip and fully
opened part corresponded to the Tension Zone and Delamination Zone in Figure 8, respectively.

Since the models were capable of simulating the main damage modes and their trends, it was
reasonable to analyze the damage mechanisms based on the numerical results.
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for 8 J.

4.2.2. Damage Mechanisms Analysis

The damage processes for all models were similar. Hence, the process of Model B is presented as
an illustrative example. The propagation of matrix cracking and delamination is shown in Figures 12
and 13 to explore which cracks dominated the delamination.
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Figure 13. Delamination: (a) damage caused by Crack A’ (1528 µs); (b) delamination initiation (1652 µs);
(c) narrow delaminated region (NDR) occurrence (1970 µs); (d) delamination propagation (2389 µs).

The tensile crack in the bottom ply was the first damage. Induced by the tensile σ22, it started
in the lowest element beneath the impact location and propagated outwards along the longitudinal
direction. Due to the in-situ effect, YT of the outmost ply was low. Therefore, small out-of-plane
deformation of the laminate led to a large scale of the Tension Zone. Afterward, caused by σ22 and
τ23, Crack A’ occurred at the bottom of the middle ply. It propagated along the transverse direction
and upwards. Cohesive elements beneath Crack A’ became damaged due to the stress discontinuity.
Later, the delamination occurred and propagated outwards from Crack A’. When the out-of-plane
deformation became large enough, the delamination also propagated towards the impact location,
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initiating the NDR. However, the delamination was suppressed in the region between Crack A’ and
impact location except for the NDR. The downward movement of the impactor not only induced more
shear cracks but also enlarged CODs of Crack A’ and the tensile crack. For the Delamination Zone of the
tensile crack, its outward propagation and the increase in its COD forced the delamination to propagate
simultaneously. Although the appearance of the other cracks (Crack B’, C’, and D’) resulted in damage
to their corresponding cohesive elements, no obvious influence on the delamination was observed.

Consequently, as illustrated in Figure 14, the delamination was constrained by Crack A’ and the
Delamination Zone. The former became the bottom line of the MDR. The latter restrained the length of
the MDR and contributed to the widening of the NDR. The effects of these cracks on the delamination
were detailed as follows.
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Figure 14. Interactions between matrix cracks and delamination: (a) shear cracks; (b) tensile crack.

For the tensile crack, the stress discontinuity induced damage to the cohesive elements at the
lower interface. As the impactor moved downwards, the stress jump caused by COD kept increasing
and further encouraged the delamination. The crack opening also degraded the bending stiffness of
the laminates, which, in turn, facilitated the crack growth. Hence, the delamination propagation was
accelerated. At the bottom line of the MDR, delamination propagated towards the impact location
was dominated by the shear deformation in the X-Y plane. For a cohesive element in this region,
the shear strain (2.0%) was much larger than the normal strain (0.2%) before its deletion. Beneath the
impact location, the crack opening induced the large deformation at the lower interface, including the
normal deformation and shear deformation in the Y-Z plane. The deformation initiated the narrow
delamination in this region. These can be proved by the failure strain of a cohesive element in this
region: 2.1% (the normal tensile strain) and 1.5% (shear strain in the Y-Z plane).

The stress distributions of a path were studied to evaluate the effects of Crack A’. As illustrated in
Figure 15a, this path was at the bottom of the middle ply in the longitudinal symmetric plane. It was
divided into Inner Zone and Outer Zone by Crack A’. The distributions of σ33 and τ23 at different
moments are compared in Figure 15b,c since they were possibly the major influencing factors in
delamination propagation.
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Figure 15. Stress distribution at the bottom of the middle ply along the longitudinal direction: (a) the 

path for stress distribution study (the red line represents the Inner Zone, the black line represents the 

Outer Zone); (b) 33 ; (c) 23 . 

33  reached its maximum right beneath the impact location and decreased gradually with the 

distance. It almost decreased to zero where Crack A occurred. Shortly after the initiation of Crack A’ 

(1071 μs), this crack induced a small jump of 33 . As COD of Crack A’ kept increasing, the stress 

discontinuity became pronounced. Meanwhile, the compression stress 33  became larger in the 

Inner Zone. However, 33  remained almost zero in the Outer Zone. Even after the delamination 

occurred (1652 μs), 33  still remained at the low level in the Outer Zone. After the occurrence of 

Figure 15. Stress distribution at the bottom of the middle ply along the longitudinal direction: (a) the
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σ33 reached its maximum right beneath the impact location and decreased gradually with the
distance. It almost decreased to zero where Crack A occurred. Shortly after the initiation of Crack
A’ (1071 µs), this crack induced a small jump of σ33. As COD of Crack A’ kept increasing, the stress
discontinuity became pronounced. Meanwhile, the compression stress σ33 became larger in the Inner
Zone. However, σ33 remained almost zero in the Outer Zone. Even after the delamination occurred
(1652 µs), σ33 still remained at the low level in the Outer Zone. After the occurrence of Crack B’ (2004 µs),
the new crack led to another stress jump in the curve, but no significant influence was observed.
Therefore, no through-thickness tensile stress existed to promote the delamination propagation.

τ23 increased monotonically with the distance in the Inner Zone, reaching a peak value adjacent to
Crack A’ at 1071 µs. In the Outer Zone, it decreased gradually. At this moment, the stress jump of τ23

was also small. Later, τ23 increased on a noticeable scale (1528 µs). The magnitude of the stress jump at
Crack A’ was also enlarged by the crack propagation. A crest, which was about 60 MPa, appeared
in the Outer Zone. After the delamination initiation (1652 µs), the crest kept moving outwards,
promoting the delamination propagating. In the Inner Zone, τ23 reduced on a large scale, suppressing
the delamination in the Inner Zone. These tendencies remained unchanged, even after the initiation of
Crack B’ (2004 µs).

In general, Crack A’ initiated the MDR and promoted its propagation in the Outer Zone by
the crest of τ23. In the Inner Zone, Crack A’ suppressed the delamination by the stress release and
formed the bottom line of the MDR. Since the location of Crack A’ was determined by the stress
distribution near the impact location, “c”, i.e., the distance between two lobes was only dependent on
the contact between the impactor and laminate during LVI instead of the impact energy. In general,
the undelaminated region between the two parts of delamination exists at each interface of an impacted
laminate [51,52]. Since this region plays an important role in CAI, it is essential to predict “c” accurately
in FE models.
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4.2.3. Artificial Delamination

In FE models, artificial delamination existed at the upper interface and near the NDR at the lower
interface (see Figure 16). It was irrelevant to the matrix cracking and only induced by the limitations of
cohesive elements.
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As mentioned above, only three stress components (σ33, τ13, and τ23) are computed in a cohesive
element. Due to the absence of the in-plane normal stress, the cohesive elements near the transverse
symmetric plane resisted the bending deformation of the plies only by the shear stress. Consequently,
the shear stress was overestimated.

Furthermore, the through-thickness compression was believed to delay the delamination [53–55],
which was not considered in the cohesive elements in ABAQUS. According to the theories proposed
by Fiedler et al. [56–59], the high-level through-thickness compressive stress delayed the local plastic
deformation inside the resin-rich layer between two plies, i.e., the interlaminar interface, by increasing
hydrostatic pressure. In the crack tip, the micro-cracking caused by the local plastic deformation was
suppressed. Therefore, the delamination and matrix crack when its tip was near the impact location
were possibly hindered by compression.

Consequently, the cohesive elements near the transverse symmetric plane failed due to the
overestimated shear stress, although their failure was supposed to be suppressed by the high-level
compression induced by the impactor and stress release caused by Crack A’.

5. Conclusions

In this investigation, the relationship between matrix cracking and delamination in cross-ply
laminates during LVI has been studied. Several experimental methods, including C-scan, micrograph,
and visual inspection, were adopted to characterize the impact damage. XFEM-based FE models were
established to analyze the damage mechanisms. The main conclusions are summarized as follows:

1. The tensile crack is induced by σ22, while the shear cracks are mainly caused by σ22 and τ23.
2. The tensile crack determines the outline and sizes of delamination by the stress concentration.

In addition, the stress release by the opening of the shear cracks forms the two-lobe morphology
of delamination.

3. The effect of the tensile crack indicates that the delamination extension is related to the global
bending stiffness of a laminate.

4. The undelaminated region is only dependent on the impactor geometry and the local stiffness
of a laminate, since the distance between two lobes is determined by the contact between the
impactor and laminate.

Overall, the stress redistribution effect caused by CODs of the matrix cracks determines the shapes
and sizes of the delamination.

Finally, this study not only provides an effective approach for impact damage modeling but
also highlights the significance of modeling the shear cracks accurately since they determine the
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undelaminated region, which plays an important role in CAI behaviors. Based on the damage
mechanisms of this study, more accurate FE models will be established in future work to analyze the
impact damage of realistic stacking sequences used in aeronautical engineering. Moreover, a further
study is needed to investigate the effect of the through-thickness compression on the impact damage.
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