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Abstract

The chemotactic response of cells to graded fields of chemical cues is a complex process that requires the coordination of
several intracellular activities. Fundamental steps to obtain a front vs. back differentiation in the cell are the localized
distribution of internal molecules and the amplification of the external signal. The goal of this work is to develop a
mathematical and computational model for the quantitative study of such phenomena in the context of axon chemotactic
pathfinding in neural development. In order to perform turning decisions, axons develop front-back polarization in their
distal structure, the growth cone. Starting from the recent experimental findings of the biased redistribution of receptors on
the growth cone membrane, driven by the interaction with the cytoskeleton, we propose a model to investigate the
significance of this process. Our main contribution is to quantitatively demonstrate that the autocatalytic loop involving
receptors, cytoplasmic species and cytoskeleton is adequate to give rise to the chemotactic behavior of neural cells. We
assess the fact that spatial bias in receptors is a precursory key event for chemotactic response, establishing the necessity of
a tight link between upstream gradient sensing and downstream cytoskeleton dynamics. We analyze further crosslinked
effects and, among others, the contribution to polarization of internal enzymatic reactions, which entail the production of
molecules with a one-to-more factor. The model shows that the enzymatic efficiency of such reactions must overcome a
threshold in order to give rise to a sufficient amplification, another fundamental precursory step for obtaining polarization.
Eventually, we address the characteristic behavior of the attraction/repulsion of axons subjected to the same cue, providing
a quantitative indicator of the parameters which more critically determine this nontrivial chemotactic response.
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Introduction

Eukaryotic cells like neutrophils or amoebas migrate in response

to chemical stimuli. External graded signals are transduced into

internal pathways, giving rise to cell front–back asymmetrization,

which leads to cytoskeleton reorganization and, eventually,

directional motion. The process by which regulatory proteins and

other molecular species, initially uniformly distributed in the

membrane and cytosol, differentially localize is called polarization

and is a steering event in the chemotactic response. Polarization in

eukaryotic cells has been the object of intense in vivo and in vitro

studies (see, e.g., [1–3] and references therein). In silico models

represent a third viable approach to explore this complex

phenomenon. A mechanism of polarization advocated in several

computational models is the interplay in the cell of a local activator–

global inhibitor effect (the so–called LEGI mechanism, see, e.g., [4–

6]); alternative mechanisms have also been envisaged, which do not

require the introduction of the global inhibitor, which is a somewhat

controversial topic, but generate front–back asymmetrization

relying on some sort of interaction – say, competition, coincidence

of action, feedback – between different pathways (see, e.g., [1,7–10]).

In this paper, we propose a mathematical and computational

model which addresses polarization in the far less studied case of

neural cells. We focus on axon chemotactic pathfinding, a

fundamental process for the innervation of synaptic targets in

the developing embryo. In order to perform turning decisions,

axons develop front–back polarization in their distal structure, the

growth cone (GC). Internal polarization differentially induces

microtubule protrusion or collapse in the GC cytoskeleton

determining directional migration [11]. Mathematical models in

this context most often do not enter into the details of the

biochemical signalling cascade, but rather adopt phenomenolog-

ical simplified descriptions that provide a ‘‘black box’’ information

of the functional behavior of the system. A first class of approaches

(see, e.g., [12,13]) is based on persistent random walk models. The

GC trajectory is typically described by a system of ordinary

differential equations accounting for a deterministic velocity field

and random ‘‘kicks’’ arising from stochastic terms, macroscopically

representing fluctuations in gradient sensing and signal transduc-

tion. Evolutions of these models are presented in [14] and further

in [15], where the GC trajectory is described by more

sophisticated stochastic partial differential systems of equations,

including diffusion and inertia contributions. A second class of

models are investigated in [16–18], where there is the attempt of

introducing a description of the intracellular chain. Namely, the

probability of finding a transmembrane receptor at a certain
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angular position on the GC is supposed to be linked to some

significant intracellular parameter, for example the local concen-

tration of ionic calcium [16]. This latter approach is prodromal to

the present study of the spatial organization of the GC during

guidance.

The biophysical starting point of the present work is the

experimental finding, recently obtained by Bouzigues et al. [19],

that GC receptors subjected to the graded field of an attractant cue

undergo two fundamental types of motion on the membrane: free

diffusion, which is always present -also under an uniform external

field- and drift motion. This latter kind of motion interestingly

makes neural cells different from nonneural ones, whose receptors

seem to undergo both in uniform and graded fields an unbiased

continual diffusion [20]. Due to the drift motion, GC receptors

rearrange on the membrane asymmetrically concentrating on the

side facing the source. The redistribution is driven by the physical

interaction of bound receptors with microtubules, which serve as

conveyor belts [21]. An autocatalytic loop is then established: bias in

receptor localization induces, via internal polarization of molecules,

preferential growth of the microtubules toward the leading edge of

the GC. This, in turn, enhances convey of receptors on that same

side. In order to mathematically investigate the sustainability of this

hypothesis of receptor autocatalytic loop, we model the chemical

pathway triggered upon receptor binding. In such a pathway, cyclic

nucleotides act as second messengers. Their role is monitored with

particular attention in the simulation, since they are known to be

key–regulators of GC motility [22]. In particular, whole cell

recordings of inward calcium currents at Xenopus spinal neuron GCs

indicate that cyclic nucleotide signalling modulates the opening of

L–type voltage–dependent calcium channels (LCC) [23,24]. We

make here the modelling assumption that the driving force which

induces biased recruitment of receptors is the uneven distribution

(that is, the gradient) of such calcium channels. This is a lumped

representation of the complex mechanical events connected with

cytoskeleton reorganization induced by calcium dynamics, i.e., actin

dynamics, microtubule polymerization and depolymerization [25].

Intracellular reactions constitute the bridge between the upstream

receptor and the downstream calcium dynamics. Due to their

enzymatic nature, which triggers a one–to–more activation of

molecules, they represent an amplification process, fundamentally

sustaining polarization. We use the model to obtain quantitative

information on this delicate interlacing.

To work on a practical groundfield, we consider here the

pathway activated by exposure of GCs to a graded signal of the

diffusible molecule netrin, which role as chemoattractant in

conjunction with its receptor Deleted in Colorectal Cancer (DCC) [26]

is well recognized and studied in axon guidance [27]. The model of

the intracellular cascade takes as a biophysical reference the

pathway proposed in the work by Nishlyama et al. [28], which

addresses in a detailed manner netrin–induced signalling. We also

refer to the work by Clément et al. [29]: albeit treating a different

topic (the regulation of ovarian follicles by the FSH hormone), this

work provides a mathematical description of biochemical processes

from receptor binding to second messenger cyclic AMP activation,

which can be conveniently taken as a starting point also for our case.

Eventually, we propose an extension of the model to perform a

quantitative study of a characteristic chemotactic behavior

exhibited by GCs. While in nonneural cells transmembrane

receptors are a limited and well identified set, receptors for neural

navigation are much more heterogeneous. In particular, the

emerging picture is that in most cases there are several receptors

for each guidance cue and these receptors might work in

complexes [30]. Engagement of receptor complexes is involved

in the specificity of the response to a cue. The UNC5 receptor [31]

forms a complex with DCC via interaction of the cytoplasmic

domains. Binding of the complex with netrin converts the

attractive into repulsive response [22,24]. Repulsion arises due

to activation by the DCC–UNC5 complex of an alternative

pathway leading to the production of cyclic GMP, linked to

cytoskeleton collapse [32]. Genetic manipulations can modulate

the GC response in presence of different percentages of UNC5

expression, ideally allowing to observe a passage from attraction

(for low percentages of the DCC–UNC5 complex) to repulsion (for

high percentages of the DCC–UNC5 complex). In [28], it is

proposed that a synthetic parameter that describes in this

framework the chemotactic response may be represented by the

ratio between the average concentrations of cyclic AMP and

GMP: high ratios would favor attraction, whereas low ratios favor

repulsion. We use our model to quantitatively assess the

significance of such an hypothesis, highlighting a possible

mechanism of synergistic interaction of the two pathways, which

provides an interpretation of the chemotactic response.

Mathematical Model
Growth cones are 3D hand-shaped structures, which dynam-

ically change their conformation. Filopodia protrude from the GC

membrane, continuously extending and retracting to explore the

environment and to create adhesion to the substratum. These

phenomena are highly complex and take place at a time frequency

faster than the one we are interested into, typically seconds vs. a

few minutes. For the purposes of the present model, we neglect

fine local details of the shape and we represent GCs as 2D disk-like

structures with diameter of 10 mm. This simplification models the

average shape assumed by GCs in their state prior to actual

motion (the ‘‘pausing state’’ cited in [19]). The same assumption

has been made by other authors interested in GC mathematical

modelling, see [16,33,34]. We refer as a paradigm to the in vitro

chemotactic assay for neural cells, where GCs are exposed to

steady graded concentrations of a chemical ligand released by a

pipette (see, e.g., [35,36]). Observe that this is essentially a two–

dimensional situation.

Author Summary

The ability of cells to respond to chemical signals present
in the environment is of upmost importance for life. In the
developing embryo, cells crawl along graded fields of
chemical cues to aggregate into organized patterns. This
process is an example of chemotaxis. It is a complex
phenomenon, where external signals are transduced into
internal chemical pathways leading to directional move-
ment. Differential reorganization of the internal structure is
called polarization, and it involves regulatory proteins as
well as cytoskeletal elements. In this work, we propose a
mathematical and computational model for the quantita-
tive study of chemotactic pathfinding in neural cells. Our
starting point is the recent finding that, for such cells, an
early polarization event is the redistribution on the
membrane of cue–ligated receptors, transported by the
cytoskeletal structures, which act as a sort of conveyor
belt. We show that this proposed mechanism, connecting
in a closed loop cue sensing and cytoskeleton dynamics, is
qualitatively and quantitatively adequate to produce
polarization. We also investigate the role of the internal
biochemical chain in producing signal amplification and its
tight interlacing with polarization. An extension of the
model is used to study chemotactic behaviors as the
attractive/repulsive response of axons exposed to the
same cue.

Modelling of Polarization in Neural Chemotaxis
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Polar coordinates are used, the origin of the axes being

positioned in the center of the GC. The angle w denotes the

azimuthal coordinate on the membrane and its origin is set along

the direction connecting the GC center with the pointwise source,

which we always suppose to lay on the right hand side of the cell

(see Fig. 1). We denote by r the radius of the GC.

In the model, we deal with membrane species (receptors,

cyclases and calcium channels) and cytosolic species (G–proteins,

cyclic AMP, cyclic GMP, kinases and their corresponding

precursors). To connect membrane and cytosolic concentrations

(and vice versa), we use the dimensional corrective factor s~2=r
(or its inverse). We use the notation ½:� to represent concentration

of a certain species; moreover, we denote by the superscript � the

bound or active form of the molecules. The nomenclature for the

species is reported in Tab. 1.

DCC-activated biochemical pathway. In the following, we

connect receptor ligation to calcium channel dynamics by

proposing a biochemical pathway, where elevation of

intracellular cAMP level is a pivotal event. We refer to Fig. 2 for

a schematic representation of such a pathway.

Binding of netrin to its receptor DCC results in the formation of

the ligated complex DCC�

NetrinzDCC'DCC�

The activated site of the bound DCC receptor on the intracellular

side catalyzes the release of the guanosin-diphosphate (GDP)

contained in the cell G protein (for example Rac1, CDC42 or

RhoA) and its substitution with a molecule of guanosin-

triphosphate (GTP) [37]

GzGTPG�zGDP

The released G� combines with the membrane protein adenylate

cyclase (ACyclase)

G�zACyclase'GACyclase�

which, in turn, enzymatically catalyzes the synthesis of cAMP from

the available substrate ATP

ATP {?
GACyclase�

cAMP {?
PDE

AMP

cAMP molecules bind the substrate prekinase protein ((PKA)2R2,

R being the regulatory subunit) to give the active kinase adenosine-

dependent protein (PKA)

4cAMPz(PKA)2R2'2PKAz2(cAMP)2R

which enzymatically activates the opening of LCC channels

LCCclose LCCopen

Diffusive and advective fluxes. Let ni~ni(w,t),i~1, . . . ,M
be a generic chemical species of the model. Each chemical species

is subjected to Brownian diffusion which causes its spreading in a

homogenization process. In the present model, we only consider

lateral diffusion of the species, neglecting radial diffusion (see [7,9]

for similar hypotheses and discussions on this subject).

We model the Brownian diffusive flux Ji,d of the species using

the standard Fick’s law

Ji,d~{ai,d+½ni�, ð1Þ

ai,d being the diffusion coefficient.

The directional motion of bound receptors due to the

interaction with microtubules mathematically represents a drift

term. In the lumped description we adopt, the convective field is

the lateral gradient of open calcium channels. The form of the flux

Jfb due to feedback we consider reads

Jfb~afb+½LCCopen�½DCC��, ð2Þ

where afb is a multiplicative coefficient, and where we have

supposed the feedback flux to be an increasing function of the

Figure 1. GC schematization. The GC is represented in the
mathematical model as a disk subdivided in angular sectors. We
consider the settings of the chemotactic assay for neural cells, where a
pipette (here on the right) establishes a steady graded field of a
chemotropic molecule.
doi:10.1371/journal.pcbi.1000479.g001

Table 1. Nomenclature of the species entering the
mathematical model.

Symbol Definition

ACyclase inactive adenylate cyclase

ATP adenosine triphosphate

(PKA)2R2 pre–kinase protein in cAMP pathway

cAMP cyclic adenosine monophosphate

cGMP cyclic guanosine monophosphate

DCC DCC receptor

G G–protein in the DCC pathway

G� activated G–protein

GACyclase� G–activated adenylate cyclase complex

GCyclase inactive guanylate cyclase

(PKG)2R2 pre–kinase protein in cGMP pathway

GTP guanosine triphosphate

HPETE 12-hydroxyperoxyeicosatetraenoic acid

LCCopen open Ca2z L-channel

LCCclose close Ca2z L-channel

Netrin extracellular signal netrin

PDE phosphodiesterase

PKA adenosine–dependent kinase protein

PKG guanosine–dependent kinase protein

Q G–protein in the UNC pathway

UNC DCC–UNC5 receptor complex

doi:10.1371/journal.pcbi.1000479.t001

Modelling of Polarization in Neural Chemotaxis
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concentration of bound receptors (see [38] for a similar

modelling assumption in a more general context). Note that

the minus sign in (1) represents the fact that diffusion smooths

away concentration gradients, while the positive sign in (2)

indicates motion toward the convective field, here the increasing

gradient of calcium channels (positive feedback). This latter

effect is shown in Fig. 2, where we have represented with a

dashed arrow the displacement of receptors induced by open

calcium channels.

The total flux of molecules of the i{th species is then given by

Ji,tot~
Ji,dzJfb if i~DCC�,

Ji,d otherwise :

�

Model equations for the DCC signal transduction

pathway. Conservation laws give the rate of change of

concentrations of each species. For the generic species ni, we have

L½ni�
Lt

~{div(Ji,tot)z
XM
j~1

fij(½ni�,½nj �), ð3Þ

where the nonlinear functions fij at the right hand side account for

reaction terms arising from the application of the mass action law

to the chemical reactions in the above described pathway. The

following system of partial differential equations of the form (3)

represents our model for the DCC signal transduction pathway:

given the appropriate initial and boundary conditions, solve for

time t[(0,T �

L½DCC��
Lt

~kN ½Netrin�½DCC�{k{N ½DCC��

z
am

r2

L2½DCC��
Lw2

{
afb

r2

L
Lw

(
L½LCCopen�

Lw
½DCC��),

ð4aÞ

L½DCC�
Lt

~{kN ½Netrin�½DCC�

zk{N ½DCC��z am

r2

L2½DCC�
Lw2

,

ð4bÞ

L½G��
Lt

~k G½DCC��½G�{k{G½G��{kACyc(s½G��

{s½GACyclase��)s½GACyclase��z ac

r2

L2½G��
Lw2

,

ð4cÞ

L½G�
Lt

~{kG½DCC��½G�zk{G½G��z
ac

r2

L2½G�
Lw2

, ð4dÞ

L½GACyclase��
Lt

~kACyc(s½G��{s½GACyclase��)½GACyclase��

z
am

r2

L2½GACyclase��
Lw2

,

ð4eÞ

L½cAMP�
Lt

~kcAMPs½GACyclase��{dPDE½cAMP�

{4kPKA½cAMP�2½(PKA)2R2�

z4k{PKA½PKA�z ac

r2

L2½cAMP�
Lw2

,

ð4f Þ

L½(PKA)2R2�
Lt

~{kPKA½cAMP�2½(PKA)2R2�

zk-PKA½PKA�z ac

r2

L2½(PKA)2R2�
Lw2

,

ð4gÞ

L½PKA�
Lt

~2kPKA½cAMP�2½(PKA)2R2�

{2kPKA½PKA�z ac

r2

L2½PKA�
Lw2

,

ð4hÞ

L½LCC�open

Lt
~kLCC(1z

iPKA

s
½PKA�2)½LCCclose�

{k{LCC½LCCopen�z
am

r2

L½LCC�open

Lw2
,

ð4iÞ

Figure 2. Proposed path for GC chemotaxis induced by netrin binding with DCC receptors. Solid arrows indicate the prevalent direction
of chemical reactions, the dashed arrow indicates physical displacement (recruitment) of receptors induced by open calcium channels.
doi:10.1371/journal.pcbi.1000479.g002

Modelling of Polarization in Neural Chemotaxis
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L½LCC�close

Lt
~{kLCC(1z

iPKA

s
½PKA�2)½LCCclose�

zk{LCC½LCCopen�z
am

r2

L½LCC�close

Lw2
:

ð4jÞ

Note that in the case of the activation of adenylate cyclase (Eq.

(4–c)), where a complex protein conformational change occurs, we

have used a ‘‘physiological’’ and not a biochemical representation,

introducing a logistic–type law as in [29]. The s coefficient in this

term is an amplification parameter which represents the average

number of adenylate cyclase molecules activated by one G�

molecule.

We refer to the Methods Section for a discussion on the choice

of initial and boundary conditions and of the kinetic parameters.

Attractive vs. Repulsive Behavior: The DCC–UNC5
Complex Pathway

In this section, we propose an extended version of the model to

study the bifunctional response to a guidance cue, a phenomenon

known to interest the response to netrins [27]. Engagements of

receptor complexes is known to control the specificity and the

polarity of the response of the neuron to the guidance cue. Here

we will not deal with the details of the dynamics of the formation

of the DCC–UNC5 complex, and we will always consider such a

dynamics at the equilibrium. From the modelling point of view,

this amounts to prescribe a priori the percentage of DCC

receptors forming a complex with UNC5 (on this issue, see also

the discussion in the Methods Section). Setting in the tests various

percentages, we analyze a wide spectrum of situations. To

describe the DCC–UNC5 complex, we follow here the idea

proposed in [28], and namely that such a complex leads to cGMP

synthesis, regulated by 12-hydroxyperoxyeicosatetraenoic acid

(HPETE) via direct activation of guanylate cyclase [39].

Enhancement of the cGMP level causes to calcium channel

closure [40]. This fact is at the origin of the significant decrease of

inward calcium flux in UNC5–overexpressing GCs, repelled by

netrin.

Due to the substantial similarity with the sole DCC pathway,

many mechanisms are modeled here in the same way. The

binding reaction for the DCC–UNC5 complex (for clarity

indicated just as UNC) reads

UNCzNetrin'UNC�

The ligated complex induces dissociation of a G–protein (probably

of Rho type, see [12]), that we denote here by Q , giving

QzGTP'Q �zGDP

This process leads to the formation of HPETE. Not being yet

completely explained, we consider here a second order reaction to

occur (see the Methods Section for a more detailed discussion of

this aspect)

Q � {? ? {? HPETE

HPETE activates soluble guanylate–cyclase (GCyclase)

HPETEzGCyclase {? GCyclase�

which, in turn, catalyzes the synthesis of cGMP from the

guanosine triphosphate (GTP) substrate

GTP {?
GCyclase�

cGMP {?
PDE

GMP

Formation of the guanosine–dependent kinase protein (PKG)

4cGMPz(PKG)2R2'2PKGz2(cGMP)2R

enzymatically enhances closure of calcium channels

LCCclose LCCopen

Model equations for the DCC-UNC5 signal transduction

pathway. The rates of change of concentrations for the DCC–

UNC5 pathway are modeled by the following system: given the

appropriate initial and boundary conditions, solve for time t[(0,T �

L½UNC��
Lt

~hN ½Netrin�½UNC�{h{N ½UNC��

z
am

r2

L2½UNC��
Lw2

{
afb

r2

L
Lw

(
L½LCCclose�

Lw
½UNC��),

ð5aÞ

L½UNC�
Lt

~{hN½Netrin�½UNC�zk{N½UNC��zam

r2

L2½UNC�
Lw2

, ð5bÞ

L½Q ��
Lt

~hQ ½UNC��½Q �{dQ ½Q �� z
ac

r2

L2½Q ��
Lw2

, ð5cÞ

L½Q �
Lt

~{hQ ½UNC��½Q �zdQ ½Q ��z ac

r2

L2½Q �
Lw2

, ð5dÞ

L½HPETE�
Lt

~hHPETE½Q ��2{dHPETE½HPETE�

{
hGCyc

s
½HPETE�(½HPETE�{½GCyclase��)

z
ac

r2

L2½HPETE�
Lw2

,

ð5eÞ

L½GCyclase��
Lt

~
hGCyc

s
½HPETE�(½HPETE�{½GCyclase��)

z
ac

r2

L2½GCyclase��
Lw2

,

ð5f Þ

L½cGMP�
Lt

~hcGMPs½GCyclase��{dcGMP½cGMP�

{4hPKG½cGMP�4½(PKG)2R2�

z4h{PKG½PKG�z ac

r2

L2½cGMP�
Lw2

,

ð5gÞ

L½(PKG)2R2�
Lt

~{hPKG½cGMP�2½(PKG)2R2�

zh{PKG½PKG�z ac

r2

L2½(PKG)2R2�
Lw2

,

ð5hÞ

Modelling of Polarization in Neural Chemotaxis
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L½PKG�
Lt

~2hPKG½cGMP�2½(PKG)2R2�

{2h{PKG½PKG�z ac

r2

L2½PKG�
Lw2

:

ð5iÞ

The last term at the right hand side of Eq. (5–a) represents the

feedback of the calcium dynamics on the redistribution of

receptors. Note that here the feedback effect is exerted from

closed channels: such a term must not be interpreted from a strict

biochemical point of view, but again as a lumped phenomenolog-

ical description of a more complex mechanism.

Equations for the calcium channels still must be added. In the

following, we will be interested in the coupling of the DCC and

DCC–UNC5 pathways. To model this situation, we consider Eq.

(4i) and (4j) modified as

L½LCC�open

Lt
~kLCC(1z

iPKA

s
½PKA�2)½LCCclose�

{k{LCC(1z
iPKG

s
½PKG�2)½LCCopen�

z
am

r2

L½LCC�open

Lw2
,

ð6aÞ

L½LCC�close

Lt
~{kLCC(1z

iPKA

s
½PKA�2)½LCCclose�

zk{LCC(1z
iPKG

s
½PKG�2)½LCCopen�

z
am

r2

L½LCC�close

Lw2
:

ð6bÞ

where now the rate of opening of calcium channels is determined

by two competing effects, the enhancing action of the DCC

pathway and the inhibitory action of the DCC–UNC5 pathway.

Fig. 3 schematically depicts the model of the interaction.

Results

We refer to Eqs. (4a–j) as the DCC model, while we refer to Eqs.

(4a–h),(4a–i) and (4a–b) as the coupled DCC–UNC5 model. In all

the tests presented in the following sections, we have assigned a

steady exponential profile of netrin concentration with 5%
steepness, such that the concentration at the source is equal to

10 nM (dissociation constant of netrin [26]).

DCC Model: Achievement of Polarization
We first demonstrate that the model correctly achieves polariza-

tion and reaches a steady state condition, where front–back

differentiation is established. In Fig. 4, we plot the concentration

Figure 3. Schematization of the antagonist pathways induced by netrin binding with DCC (left column) and DCC-UNC5 receptor
complex (right column). The dashed arrows indicate the feedback effect in the closed loop model.
doi:10.1371/journal.pcbi.1000479.g003

Modelling of Polarization in Neural Chemotaxis
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profiles as a function of time, obtained from simulations carried out

till T~2 h. In Fig. 5, we plot for the different species the abscissa of

the barycenter of the molecules as a function of time. Since at the

initial time the distribution of molecules is homogeneous, the

displacement of their spatial barycenter from x~0 represents an

index of the intensity of the polarization. In Fig. 6, we plot the

concentrations after 2 h as a function of w. Significant polarization of

the receptors takes place in tenth of minutes; polarization is inherited

by all the internal species. An interesting behavior is shown by

calcium channels, which undergo in all sectors a first phase of

opening, reaching a fairly similar maximum value, followed by

closure, more pronounced in the rear side. This mechanism might

represent a sort of LEGI, global ‘‘inhibition’’ being constituted by

collective opening and local ‘‘activation’’ by differential closure. Note

that this is to be intended only as a qualitative interpretation (see also

the discussion in [11]). The position of the barycenter of bound

receptors presents a sigmoid behavior, which is characteristic of

autocatalyzing processes: a first phase of relatively slow accumulation

(lag time) followed by a quick growth till a steady state. This is in

agreement with the experimental result of [19, Fig.1e]. In Fig. 7, we

Figure 4. DCC model: concentration profiles as a function of time (in minutes). Curves are relative to the four most representative angular
sectors, perceiving a cue concentration ranging from minimal to maximal value, respectively. Legend: green [Netrin] = 9.52 nM (max value), cyan
[Netrin] = 9.36 nM, blue [Netrin] = 9.16 nM, magenta [Netrin] = 9.08 nM, red [Netrin] = 9.07 nM (min value).
doi:10.1371/journal.pcbi.1000479.g004

Figure 5. DCC model: abscissa (in [mm]) of the barycenter of the molecules as a function of time (in minutes).
doi:10.1371/journal.pcbi.1000479.g005
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plot the concentration profiles as a function of time for a simulation

with a longer integration interval T~12 h. A steady state is

definitely reached.

Contribution of Feedback and Amplification to
Polarization

In [19], an experiment is reported, where a chelator is used to

subtract the calcium available in the cytosol, obtaining a

suppression in the asymmetric relocalization of receptors. To

perform an in silico investigation of this experiment, we have

studied the effect of the variation of the feedback coefficient afb.

Fig. 8 (left) shows that significant receptor relocalization is

obtained only above a nonzero threshold of afb. More importantly,

the model predicts that the lack of receptor relocalization implies

absence of chemotactic response and not only a weaker, but still

existing, response. Fig. 8 (right) quantifies how the asymmetry in

DCC receptors localization is reflected in downstream differential

opening of the calcium channels. This indicates that a sufficient

active relocalization of receptors is an upstream enhancing event

needed to produce chemotactic response.

In a second investigation, we have considered the effect of

amplification due to chemical kinetics. In the signalling pathway,

we may identify –loosely speaking– two families of reactions. The

first family consists of stoichiometric reactions, as for example

ligand–receptor or G–cyclase binding, involving one–to–one

molecule synthesis. The second family consists instead of

enzymatic reactions, which, involving a one–to–more molecule

production, drive an internal amplification processes. We focus

our attention on this latter family, taking as a representative case

the cAMP production catalyzed by cyclase. We perform different

simulations with a decreasing kinetic constant kcAMP, which

quantitatively modulates how many molecules of cAMP are

produced starting from an available molecule of activated cyclase.

In Fig. 9, we plot the position of the barycenter of the bound

receptors as a function of kcAMP. This result suggests that

polarization is also indissolubly crosslinked with internal amplifi-

Figure 6. DCC model: concentration profiles of selected species after 2 h as a function of the angle Q.
doi:10.1371/journal.pcbi.1000479.g006

Figure 7. DCC model: concentration profiles as a function of time (in minutes), integration till T = 12 h. Curves are relative to the four
most representative angular sectors, perceiving a cue concentration ranging from minimal to maximal value, respectively. Legend: green
[Netrin] = 9.52 nM (max value), cyan [Netrin] = 9.36 nM, blue [Netrin] = 9.16 nM, magenta [Netrin] = 9.08 nM, red [Netrin] = 9.07 nM (min value).
doi:10.1371/journal.pcbi.1000479.g007
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cation. A parametric constraint appears: below a non–zero

threshold in the enzymatic (that is, amplifying) efficiency of the

pathway, no polarization occurs.

The above investigations show that both feedback and

amplification are precursor events for the achievement of

polarization. Their respective actions are necessary and concur-

ring contributions.

Diffusion vs. Feedback: Antagonist Roles
The results discussed above were obtained setting in the model

the diffusion and feedback coefficients as indicated in Tab. 2.

While the diffusion coefficient can be measured as a well defined

physical parameter, it is much more difficult to quantify the

feedback parameter. This fact has a strong implication, since the

ratio of the two parameters influences the dominating behavior of

the system. To fix the ideas, we perform the tests varying the

feedback coefficient, and we keep constant the diffusion coeffi-

cients am~ac, (that we denote here for simplicity as a). The results

of the simulations are shown in Fig. 10, where the abscissa xDCC�

of the barycenter (in mm) of the bound receptors is plotted as a

function of a=afb. They suggest that under a certain threshold,

diffusion overwhelms drift, leading to an unbiased receptor

distribution on the membrane, that is xDCC�?0, as if the external

field were uniform.

Time Scales in Front and Back Biochemical Processes
We use the model to study the time scales that characterize the

process on the front and back sides, respectively. To perform this

mathematical analysis, we consider a simplified version of the

DCC model, neglecting diffusion and feedback terms. By doing so,

we yield a system of ordinary differential equations, decoupled

sector by sector. In this study, we prescribe a-priori an asymmetric

receptor distribution to describe the polarized situation reached

after a sufficient time of exposure to the cue. In particular, we start

from the steady state distribution of receptors obtained from the

simulation of the DCC model with T~12 h. We compute in each

sector the eigenvalues of the Jacobian matrix of the system in

correspondence to its steady state. All the eigenvalues are real

negative, indicating that the steady state is an attractive point.

Based on the principal component of the corresponding

eigenvector, we associate a chemical species with each eigenvalue.

Then, using standard tracking techniques [41], we follow the

variation of each eigenvalue along the GC perimeter. In Fig. 11,

we plot the modulus of the eigenvalue associated with each species

as a function of the angle w. The eigenvalue associated with the

slowest process on the front side (w~0) appears to be connected to

PKA, while on the back side (w~p) it appears to be connected to

GACyclase�. Observe that all the eigenvalues undergo a variation

Figure 8. Effect of the variation of the feedback coefficient afb.
Top: abscissa xDCC� (in mm) of the barycenter of bound DCC receptors
as a function of the feedback coefficient afb . Bottom: abscissa xLCCopen

(in mm) of the barycenter of open calcium channels as a function of the
abscissa of the barycenter of bound receptors (in mm). Each marker
corresponds to a simulation carried out with a different value of afb .
doi:10.1371/journal.pcbi.1000479.g008

Figure 9. Effect of the variation of the parameter kcAMP. Abscissa
(in mm) of the barycenter of the bound receptors as a function of kcAMP,
index of the enzymatic amplification. Below a non–zero threshold, no
polarization occurs.
doi:10.1371/journal.pcbi.1000479.g009

Table 2. Diffusion and feedback coefficients.

Parameter Definition Value Dimension Ref.

ac cytosolic diffusion coefficient 2:10{2 mm2s{1

afb feedback coefficient 1:5:10{3 mm3#{1s{1

am membrane diffusion coefficient 2:10{2 mm2s{1 [7]

doi:10.1371/journal.pcbi.1000479.t002
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along the angle, even if for some of them this is not apparent in the

logarithmic scale, required to appreciate the different relative

behaviors. The graph shows the strong variation of the eigenvalue

connected with GACyclase�. Moreover, the general trend of

reduction of the absolute values passing from the front side to the

back side indicates that the front dynamics is faster than the back

one.

Coupled DCC–UNC5 Model: Attractive vs. Repulsive
Responses

We use the coupled DCC–UNC5 model to study the response

of the system to the (bifunctional) netrin cue when the DCC–

UNC5 complex is formed. Denoting by #DCC and #UNC the

number of receptors on the membrane belonging to the two

populations, respectively, we introduce the quantity

c~
#UNC

#DCCz#UNC

which represents the fraction of DCC–UNC5 receptors. Neurons

which display a chemoattractive response when exposed to a netrin

gradient are typically characterized by low values of c. Neurons

genetically manipulated to overexpress the UNC5–type receptors,

which display a chemorepulsive response when exposed to the same

netrin gradient, are typically characterized by values of c near 1.

As a representative situation of the first case, we set c~0:2. In

Fig. 12, we plot the concentration contours of the main species as a

function of angular position w and time. This model suggests the

following explanation of the attractive behavior: DCC receptors

migrate toward the source, while DCC–UNC5 ones migrate away

from it, causing a differential opening of calcium channels on front

vs. back.

Then, we consider the dual case, setting c~0:8. In Fig. 13, we

plot the concentration contours of the main species as a function of

angular position w and time. The model suggests a dual behavior

with respect to the situation with c~0:2: DCC–UNC5 receptors

migrate toward the front, while DCC receptors migrate toward the

back, giving rise to the repulsive response.

Role of second messengers: the cAMP vs. cGMP

ratio. Using the DCC-UNC5 model, we can analyze more in

detail the role of second messengers cyclic AMP and GMP (activated

by DCC and DCC–UNC5 pathways, respectively) in modulating the

response. We explore a large set of values of c in the range ½0,1� and

we compute from each corresponding simulation the

½cAMP�=½cGMP� ratio as a function of time (see Fig. 14, (left)).

Moreover, in Fig. 14 (right), we show the position of the barycenter

of the open calcium channels as a function of the [cAMP]/[cGMP]

ratio after 1 h. The position of the barycenter indicates here the

direction of incipient motion and thus the type of response. These

results quantify the idea of Nishlyama-et-al-2003, where the

chemotactic response (experimental measure of the axon turning

angle) is qualitatively connected to the ½cAMP�=½cGMP� ratio. In

particular, the model quantitatively explains the presence of extremal

points in the curve reported in [28, Fig.4c] as the outcome of the

synergistic interaction of receptors, which enhances the polarization

produced in the single receptor case, and of the characteristics of

the internal amplification process, which is nonlinear.

Discussion

We have proposed a mathematical model to study the polarization

phenomenon triggered by the exposure of GCs to an external cue,

taking as a paradigm the in vitro chemotactic assay. The key

hypothesis is that symmetry breaking occurs as early as at the level of

transmembrane receptors, which undergo a biased distribution after

exposure to the cue. This finding appears in the recent work [19], (see

also the analysis of [42]), where experimental evidence of such a

process is provided and an idea is proposed of an autocatalyzing loop

connecting receptors and downstream actin dynamics. Our main

contribution is to quantitatively demonstrate via the mathematical

model how such a loop is able to achieve GC ‘‘front–back’’

polarization. More precisely, we assess the fact that spatial bias in

receptors is a precursor necessary event for chemotactic response, so

that upstream gradient sensing and downstream cytoskeleton

dynamics cannot be decoupled. Moreover, we analyze further

crosslinked effects and, namely, the contribution to polarization of

internal enzymatic reactions, which entail activation of a one–to–

more production of molecules. The model shows that the enzymatic

Figure 11. Spectral analysis of the model. Eigenvalues (in absolute
value) of the Jacobian matrix of the DCC simplified model at steady
state, as a function of the angular coordinate w (for symmetry
represented here only in the range ½0,p�).
doi:10.1371/journal.pcbi.1000479.g011

Figure 10. Diffusive vs. convective phenomena. When diffusion
overwhelms drift effects, the species are homogenized and polarization
is not created. The abscissa of the bounded DCC receptors tends to
zero, as if under an uniform chemotropic field.
doi:10.1371/journal.pcbi.1000479.g010
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efficiency of such reactions must overcome a threshold in order to

produce a sufficient amplification, which is another fundamental

precursor step for obtaining polarization. A simplified version of the

model is used to provide preliminary indications about time scales in

the front and back processes, via eigenvalue tracking. The findings

suggest that the two processes take place with different speeds, the

front one being faster than the rear one. This element could play a

significant role, even if further investigations should be carried out, A

preliminary analysis of the role of diffusion vs. convection is also

sketched, establishing the nature of a strongly advection–dominated

system. Eventually, we have proposed an extension of the model to

address a peculiar behavior arising when two families of receptors

interact to produce the response to the same cue. The study of this

case allows to propose some ideas on the mechanism of chemorepul-

sion, as the synergistic interaction of pathways, that contribute to

better understand this less studied phenomenon.

The present model demands for improvement. We have run

simulations considering a time dependent gradient of ligand. The

laboratory experiments (among the very few on this issue for neural

cells) reported in [19, Fig.1g], show reversibility of the distribution of

the receptors, upon removal of the gradient. Our model tested

under these conditions tends instead to maintain the receptor

asymmetric configuration and removal of the cue itself is demanded.

This fact has led us to conjecture the need for introducing inhibitory

effects on receptors. At present, we have indeed assumed that the

GC has a pool of receptors capable at each time to bind the ligand

Figure 12. Attractive chemotaxis (c~0:2). Concentration contours as a function of time (in minutes, x axis) and angular coordinate w (y axis).
doi:10.1371/journal.pcbi.1000479.g012

Figure 13. Repulsive chemotaxis (c~0:8). Concentration contours as a function of time (in minutes, x axis) and angular coordinate w (y axis).
doi:10.1371/journal.pcbi.1000479.g013
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and we have not considered their physiological cycle, comprising

deactivation by phosphorylation and recycling back in the

membrane (as done for example in [29]). Attempts have been

made to consider such processes, establishing a life–time for each

receptor, after which the receptor is removed and substituted by

another one without bias in its angular position on the membrane

(keeping in this way the total number of receptors constant in time).

Including these effects in the model does not seem to significantly

change the results, but deeper investigations on these ideas should

be carried out, possibly supported by the availability of further

information from the biochemical viewpoint (as done in the context

of nonneural cells, for example, in [43]).

Methods

Initial and Boundary Conditions
To derive initial conditions for the mathematical model, which

are not readily available from experiments, we start assuming the

total number of molecules per cell (indicated with the subscript tot)
of the following species to be conserved during the integration

time, leading to, for all t[½0,T �

#DCCð Þ tð Þz #DCC�ð Þ tð Þ~ #DCCð Þtot ð7aÞ

(#G)(t)z(#G�)(t)z(#G�ACyclase)(t)~(#G)tot ð7bÞ

1

2
(#PKA)(t)z(#(PKA)2R2)(t)~(#(PKA)2R2)tot ð7cÞ

(#UNC)(t)z(#UNC�)(t)~(#UNC)tot ð7dÞ

(#Q )(t)z(#Q �)(t)~(#Q )tot ð7eÞ

1

2
(#PKG)(t)z(#(PKG)2R2)(t)~(#(PKG)2R2)tot ð7f Þ

(#LCCopen)(t)z(#LCCclose)(t)~(#LCC)tot ð7gÞ

Total values used in the simulations are reported in Tab. 3.

Moreover, we assume that:

N at time tv0, the GC is in a homogeneous state, corresponding

to the absence of chemoattractant concentration. This implies

that all receptors are in a free state

N adenyl cyclase has an initial value which represents a small

fraction of the corresponding conserved total quantity. This is

needed to trigger time evolution of the corresponding equation

N at the initial time calcium channels are assumed to be half in

open and half in close state.

Using assumptions (1),(2) and (3), we recover from the total

values the corresponding concentrations at the left hand sides of

Eqs. (7a–g) at t~0. Values are in Tab. 4.

As for the boundary conditions, since the GC is modeled as a

circular structure, concentrations and fluxes must coincide at w~0
and w~2p. Thus, for each species ni,i~1, . . . ,M, we impose the

periodic boundary conditions

Figure 14. Study of the effect of the [cAMP]/[cGMP] ratio. Top:
[cAMP]/[cGMP] ratio as a function of time (in minutes) for different
values of c (reported in the legend). Bottom. Position xLCCopen

of the
abscissa of the barycenter of the open calcium channels (in mm) as a
function of the ratio [cAMP]/[cGMP] after 1 h. Each marker corresponds
to a simulation carried out with a different value of c.
doi:10.1371/journal.pcbi.1000479.g014

Table 3. Total values of species concentration.

Parameter Value (#/cell) Ref.

(#DCC)tot 103 [11]

(#G)tot 104 [46]

(#LCC)tot 105

(#PKA)tot 104

(#PKG)tot 104

(#Q )tot 104 [46]

(#UNC)tot 103 [11]

doi:10.1371/journal.pcbi.1000479.t003
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½ni�(0,t)~½ni�(2p,t), Ji,tot(0,t)~Ji,tot(2p,t), t[(0,T �:

Modelling Assumptions
Unknown chemical processes. At the best of our

knowledge, the chemical mechanism which gives HPETE from

Q � is not known yet. In any case, we can suppose that a multistep

reaction is taking place. We denote by X its (unknown)

intermediate products. If Q � {? X {? HPETE, the mass

action law gives

d½X�=dt~k1½Q ��:

Based on the fact that the processes responsible of the formation of

Q � are much faster, we suppose that its production rate can be

considered constant, that is d½Q ��=dt~a, which gives

½Q ��(t)~k2tz½Q ��(0). Under such hypothesis and setting

½Q ��(0)~0 (see the previous section), we have

½X�(t)&k3½Q��2(t)

and, eventually

d½HPETE�=dt~k4½X �(t)&k5½Q��2(t)

which gives the form in Eq. (5e).

DCC-UNC5 receptor complex dynamics. In literature it

has been shown (see for example [24]) that UNC5 in order to

initiate the repulsive response is to be coupled with a DCC

receptor and that both must be ligated to a cue molecule, that is in

active form. If one wants to add a detailed model of receptor–

receptor interaction, the following reaction should also be

considered

DCC�zUNC5�½ki�kf CM�,

where CM� denotes the bound DCC–UNC5 complex. This leads

to the following set of kinetic equations for the receptor dynamics

L½DCC��
Lt

~kN½Netrin�½DCC�{k{N½DCC��zki½CM��

{kf ½DCC��½UNC5��z spatial terms ,

ð8aÞ

L½UNC5��
Lt

~kN½Netrin�½UNC5�{k{N½UNC��zki½CM��

{kf ½DCC��½UNC5��z spatial terms ,

ð8bÞ

L½CM��
Lt

~{ki½CM��zkf ½DCC��½UNC5��z spatial terms : ð8cÞ

Then, one should consider CM� as the species triggering the

production of cGMP. The above equations reduce to the model

we have proposed in this work by supposing that 1) all the

ligated UNC5 receptors bind to DCC� receptors; 2) binding

of the complex is instantaneous, which amounts to consider

that the formation of the complex is always at the equilibrium;

3) the percentage of DCC receptors coupled with UNC5 is

prescribed a–priori using the parameter c, that is we neglect

the dynamics given in the equation for DCC� the term

kf ½DCC��½UNC��. Using the complete model of the receptor

dynamics is interesting but too complex to be addressed

immediately, above all to give a correct biological interpre-

tation of the results.

Kinetic Constants
Several kinetic constants entering the model are available from

literature references for the same reactions we are dealing with or

for very similar reactions. The value of the other parameters has

been estimated, based on the following considerations:

(1) kPKA and k{PKA: in [44], the half-life time for the exchange

cAMPzR /{R:cAMP

is evaluated to be t1=2~870 s. Moreover, in the same paper it is

observed that in presence of the catalytic subunit PKA, as in our

case, the process

cAMPzR:PKA /{R:PKA:cAMP '
f ast

R:cAMPzPKA

is characterized by a significantly reduced t1=2. We assume here

t1=2~80 s, so that

k-PKA~
ln(2)

80
~0:0087&10{2:

To estimate the direct kinetic constant kPKA, we then use

½PKA�
½(PKA)2R2�:½cAMP�2

~Keq~
kPKA

k{PKA

:

Table 4. Initial value of species concentration.

Parameter Value (#/cell)

#cAMP(0) 0

#cGMP(0) 0

#DCC�(0) 0

#DCC(0) 103

#G�(0) 0

#G(0) 9:99:103

#GACyclase�(0) 10

#GCyclase(0) 10

#HPETE(0) 10

#LCCopen(0) 5:104

#LCCclose(0) 5:104

#PKA(0) 0

#PKG(0) 0

#(PKA)2R2(0) 104

#(PKG)2R2(0) 104

#Q �(0) 0

#Q (0) 9:99:103

#UNC�(0) 0

#UNC(0) 103

doi:10.1371/journal.pcbi.1000479.t004
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In [29], the concentration of cAMP reaches (0:2{20):104#=cell

Considering the maximum value, we impose that at the

equilibrium the (PKA)2R2 conversion is almost total with a yield

of 80–90%. We get

kPKA&5:10{9:

We observe that the order of magnitude of cyclic AMP

concentration attained with our model is comparable to the one

of [29], used for estimation of this parameter.

(2) kLCC and k{LCC: as already mentioned above, in absence of

stimulation we have assumed equipartition of open and close

channels, which implies

1~
½LCCopen�
½LCCclose�

~
kLCC

k{LCC

,

and thus kLCC~k{LCC. We have chosen kLCC~5:10{3, based on

a kinetic with speed comparable to the other processes.

(3) iPKA: we use the following relations, which establish the

equilibrium of the channels on the front side, on the rear side and

the ratio of open channels between front and rear, respectively yielding

iPKA&4:10{3

(4) DCC–UNC5 pathway: kinetic constants are not easily

accessible from literature. Thus, where possible, parameters

have been chosen based on analogy with the DCC pathway.

Moreover, we have assumed

hHPETE~1:10{4, dHPETE~4:10{4:

Tab. 5 summarizes the value of the kinetic constants used in the

model.

We conclude this discussion exploring the overall influence

of the parameters over the model predictions. To do this, we

consider the DCC model and we perform a set of 300 trial

tests prescribing a random variation of all kinetic constants. We

monitor the displacement of the barycenter of the bound DCC

receptors after 2 h. The results are shown in Fig. 15, where on the

x axis we report the total parameter variation TV computed

as log TV~
PNk

i~1 log ~kki=ki

�� ��, Nk being the total number of

parameters, ki the value of the i-th parameter and ~kki its perturbed

value. A 50% percentage of the tests show a perturbation in the

barycenter displacement lower than the 10%.

Table 5. Kinetic constants.

Parameter Definition Value Dimension Ref.

dcAMP cAMP hydrolysis rate 4:10{4 s{1 [29]

dcGMP cGMP hydrolysis rate 4:10{4 s{1 [29]

dHPETE HPETE degradation rate 1:10{4 s{1

hcGMP cGMP synthesis rate 1:10{2 s{1 [29]

hGCyc GCyclase activation rate 1:10{2 s{1

hHPETE HPETE synthesis rate 1:10{4 s{1

hN ligand-UNC complex binding rate 6:67:10z6
mol=Lð Þ{1

s{1 [47]

h{N ligand-UNC complex unbinding rate 2:10z1 s{1 [47]

hPKG PKG synthesis rate 5:10{9 #{2s{1

h{PKG PKG deactivation rate 1:10{2 #{1s{1

hQ G–protein synthesis rate in UNC pathway 1:10{3 #{1s{1 [47,48]

h{Q G–protein deactivation rate in UNC pathway 2:3:10{2 s{1 [47,48]

iPKA enhancement factor due to PKA 4:10{3 #{2

iPKG enhancement factor due to PKG 4:10{3 #{2s

kACycl ACyclase activation rate 1:10{2 #{1s{1 [29]

kcAMP cAMP synthesis rate 1:10{2 s{1 [29]

kG G–protein synthesis rate in DCC pathway 1:10{3 #{1s{1 [46]

k{G G–protein deactivation rate in DCC pathway 2:3:10{2 #{1s{1 [46]

kLCC LCC opening rate 5:10{3 s{1

k-LCC LCC closure rate 5:10{3 s{1

kN ligand-DCC binding rate 6:67:10z6
mol=Lð Þ{1

s{1 [47]

k{N ligand-DCC unbinding rate 2:10z1 s{1 [47]

kPKA PKA synthesis rate 5:10{9 #{2s{1 [49]

k{PKA PKA deactivation rate 1:10{2 s{1

s amplification factor 1 dimensionless [29]

doi:10.1371/journal.pcbi.1000479.t005
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Diffusion and feedback coefficients. The following choices

have been made:

(1) membrane diffusion coefficient am: we have taken as a

reference the value considered in [7], am~2:10{2m m2 s{1.

The same coefficient is used for all the membrane species

(2) cytosolic diffusion coefficient ac: we set ac~am. In the context

of eukaryotic cells, see [9] for a similar choice, while see [7] for

a model with acwwam. The same coefficient is used for all

the cytoplasmatic species

(3) feedback coefficient afb: there are no available data. Based

on the plausibility of the results, we have chosen afb~
1:5:10{3m m3#{1s{1.

Tab. 2 summarizes the value of the above coefficients.

Simulation Algorithm
Both DCC and DCC–UNC5 models constitute nonlinear time

dependent diffusion–advection–reaction systems of partial differ-

ential equations. Their numerical approximation is a very

challenging task: to start with, we partition the GC perimeter

into Ns~128 angular sectors (see Fig. 1) and we discretize the

spatial derivative operators using finite differences, with a node

collocated at the center of each sector. Observe that conservation

relations like Eqs. (7) do not hold sector by sector, but they rather

apply to the integral on the angle (which represents the number of

molecules per cell). Attention must be paid to the fact that the

feedback terms in Eqs. (4a) and (5a) dominate the diffusive terms.

To avoid spurious oscillations, upwind finite differences or a

sufficiently fine discretization should be adopted [45]. Once finite

difference discretization is carried out, a system of coupled

nonlinear ordinary differential equations is obtained. Due to the

different speeds in the reaction dynamics (refer for this issue also to

the Results and Discussion), these systems are very stiff and require

an implicit time integrator. We have adopted the ode15s MATLAB

routine with adaptive choice of the time integration step.

Numerical evaluation of the Jacobian matrix has been used for

the linearization.

The MATLAB software package developed by the authors can be

made available upon request.
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