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Feasibility of autologous plasma 
gel for tonsil-derived stem cell 
therapeutics in hypoparathyroidism
Soo Yeon Jung1, Ha Yeong Kim   2, Hyun Ju Oh1, Euno Choi3, Min Sun Cho3 & Han Su Kim1

Hypoparathyroidism is a deficiency of the parathyroid hormone (PTH) in the body. We previously 
reported the possibility of treating it using tonsil-derived mesenchymal stem cells (TMSCs) 
differentiated into PTH-releasing cells. The purpose of this study was to evaluate the feasibility of 
using autologous plasma gel as scaffold material in treatment of hypoparathyroidism with TMSC. We 
obtained plasma by venous sampling of autologous blood and centrifuged and fabricated the plasma 
gel using a sinusoidal pattern heating machine. After we created the hypoparathyroidism animal 
model, we administered undifferentiated TMSCs and TMSCs differentiated into parathyroid cells at 
each rat dorsum by intramuscular injection with and without the plasma gel. In the plasma gel groups, 
intact PTH was detected from on day 21 after TMSC injection; we did not detect intact PTH in the 
groups that were only transplanted with TMSCs during the entire experimental period. Serum calcium 
was higher and phosphorous was lower in the TMSC with plasma gel groups than in the groups with 
TMSCs alone. We detected PTH and chromogranin A in the TMSC-plasma gel-transplanted areas on 
immunohistochemistry and immunofluorescence stain. Plasma gel can be considered as a cell-delivery 
scaffold for treating hypoparathyroidism with tonsil-derived mesenchymal stem cells.

Hypoparathyroidism is an endocrine deficiency that originates from low parathyroid hormone (PTH) levels. The 
conventional treatment has been a 1,25-dihydroxyvitamin D calcium supplement, but this therapy causes dis-
comfort to patients because of the side effects from the large amount of additional calcium intake. Furthermore, 
calcium and vitamin D cannot perfectly replace PTH in balancing human mineral levels, and long-term bone 
morphologic changes and nephrolithiasis could be induced1,2. The US Food and Drug Administration (FDA) 
recently approved injectable synthetic PTH (Natpara®, Shire-NPS Pharmaceuticals, Inc., Lexington, MA, USA) 
for treating osteoporosis and hypoparathyroidism3,4. This modality is physiologically ideal for delivering normal 
PTH, however, it has a short duration in the body and requires daily injections and it is expensive.

Transplantation of long-lasting, biocompatible hormone-releasing tissue in the body can be the ideal hormone 
replacement therapy (HRT) for hypoparathyroidism. Autologous parathyroid gland implantation could be ideal 
in cases of accidental parathyroid gland excision that is noticed during surgery5,6; however, when the unexpected 
removal of the gland is detected after surgery by histological evaluation, auto-transplantation could not be an 
option. To overcome this limitation, it is necessary to develop tissue-engineered PTH that can be easily manufac-
tured and transplanted.

Hormone-secreting cells, growth factors, and extracellular matrix (ECM)-rich scaffolds that help cell survival 
and engraftment determine the quality of cell therapy. We previously reported on tonsil-derived mesenchymal 
stem cells (TMSCs) as a source of PTH-releasing cells and successfully differentiated them into PTH-releasing 
cells7. PTH-releasing cells derived from TMSCs have demonstrated promise in both in vitro and in vivo studies; 
unlike with conventional HRT, these cells have been found to regulate PTH secretion by automatically reacting to 
calcium concentrations. However, developing suitable cell-delivery materials has been difficult. In previous stud-
ies, we have applied small intestine submucosa substances(SIS)5, thermosensitive gels8, and Matrigel® (MA, BD 
Biosciences, San Jose, CA)7 as scaffolds for PTH-releasing cells; however, these biomaterials had some limitations. 
SIS had sol formulation which is easy for mixing with cells and injecting into body, however, SIS dissipated easily in 
the body. Human application is limited since SIS is xenogenic material. Thermosensitive gel has excellent physical 
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features, but it is composed of complete artificial material (polyethyleneglycol-polyalanine-co-phenylalanine) 
that lacks growth factors and extracellular matrix (ECM) which both help cell engraftment. Matrigel® has proper 
formula as cell-carriers and abundant biofactors. These properties facilitate cell injection and engraftment. 
However, this material is not approved in human applications because it is gelatinous protein mixture secreted by 
Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells.

Plasma gel (PG) is a biologic gel derived from blood; the plasma is easily obtained by blood sampling and cen-
trifuge. PG is autologous material with notable advantages in clinical applications over other scaffolds; less risks 
of infection or rejection reaction and no necessary of separate FDA approval. In terms of fabrication methods, 
studies have been published on mixing PG with CaCl2, fibrin, other gels including hydrogel, and hyaluronic acid 
as well as heating it9–13; among these methods, heating has the advantages of shorter production time and lower 
cost. For cosmetic augmentation and vocal fold paralysis treatment, plasma gel fabricated by heating has been 
used, and its safety was demonstrated12,14. Plasma was also reported to provide excellent conditions for cell culture 
and differentiation because of the abundance of growth factors and ECM10,15.

The aim of this study was to assess the feasibility of plasma gel as an injectable TMSC-delivery scaffold for 
treating hypoparathyroidism by in vitro evaluation and in vivo animal experiment.

Results
Mechanical and physical properties of the plasma gel.  We successfully fabricated the plasma gels 
using the ALSA S-1; the fresh fabricated gels were whitish and translucent (Fig. 1A). We used the SEM images to 
observe the gels’ microstructure, and the PGs showed a multi-porous interconnected honeycomb structure with 
10 nm × 10 nm2-sized pores (Fig. 1B).

Rheological evaluation found that the mean storage modulus (G′) and loss modulus (G″) were, respectively, 
64.29 and 10.00 Pa at 37 °C (body temperature). The G′ increased from 51.14 to 78.39 Pa during the experiment 
(30 min; Fig. 2).

Intact PTH and serum calcium and phosphorus levels of the animals.  Among the 60 animals, 9 
died from surgery- or anesthesia-related problems within 24 hours of surgery. Three animals (each in cTMSC, 
dTMSC, and PG group) died within 24 to 48 hours postoperatively, and we detected no tetany or muscle spasm 
to reflect hypocalcemia at death. Survival rates did not show statistically significant differences among the groups 
(Fig. 3).

Intact PTH decreased after parathyroidectomy from mean preoperative levels of 150.74 ± 127.76 pg/mL 
(ranges: 20.40–488.89) to being non-detectable at postoperative day 1 in all groups except the sham group. The 
sham group demonstrated intact PTH within normal rage during the whole experimental period. We detected 
intact PTH 21 days after the transplantations in the cTMSC-PG and dTMSC-PG groups, but in contrast, intact 
PTH remained non-detectable during the whole experimental period in the cTSMC, dTMSC and PG groups 

Figure 1.  Morphological evaluation of fabricated plasma gel. (A) Fabricated plasma gel has translucent feature 
as gel. (B) Honeycomb shaped with 10 nm diameter pores were observed on scanning electron microscopic 
evaluation. (C) Plasma gel showed revealed regular protein material without nuclei on histology (H&E, ×200).

Figure 2.  Rhelogical evaluation of the plasma gel. Storage modulus (G′) and loss modulus (G″) were 64.29 and 
10.00 Pa at 37 °C (body temperature).
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(Fig. 4). These results indicated that intact PTH levels were restored only in the groups for which we used the 
plasma gel as the cell-delivery scaffold. Intact PTH was restored to normal ranges in three animals (all in the 
dTMSC-PG group), whereas other animals showed increased intact PTH but not full restoration to normal lev-
els. We observed increased intact PTH in seven of the eight animals that were alive after the surgery. In the 
cTMSC-PG group, we detected postoperative intact PTH in only three of the seven surviving animals. These 
results demonstrated that parathyroid-differentiated TMSCs were more effective for releasing the PTH in vivo. In 
our comparisons of the iPTH values, the dTMSC-PG group showed a higher mean than the cTMSC-PG group 
(Table 1), although the result was not statistically significant.

After parathyroidectomy, serum calcium level decreased and phosphorus level increased (Table 2); calcium 
and phosphorus were not fully restored to preoperative levels in any of the groups. When we compared the effects 
of the PG on TMSC transplantation, calcium was higher and phosphorus was lower in the groups that received 
the TMSCs transplanted with the plasma gel (cTMSC-PG and dTMSC-PG) than in the groups that were trans-
planted with TMSCs only (cTMSC and dTMSC), and the differences between the two groups (with and without 
PG) were statistically significant. Comparing the effects of TMSC type on calcium and phosphorous levels found 
that differentiated TMSCs showed higher mean calcium and lower mean phosphorous than did the undifferenti-
ated TMSCs, but there was no statistically significant difference (Table 2).

Assessment on implanted TMSC with PG.  We noted the transplantation sites on the animals as the 
yellow-brownish tissue. We confirmed the parathyroid tissue on the immunohistochemical studies; however, 
it was difficult to identify the chief cell or the oxyphil cell which formed the normal parathyroid gland tissue in 
the H&E slides (Fig. 5). Immunofluorescent staining confirmed the presence of cells that expressed PTH and 
Chromogranin A (CHGA, a secretory granule marker protein) at the transplantation sites (Fig. 6).

Figure 3.  Survival of the transplanted animals. Animals expired before 3 postoperative days. There were no 
statistically significant differences between the groups.

Figure 4.  Intact parathyroid hormone in the groups. Intact parathyroid hormone (PTH) was not detected in 
all groups until postoperative 14 days. Twenty-one days after the transplantation, animals in the cTMSC-PG, 
dTMSC-PG, sham groups showed intact PTH, but the cTMSC, dTMSC, and PG only groups showed no 
detectable PTH during the experimental period.

Intact PTH 
(pg/mL) 21 days 28 days 42 days 56 days 84 days

cTMSC-PG 2.40 ± 3.95 5.29 ± 3.83 9.15 ± 8.16 27.29 ± 17.47 14.67

dTMSC-PG 11.53 ± 11.38 24.12 ± 2.73 25.91 ± 10.04 21.29 ± 11.72 45.73 ± 27.40

Sham 147.22 ± 62.78 162.32 ± 32.85 103.42 ± 52.96 75.57 ± 42.93 123.25 ± 89.21

Table 1.  Intact parathyroid hormone levels of the animals.
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Discussion
Proper scaffold material is essential for maximizing the effects of newly developed cell therapy; ideal material 
should facilitate cellular engraftment and long-term hormone release. In order to be widely used, a scaffold 
should be easy to fabricate and inject, and it should be advantageous in terms of cost and absence of foreign mat-
ter reactions. In addition, it is advisable that scaffolds keep the cells in the injected area without disrupting them 
in order to facilitate removal, in case of future excessive tumor hormone secretion or mutation.

Recently, stem cell-derived cell therapies have been developed, commercialized, and clinically used; these 
were designed to treat physical defects (in cartilage, Cartistem®; skin, Cupistem®; the cornea, Honoclar®) and to 
modulate the immune system (amyotrophic lateral sclerosis; Corestem®). Umbilical blood-derived mesenchy-
mal stem cells, autologous adipose-derived mesenchymal stem cells, and autologous bone marrow-derived stem 
cells were used as cell sources. Hyaluronic acid and collagen have been applied as scaffold material with cells in 
space-filling cell therapy, and these scaffolds were ideal for physically reconstructing defected areas; however, 
they were not suitable as hormone-releasing cell carriers because sufficient angiogenesis around the cell is man-
datory for secreting the hormone throughout the whole body. Insulin-secreting cells have also been introduced 
as hormone-releasing cell therapy16,17. Cell-protecting polymers, hydrogels, meshes, and devices have been trans-
planted together to improve the tissue engraftment, but these materials and devices lacked growth factors; as such, 
various factors including vascular endothelial growth factor, fibroblast growth factor, and hepatocyte growth 
factor were added to facilitate cellular engraftment16. Furthermore, these exogenous materials caused inflamma-
tory reactions; early reactions caused angiogenesis and fibroblast aggregations by numerous cytokines, whereas 
late reactions could induce the fibrotic capsule surrounding the transplanted tissue, which blocks the hormone 

Serum calcium
(mg/dL)

Serum phosphorus
(mg/dL)

Pre operation

   all groups 10.50 ± 0.53 7.47 ± 0.67

Postoperative 8 weeks

   Sham 9.82 ± 0.30 7.64 ± 0.38

   PG 5.74 ± 0.80 14.46 ± 0.71

   cTMSC 5.51 ± 0.46 13.99 ± 0.86

   dTMSC 6.19 ± 0.87 12.83 ± 2.62

   cTMSC + dTMSC 5.85 ± 0.74 13.41 ± 1.91

   cTMSC-PG 6.34 ± 0.90 13.29 ± 0.82

   dTMSC-PG 7.35 ± 0.77 9.29 ± 1.77

   cTMSC-PG + dTMSC-PG 6.92 ± 0.93 10.63 ± 2.51

P-value 0.040* 0.043*

Table 2.  Serum calcium and phosphorus levels of the animals. Data are expressed as the mean ± standard 
deviation. *p-value < 0.05 in Mann-Whitney test between the cell-only implanted groups (cTMSC & dTMSC) 
and cell implanted with plasma gel groups (cTMSC-PG & dTMSC-PG) postoperative 8 weeks results.

Figure 5.  Histological evaluation of transplanted tonsil-derived stem cells with plasma gel. The tissue in 
the transplantation sites is composed of the cells having round nuclei with scant to moderate amount of 
eosinophilic cytoplasm (H&E, x400). Immunohistochemical staining for parathyroid hormone (PTH) and 
chromogranin A (CHGA) showed the existence of the parathyroid tissue (×400).
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release and nutrient supply. Two-staged transplantation was introduced to prevent these late-stage foreign body 
reactions18, but these treatments required second-stage procedures that caused patients discomfort.

Plasma gel has been demonstrated to be safe as an autologous derivative; other researchers have reported on 
clinical applications of PG as vocal fold injection material and tooth extraction site filling material11,12,14,19. Wound 
healing was also accelerated with PG injection. The amount of gel injected into the body gradually decreased and 
it was confirmed that it disappeared at 6 months. Histological evaluation confirmed that 60–80 percent of the 
initial injection dose remained at 3 months after the implantation12. Studies have reported minor inflammatory 
reactions but no severe adverse effects, and late-stage severe foreign body reactions that caused fibrotic encapsu-
lation have not been observed12,14. Because the plasma harvesting and manufacturing have less harm to the donor, 
plasma gels are advantageous for clinical applications.

Authors have reported on the possibility of treating hypoparathyroidism with tonsil-derived stem cells. 
Among the multiple materials that have been used as cell carriers in these treatment studies, Matrigel® has shown 
the most promising results in that it provided both an excellent gel microenvironment and sufficient growth 
factors derived from origin cells. Despite its highly promising in vivo experimental results, Matrigel® limits the 
clinical application of TMSCs because it is derived from tumor cells and cannot be injected into the human body.

Researchers have also examined in vitro the functions of plasma in both gel and sol formulations as cell dif-
ferentiation and culture media9,10,15, and authors of previous studies have analyzed the morphological and rheo-
logical properties of plasma gels. However, unlike with the present study, for which we fabricated a gel by heating 
plasma, these previous researchers required additional gelation procedures such as extracting hyaluronic acid, 
mixing additional chemical agents, and synthesizing hydrogel microbeads9,10,13,19,20. These extra processes could 
incur additional time and costs to the patients.

Reports have been published on animal experiments that used plasma gel as a cell-delivery carrier20. Authors 
of these studies used stem cells and plasma gel as spatial reconstruction material for bony and cartilage defects, 
and PGs have proven to be proper scaffolds for bone differentiation and subsequent bone formation due to their 
abundant growth factors and cytokines. However, no studies to date have reported on the effects of plasma gel on 
endogenous cell differentiation and hormone secretion.

An ideal cell-carrying scaffold should be porous to support oxygen and nutrient delivery from the surround-
ing tissues; in our study, we observed under SEM that the plasma gel had multiple pores of 10-nm diameter, too 
small for cell migration but sufficient for oxygen and nutrient supply for cell survival. In terms of scaffold proper-
ties, the gel formula was the most advantageous when we injected cells while simultaneously holding them. Our 
rheological evaluation showed that the plasma gel had modulus as a gel rather than a sol at human body temper-
ature (37 °C). During the experiment, the PG readily passed through the thin 27-gauge needle when we injected 
it with a syringe, and it remained in the injection site without scattering for two months.

An important function of cell-delivering scaffolds is to prevent cells from dispersing into the blood and pre-
vent damage from phagocytic cells. Scaffolds also have to keep the cells in the implantation site so the cells could 
do their own-functions. Our results show that the plasma gels performed these functions excellently. When 
we transplanted the TMSCs with the plasma gel, we could observe yellowish tissue at the transplantation sites 
with naked eyes. The results of H&E stain could not confirm the existence of the parathyroid gland because 
we implanted parathyroid hormone releasing ‘cells’ not ‘tissue’. However, immunohistochemistry analysis con-
firmed that PTH- and CHGA-positive cells had aggregated at the implantation sites as PTH-releasing tissue. 
Immunofluorescent staining also confirmed the existence of PTH-secreting cells in the transplantation areas. 
We could not measure PTH in TMSCs alone transplanted groups. We observed increased PTH levels in the 
groups transplanted with TMSCs and PG for all period of the experimentation. These results demonstrate that 
PTH-releasing cells could not be engrafted when they were injected without a scaffold. Plasma gels appear to do 

Figure 6.  Immunofluorescence images of transplanted tonsil-derived stem cell with plasma gel. Parathyroid 
hormone (PTH) and chromogranin A (CHGA) staining revealed that parathyroid-secreting cells were alive in 
transplanted area on 56 days after the transplantation.
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its function well as scaffolds because they are rich in cytokines, and their physical properties play a role in pro-
tecting cells from scattering. Although the individual PTH increases varied among the each experimental animal, 
this uneven expression could be originated from uneven cellular distribution in the scaffold material. Restoration 
of the PTH led to recovery of physiological function. Since calcium-included diet was supplied to the animal, 
hypocalcemia-related death were not observed in all groups. In the TMSC-PG groups, the serum calcium was 
higher and the phosphorus was lower than the levels in the cTMSC, dTMSC, and PG groups (Table 2). The cal-
cium and phosphorus levels of the PG, dTMSC, and cTMSC groups were not statistically different. These results 
demonstrated that combining TMSCs with PG effectively improved the pathophysiology of hypoparathyroidism.

It is interesting that even the non-differentiated TMSCs with PG improved PTH restoration in PTX animals. 
The reason for this result is unclear, but in vivo differentiation of TMSCs into parathyroid-releasing cells or stim-
ulation of secondary PTH-releasing organs such as the thymus could be suggested hypotheses21–23. Among the 
two cell types (cTMSC and dTMSC) that were implanted with PG in this study, the intact PTH level restoration 
rate was 90% for the group transplanted with dTMSC, whereas the group transplanted with cTMSC showed a 
recovery rate of 40%. These results indicated that TMSCs that were differentiated into parathyroid-releasing cells 
in vitro released PTH more stably. This result corresponds well with results from earlier experimental studies 
using Matrigel® and spheroid-shaped cells7,24. These findings implied that the in vitro differentiation of TMSCs 
into parathyroid-releasing cells may be essential for the stable, in vivo function of implanted cells.

It should be noted that future research is needed in this area to address the limitations of this study. First, a 
long-term study is required to determine the ideal re-injection timing for the hypoparathyroidism treatment. The 
plasma gel remained in the body less than 6 months, and the iPTH level was evaluated 12 weeks after the single 
transplantation; the efficacy of this dTMSC-PG injection treatment cannot be fully clarified through this single 
study. For a clinical advanatage, a long-term study with a repetitive injection study design should be conducted. 
We also found that the expression level of PTH has a wide range, as iPTH is a hormone present at a very small 
amount (pg/mL). To verify the results of this study, a large animal study should follow.

We have evaluated the feasibility of using a plasma gel scaffold to treat hypoparathyroidism. The study 
results indicate that PG is human-applicable, easily injectable, and cell-friendly material. Administration of 
PTH-secreting tonsil-derived stem cells with plasma gel is highly feasible treatment modality for treating 
hypoparathyroidism patient.

Material and Methods
Isolating and differentiating the TMSCs.  TMSC isolation and differentiation into parathyroid hormone 
secreting cells were conducted as previously described7,24,25. Briefly, we harvested tonsil tissue from a single donor 
(a five-year-old boy) during tonsillectomy. Informed written consent was obtained from the patient

and the study protocol was approved by the Ewha Womans University Medical Cneter institutional review 
board (ECT 11-53-02). After filtering the chopped and digested tissue, we obtained adherent mononuclear cells 
by FicollePaque (GE Healthcare, Little Chalfont, UK) density gradient centrifugation. Then, we plated the cells at 
a density of 1 × 108 cells in a T-150 culture flask in DMEM containing high (4500 mg/L) glucose (Welgene Inc., 
Korea), 10% FBS (Invitrogen), 100 mg/mL streptomycin, and 100 U/mL penicillin. After 48 h, we removed the 
non-adherent cells from the medium and replenished the adherent mononuclear cells (the TMSCs) with new 
culture medium; all TMSCs that we used in this experiment were passage 5. We obtained informed written con-
sent from the patient’s legal guardians, and the EUMC institutional review board approved the study protocol. We 
differentiated the TMSCs into parathyroid-like cells using the modified Bingham protocol26. Briefly, we incubated 
the cells in DMEM with 10% FBS until they reached 90% confluence and then changed the medium to a differen-
tiation medium that contained activin A (100 ng/mL) and soluble sonic hedgehog (100 ng/mL); we changed this 
differentiation medium every 3–4 days for 14 days.

Preparation of plasma gel.  We collected venous rat blood from left internal jugular vein in anticoagulant 
citrate dextrose tubes (BD Diagnostics, Franklin Lakes, NJ, USA) and centrifuged each tube for 15 minutes at 
3000 RPM, separating the blood into three layers (red cells, white cells, and plasma, from bottom to top). We 
aspirated just the plasma layer using a sterile injection bottle attached to a dental syringe and conducted the 
gelation using a heating machine (ALSA S-1, Genexel-Seine, Seoul, Korea) that heated and cooled the plasma in 
a sinusoidal pattern to 100 °C for 12 minutes and to 18 °C for 6 minutes.

In vitro characterization of plasma gel.  Fabricated gels readily passed through the thin, 27 gauge needle 
for dental syringe. The fabricated plasma gels passed readily through the thin, 27-gauge dental syringe needle. 
We examined the gels’ microstructure using a field emission scanning electron microscope (FE-SEM, JSM-6700F, 
JEOL, Tokyo, Japan), freeze-drying the samples using liquid nitrogen (−196 °C), and mounting them on the 
FE-SEM stand after coating them with a platinum sputter coater (208HR, Cressington Scientific Instruments, 
Watford, UK). We investigated the PGs’ moduli using dynamic rheometry (Rheometer RS1, Thermo Haake, 
Germany) at 37 °C, placing the gels between parallel plates of 25 mm diameter at 0.5 mm gaps. During the 
dynamic mechanical analysis, we placed the samples inside a chamber with water-soaked cotton to minimize 
water evaporation. We collected the data under controlled stress (4.0 dyne/cm2) at a frequency of 1.0 rad/s. For the 
histological evaluation, we embedded the fabricated gels in paraffin blocks and stained them with hematoxylin 
and eosin (H&E).

In vivo animal experiment design.  We randomly allocated 60 male Sprague-Dawley rats (Orient Bio, 
Sungnam, Korea), approximately 8 weeks of age and weighing 260–350 g, into six groups by administered cell 
type and scaffold. Parathyroidectomy was performed on five groups and sham operation was performed in one 
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group (sham group). In four PTX groups, we administered 1 × 106 TMSCs that we had prepared both without 
(control cells, cTMSCs) and with differentiation into parathyroid cells (differentiated cells, dTMSCs) and both 
with and without the PG. In one PTX group, we administrated only PG (plasma gel, PG). The sham group was 
remained untreated. This design gave us the six experimental groups: sham, PG, cTMSC, dTMSC, cTMSC-PG, 
and dTMSC-PG.

All animals were acclimated for at least seven days before the experiments, housed under a 12 h light/dark 
cycle and allowed free access to food and water. We supplied an AIN-93G diet formula (Research Diets, New 
Brunswick, NJ, USA) that contained 5 g/kg calcium (0.5%) for all the animals during the acclimation and experi-
mental periods27. The animal care followed the Guide for the Care and Use of Laboratory Animals by the Institute 
of Laboratory Animal Resources and the National Institutes of Health and the Animal Experiment Guidelines of 
Ewha Womans University Medical Research Institute. This study was approved by the Committee for Ethics in 
Animal Experiments, Ewha Womans University Medical Research Institute.

Development of hypoparathyroidism rats and administration of the TMSCs.  Hypoparathyroidism 
animal models were developed as previously described5,27. Briefly, two hours after intraperitoneal 
5-animolevulinic acid (5-ALA) solution injection, the animals were anesthetized by intraperitoneal injection with 
Zoletil (Virbac Korea, Seoul, Korea) and xylazine chloride (Bayer Korea, Seoul, Korea; 1:1 mix, 0.1 mL/100 g). 
After vertical skin incision and thyroid gland exposure, we could detect the red fluorescent parathyroid glands 
under xenon light (390–440 nm) illumination with an ultraviolet filter, and we removed the identified glands. We 
closed the skin incisions with non-absorbable 4–0 Ethilon® sutures (Johnson & Johnson, New Brunswick, NJ, 
USA). The same procedure was performed in sham group, except removing procedure of the parathyroid glands.

After we made the vertical skin incisions at each dorsum, the acriotrapezius muscle was exposed, and in the 
cTMSC and dTMSC groups, we injected the cells into the muscle. For the cTMSC-PG and dTMSC-PG groups, 
we mixed the 0.5 mL gel and cells in microtubules and administered them by intramuscular injection. The 0.5 mL 
of PG was administered in PG group in same way. We used a 22-gauge needle for all injections to prevent cell 
damage, and to identify the implantation sites, we tagged the muscles using the 4–0 Ethilon® sutures.

Laboratory evaluation.  We conducted our laboratory evaluations using animal serum collected by jugular 
vein puncture 3 days before surgery and day 1, 3, 7, 10, 14, 21, 28, 42, 56, and 84 after implantation. We meas-
ured intact PTH, calcium, and phosphorus levels using an enzyme-linked immunosorbent assay (ELISA) (Rat 
Bioactive Intact PTH ELISA kit, Immutopics, San Clemente, CA, USA) and an automatic chemistry analyzer.

Histological evaluation.  All animals were sacrificed 12 weeks after the surgical procedures. For the his-
tological evaluation of the implanted cells, we removed the muscles that had been marked with the sutures and 
stored them in neutral buffered formaldehyde embedded in paraffin blocks. After deparaffinization and alco-
hol rehydration, we conducted H&E staining. Immunohistochemical staining was performed using an auto-
mated immunostainer (LEICA BOND-MAX, Leica Biosystems Newcastle Ltd, Newcastle, UK) according 
to the manufacturer’s protocol. The following primary antibodies were used for immunohistochemical stain-
ing: anti-parathyroid hormone (PTH), mouse monoclonal (1:200 dilution), clone 105G7, IgG2a, Novocastra, 
Newcastle, UK; anti-chromogranin A (CHGA), mouse monoclonal (1:200 dilution), clone LK2H10, IgG1, 
Novocastra, Newcastle, UK.

For the immunofluorescence analysis, we then incubated the specimens with anti-PTH antibody diluted in 
bovine serum albumin buffer (1:100, Ab Frontier, Seoul, Korea) and anti- CHGA mouse polyclonal antibody 
(1:100; Ab Frontier) overnight at room temperature, washed them with 0.1% NP-40 in PBS, incubated them 
further with Alexa 488-conjugated goat anti-rabbit antibody (Molecular Probes, Inc., Eugene, OR, USA) for 16 h 
at 37 °C, and counterstained them with DAPI (Pierce, Rockford, IL, USA). We analyzed the preparations with a 
Leica TCS-SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany).

Statistical analyses.  We performed all statistical analyses using SPSS version 19 (IBM, Chicago, IL, USA), 
and the results are expressed as means ± standard deviations. We used repeated-measures ANOVA to determine 
the statistical significance of the weight changes in the groups and the Mann-Whitney U test to determine statis-
tical significance between two groups. We considered a p value < 0.05 significant.

References
	 1.	  Woods Ignatoski, K. M., Bingham, E. L., Frome, L. K. & Doherty, G. M. Differentiation of precursors into parathyroid-like cells for 

treatment of hypoparathyroidism. Surgery 148, 1186–1189; discussion 1189–1190 (2010).
	 2.	 Rubin, M. R. et al. Three Dimensional Cancellous Bone Structure in Hypoparathyroidism. Bone 46, 190 (2010).
	 3.	 Marcucci, G., Della Pepa, G. & Brandi, M. L. Natpara for the treatment of hypoparathyroidism. Expert opinion on biological therapy 

16, 1417–1424 (2016).
	 4.	  Rubin, M. R., Sliney, J. Jr., McMahon, D. J., Silverberg, S. J. & Bilezikian, J. P. Therapy of hypoparathyroidism with intact parathyroid 

hormone. Osteoporos Int, 1927–1934 (2010).
	 5.	 Park, H. S. et al. Development of hypoparathyroidism animal model and the feasibility of small intestinal submucosa application on 

the parathyroid autotransplantation. Eur Arch Otorhinolaryngol 272, 2969–2977 (2015).
	 6.	 Prigouris, S. et al. Experimental autotransplantation of the parathyroid gland. Br J Surg 83, 410–412 (1996).
	 7.	 Park, Y. S. et al. Differentiated tonsil-derived mesenchymal stem cells embedded in Matrigel restore parathyroid cell functions in rats 

with parathyroidectomy. Biomaterials 65, 140–152 (2015).
	 8.	 Park, H. S. et al. Feasibility of injectable thermoreversible gels for use in intramuscular injection of parathyroid autotransplantation. 

Eur Arch Otorhinolaryngol 273, 3827–3834 (2016).
	 9.	 Sadeghi-Ataabadi, M. et al. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications. 

Mater Sci Eng C Mater Biol Appl 71, 372–380 (2017).



www.nature.com/scientificreports/

8SCiENtifiC REpOrtS |  (2018) 8:11896  | DOI:10.1038/s41598-018-30454-1

	10.	 Korurer, E., Kenar, H., Doger, E. & Karaoz, E. Production of a composite hyaluronic acid/gelatin blood plasma gel for hydrogel-
based adipose tissue engineering applications. J Biomed Mater Res A 102, 2220–2229 (2014).

	11.	 Del Fabbro, M., Corbella, S., Taschieri, S., Francetti, L. & Weinstein, R. Autologous platelet concentrate for post-extraction socket 
healing: a systematic review. Eur J Oral Implantol 7, 333–344 (2014).

	12.	 Woo, S. H. et al. Autologous platelet-poor plasma gel for injection laryngoplasty. Yonsei Med J 54, 1516–1523 (2013).
	13.	 Zhou, H. & Xu, H. H. The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. 

Biomaterials 32, 7503–7513 (2011).
	14.	 Hong, S. J. et al. Plasma gel as a new augmentation material for injection laryngoplasty in rabbit model: histologic analysis. 

Otolaryngol Head Neck Surg 149, 596–602 (2013).
	15.	 Caceres, M., Martinez, C., Martinez, J. & Smith, P. C. Effects of platelet-rich and -poor plasma on the reparative response of gingival 

fibroblasts. Clin Oral Implants Res 23, 1104–1111 (2012).
	16.	 Agulnick, A. D. et al. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in 

Macroencapsulation Devices In Vivo. Stem Cells Transl Med 4, 1214–1222 (2015).
	17.	 Kao, D. I. & Chen, S. Pluripotent stem cell-derived pancreatic beta-cells: potential for regenerative medicine in diabetes. Regen Med 

7, 583–593 (2012).
	18.	 Lu, J., Xia, Q. & Zhou, Q. How to make insulin-producing pancreatic beta cells for diabetes treatment. Sci China Life Sci 60, 239–248 

(2017).
	19.	 Girish Rao, S. et al. Bone regeneration in extraction sockets with autologous platelet rich fibrin gel. J Oral Maxillofac Surg 12, 11–16 

(2013).
	20.	  Wang, M. et al. Amniotic fluid-derived stem cells mixed with platelet rich plasma for restoration of rat alveolar bone defect. Acta 

Biochim Biophys Sin, https://doi.org/10.1093/abbs/gmw133 (2017).
	21.	 Liu, Z. et al. Thymusassociated parathyroid hormone has two cellular origins with distinct endocrine and immunological functions. 

Plos Genet 6(12), e1001251 (2010).
	22.	 Liu, Z., Yu, S. & Manley, N. R. Gcm2 is required for the differentiation and survival of parathyroid precursor cells in the parathyroid/

thymus primordia. Dev Biol 305, 333–346 (2007).
	23.	 Günther, T. et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 406, 199–203 

(2000).
	24.	 Park, Y. S. et al. Scaffold-free parathyroid tissue engineering using tonsil-derived mesenchymal stem cells. Acta biomater 35, 215–227 

(2016).
	25.	 Ryu, K. H. et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful 

banking. Cytotherapy 14, 1193–1202 (2012).
	26.	 Bingham, E. L., Cheng, S. P., Woods Ignatoski, K. M. & Doherty, G. M. Differentiation of human embryonic stem cells to a 

parathyroid-like phenotype. Stem Cells Dev 18, 1071–1080 (2009).
	27.	 Jung, S. Y. et al. Standardization of A Physiologic Hypoparathyroidism Animal Model. Plos one 11, e0163911, https://doi.

org/10.1371/journal.pone.0163911 (2016).

Acknowledgements
We are very grateful to Prof. Sang Hyuk Lee for providing ALSA S-1 machine which was used for gelation. This 
research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health 
Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea (grant number: 
HI16C-2207-020017) and by Basic Science Research Program through the National Research Foundation of Korea 
funded by the Ministry of Education, Science and Technology (grant number: NRF-2015R1D1A1A09058485).

Author Contributions
Author’s role: S.Y.J. and H.S.K. designed the study. S.Y.J. Wrote the main manuscript and tables. S.Y.J., H.Y.K. and 
H.J.O. conducted animal experiment. H.Y.K. conducted PTH ELISA. E.C. and M.S.C. prepared Figure 5.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1093/abbs/gmw133
http://dx.doi.org/10.1371/journal.pone.0163911
http://dx.doi.org/10.1371/journal.pone.0163911
http://creativecommons.org/licenses/by/4.0/

	Feasibility of autologous plasma gel for tonsil-derived stem cell therapeutics in hypoparathyroidism

	Results

	Mechanical and physical properties of the plasma gel. 
	Intact PTH and serum calcium and phosphorus levels of the animals. 
	Assessment on implanted TMSC with PG. 

	Discussion

	Material and Methods

	Isolating and differentiating the TMSCs. 
	Preparation of plasma gel. 
	In vitro characterization of plasma gel. 
	In vivo animal experiment design. 
	Development of hypoparathyroidism rats and administration of the TMSCs. 
	Laboratory evaluation. 
	Histological evaluation. 
	Statistical analyses. 

	Acknowledgements

	Figure 1 Morphological evaluation of fabricated plasma gel.
	Figure 2 Rhelogical evaluation of the plasma gel.
	Figure 3 Survival of the transplanted animals.
	Figure 4 Intact parathyroid hormone in the groups.
	Figure 5 Histological evaluation of transplanted tonsil-derived stem cells with plasma gel.
	Figure 6 Immunofluorescence images of transplanted tonsil-derived stem cell with plasma gel.
	Table 1 Intact parathyroid hormone levels of the animals.
	Table 2 Serum calcium and phosphorus levels of the animals.




