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Nitrogen and phosphorus losses 
from paddy fields and the yield 
of rice with different water and 
nitrogen management practices
Dongliang Qi, Qixia Wu & Jianqiang Zhu✉

The assessment and control of losses of nitrogen (N) and phosphorus (P) from paddy fields is critical 
to improve the quality of water and atmosphere on earth. A field experiment was conducted to 
investigate the effect of three N managements (local common N fertilization practice, urea mixed with 
controlled-release N fertilizer, and optimized and reduced N fertilizer, designated CN, U + CRF and ON, 
respectively) on N and P losses through runoff and leaching from a paddy field, and yield of rice under 
shallow-irrigation and deep-sluice (SIDS) and continuous flooding irrigation (FI) in the Jianhan Plain of 
China in 2016. The results showed that, compared with FI, SIDS significantly reduced the frequency of 
irrigation and amount of irrigation water, resulting in an increase of 16.2% in rainfall use efficiency, and 
therefore, a reduction in the amount of surface runoff and water that had leached. This was responsible 
for the decreased total N (TN) and total P (TP) losses through runoff leaching under SIDS. The U + CRF 
and ON treatments resulted in a significant reduction in losses of TN through runoff and leaching and 
the loss of TP through leaching compared to CN. SIDS resulted in comparable or greater soil TN and 
TP contents in the 0–40 cm soil depths after rice harvest; N and P accumulation at the jointing, filling 
and maturity stages; and yield of grain compared to FI. Moreover, the U + CRF and ON improved or 
maintained accumulation of N and P and yield of rice compared to CN. Compared with FI coupled with 
CN, SIDS coupled with the U + CRF or ON treatments significantly reduced losses of N and P from paddy 
fields and enhanced or maintained the accumulation of N and P and yield of rice grains. In conclusion, 
SIDS coupled with the new N management could be an effective approach to reduce losses of N and P 
from paddy fields and would be a positive improvement for high yield of middle-season rice grains in the 
Jianhan Plain of central China and other regions with similar environments.

Rice (Oryza sativa L.) is one of the primary crops in the world and the foremost staple food in Asia, supplying 
35–60% of the dietary calories consumed by more than three billion people1. In China, the average annual area 
of rice planted and total production had reached 30.1 million ha and 18.6 billion t in 2011, respectively2. Both 
the planting area and total production ranked first in the world3. However, the growth of rice requires a substan-
tial amount of fresh water, so that the rice planting system accounted for 45–50% of total water consumption 
in China4. Moreover, a shortage of water resources is a serious problem in China, and its spatial and temporal 
distribution is extremely uneven5. The water scarcity is further strengthened by climate change, a limited supply 
of water, and the increasing water consumption by cities, industries and other sectors of the economy6,7. This has 
encouraged more researchers to develop novel irrigation strategies to improve crop water use efficiency (WUE), 
so that the sustainability of rice production could be assured8,9.

Various water-efficient irrigation management modes are currently practiced in different paddy fields in 
China, including alternate wetting and drying, shallow-irrigation and deep-sluice (SIDS), intermittent irriga-
tion, controlled irrigation, flooding-midseason drainage-frequent water logging with intermittent irrigation, and 
semi-dry cultivation among others10–13. Among these irrigation methods, SIDS is considered to be an efficient 
irrigation method to maintain the yield of rice, while reducing no-point pollution and the amount of irrigation 
compared to continuous flood irrigation in the Jianghan Plain of China13–15. In SIDS, the precipitation is sluiced 
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to some extent, and the field remains non-flooded unless cracks appear on the soil surface; thus, alternate wetting 
and drying cycles occur in paddy fields during the whole rice growing season14. Because of the high economic 
return and its ease of application, SIDS has been widely practiced in several provinces in China, including Hubei, 
Hunan, Jiangsu, and Anhui.

Nitrogen (N) fertilizer is another important input for intensive rice production16. The average yield of rice per 
unit area in China is 6.18 × 103 kg ha−1, which was 65% higher than that of the average yield in world; the amount 
of N fertilizer applied for rice production in China accounts for 37% of the N fertilizer used for rice in the world17. 
Thus, the recovery efficiency of fertilizer N is only approximately 30%, which is approximately 40–50% lower 
than the world average18. Over and/or improper fertilization is a serious issue in intensive agricultural production 
areas in China, contributing to soil degradation, lake eutrophication, groundwater pollution, and the emission 
of ammonia and greenhouse gases19–22. The loss of nutrients from agricultural fields is one of the main contrib-
utors to these types of pollution20,21, particularly in the central and southern regions of China23. Additionally, N 
fertilizer is becoming expensive because of increasing demand for fossil fuels worldwide. Therefore, exploring 
effective measures to reduce nutrient losses from farmland, while maintaining crop yield has become a priority 
for the sustainable development of agriculture, particularly for rice production.

To not only favor the profitability of farmers but also reduce the negative environmental impacts, several 
researchers have tested different N management practices to improve N use efficiency (NUE)7,18,23. Some N saving 
methods (site-specific N management, balanced N fertilization, integrated N management, the use of nitrifica-
tion/urease inhibitors and slow/controlled-release fertilizers) are already showing promise2,23,24. Recently, the use 
of controlled release N fertilizer has been found to be an effective way to increase the NUE and reduce N losses 
from paddy fields23. Moreover, a reduction in the level of N fertilizer supplied and amount of irrigation is the most 
effective measure to control nitrate leaching in cropland farming25,26. In addition, optimized fertilization could 
increase the NUE of rice27 and reduce the N and phosphorous (P) losses from source19. However, the effects of 
N-saving methods vary depending on different environmental conditions.

The key growth period of rice usually coincides with the plum-rain (a weather phenomenon characterized 
by continuous overcast and rainy weather) season in the Jianghan Plain of China, leading to more frequent sur-
face and underground drainage occurring from paddy fields, and an indirect drought often happens after the 
plum-rain28. Moreover, earlier research has illustrated that soil nutrients and water availability are closely linked 
and mutually influence one another29. Fertilization and water management are two important factors that influ-
ence the migration and use efficiency of N and P in paddy fields30. Thus, it is necessary to explore an individual 
appropriate N application mode under water-saving irrigation based on specific weather conditions in the rice 
planting areas, such as the Jianghan Plain of China. In addition, the manner in which controlled release N ferti-
lizer and optimized N management influence the losses of N and P from paddy fields and yield of rice has yet to 
be addressed under SIDS.

This study was designed to quantify the losses of N and P through leaching and runoff from a paddy field, N 
and P accumulation in rice, and yield of rice with controlled release N fertilizer and optimized N management 
under SIDS. Moreover, the contributions of various forms of N and P compounds to the total N and total P losses 
through leaching and runoff were quantified. The results should provide effective measures to reduce the losses 
of N and P in paddy fields and improve rice yield in the Jianghan Plain of central China and other regions with 
similar environments.

Materials and Methods
Experimental site and materials.  A field study was conducted in 2016 at the agricultural experimental 
station of Yangtze University in Jingzhou, Hubei Province, central China (latitude 30° 21′N, longitude 112° 09′E, 
altitude 28 m). The site is in a typical subtropical monsoon climate zone with a mean annual precipitation of 
1,095 mm. The mean annual sunshine duration is more than 1,718 h, and the mean annual temperature is 16.5 °C. 
The accumulated temperature of >10 °C is 5,094.9–5,294.3 °C. The soil pH was 7.4, total N 2.04 g kg−1, total P 
0.48 g kg−1, available N 79.5 mg kg−1, available P 38.5 mg kg−1 and available potassium (K) 108.7 mg kg−1 in the 
plough layer (0–40 cm soil depth).

The experimental rice used was mid-maturation two-line hybrid rice (Oryza sativa L.) variety “Huifeng8”. The 
controlled-release N fertilizer used was CRF (N:P2O5:K2O = 28:5:9) (Kingenta Ecological Engineering Co., Ltd., 
Shandong, China) with 70 days of N released period. The two conventional N fertilizers used were urea (46% N) 
and common compound fertilizer (N:P2O5:K2O = 18:8:15). The P and K fertilizers used were superphosphate 
(12% P2O5) and potassium chloride (60% K2O), respectively.

Experimental design.  The experimental factors were comprised of the irrigation method and N fertilizer 
management. The irrigation treatments included conventional flooding irrigation (FI) and shallow-irrigation and 
deep-sluice (SIDS). The N treatments included local common N fertilization practice, 30% of fertilizer N (urea) 
mixed with the other 70% of controlled release N fertilizer (CRF), and optimized and reduced N fertilization, 
designated CN, U + CRF and ON, respectively. This experimental plan yielded six treatments. There were three 
replicates for each treatment.

At 10–14 days after the transplantation of rice, a standing water depth of 10–40 mm was maintained for all 
the treatments to facilitate recovery of seedlings and their ability to turn green. FI and SIDS were then managed 
differently. In FI, a standing water depth of 10–80 mm in the field was maintained until the terminal drainage at 
approximately 10 days before the harvest of rice. In SIDS, the field was allowed to be intermittently submerged 
and was not irrigated unless the standing water depth dropped to approximately 100 mm below the topsoil. The 
field was re-flooded to a standing water depth of 40–60 mm in each irrigation event. The cycles were repeated 
until the necessary drainage before harvest14. However, there was one week of exception to the drainage to main-
tain a standing water depth of 30–50 mm at the flowering stage. Wu et al.28 reported that the sluice water above 
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soil surface of paddy field could be maintained up to 50, 100, and 150 mm at re-greening, tillering to jointing, and 
booting to maturity stages of rice, respectively. In the CN treatment, 70% N (common compound fertilizer) was 
applied at the basal, and 30% N (urea) was applied as topdressing at the tillering stage. In the U + CRF treatment, 
basal applications of 70% N used CRF, and the other 30% N used urea as N source were utilized. In the ON treat-
ment, common compound fertilizer was applied at the basal (50% N), and the urea was top-dressed at tillering 
(35% N) and heading (15% N) stages, respectively. The corresponding dates were June 4, July 6, and August 1, 
2016, respectively. The application of N fertilizer rate for CN, U + CRF and ON treatments was 180, 150 and 
150 kg N ha−1, respectively. A total of 75 kg P2O5 ha−1 and 105 kg K2O ha−1 was utilized as a basal application for 
each N treatment. Details of the fertilization scheme, including fertilizer sources and the corresponding applica-
tion rates used for each N treatment, are shown in Table 1.

Experimental management.  The experimental field was planted with rice year round and served as a 
representative paddy field. Each plot was 30 m2 (6 m × 5 m), and the circumference of each plot was isolated by 
a PVC sheet that was 60 cm high (30 cm below the soil surface and 30 cm above the soil surface) to form a bar-
rier. Each plot was separately irrigated and drained. The 4-week-old seedlings were artificially transplanted at 
25 cm × 30 cm with 3 seedlings per plant on June 5, 2016. The plots were regularly hand-weeded to prevent weed 
damage during the rice grown season. Diseases and insects were intensively controlled by chemicals to avoid a 
loss of yield. The whole growth period was 136 d in all treatments. The rice was harvested on September 18, 2016. 
All of rice straw was returned to paddy field after the crop harvest. A water meter was installed at the discharging 
end of water inlet to measure amount of water applied, and a container was installed at the terminal of drainpipe 
to collect runoff.

Measurements
Precipitation.  The amount of precipitation during the rice grown season was recorded by an automatic 
weather station (ICT, Australia) within the experimental base (approximately 100 m away from the plots).

Runoff and leaching water.  Before the experiment, a homemade iron leaching bucket (30 cm in diameter, 
100 cm long) was installed vertically at a depth of 60 cm to collect the daily percolation water of each plot. The 
pipe orifice was 40 cm above the soil surface, and the upper part was covered to prevent rain, dust or insects from 
entering pipe. A water level indicator was used to measure water level at an interval of 2–3 days. The daily vol-
ume of percolation water in paddy fields was calculated according to the water level difference proposed by Yang  
et al.23. Ceramic suction cups were installed at 3, 9 and 12 m of the water inlet and vertically at a depth of 30 cm to 
measure leaching water after irrigation or precipitation (≥30 mm) during the growth stages of rice. After rainfall, 
the excessive water was drained on the basis of upper limit of sluice water at the different growth stages in SIDS. 
The runoff water was collected by an overflow bucket and sampled from the outlet of each plot. The amount of 
drainage was calculated from the difference between the water depth of the paddy field before and after drainage 
as described by Yang et al.23.

N and P of water and soil.  Soil samples were collected after the rice harvest using a stainless-steel auger. 
The S-shaped 5-point collection method was used for sampling. The samples were collected from 0–20 and 
20–40 cm soil depths in each plot. Root debris and soil samples were sieved and stored as described by Si et al.31. 
In short, the plant root remnants and rocks were removed, and the samples were passed through a 0.85 mm sieve 
and stored at 4 °C to determine relevant indices.

The water quality parameters determined included the following: TP, TN, dissolved phosphorus (DP), 
ammonia-nitrogen (NH4

+-N), nitrate-nitrogen (NO3
−N) and particulate phosphorus (PP). Soil nutrient param-

eters that were monitored included TN, TP, NH4
+-N, NO3

−N and available P. All the analyses were conducted 
as recommended by the State Environmental Protection Administration of China (1997). Dissolved organic N 
(DON) was calculated by the differences between TN and sum of NH4

+-N and NO3
−N.

Nutrient uptake.  Five representative rice plants in each plot were cut at the re-greening, tillering, 
joint-booting, filling and maturity stages. The plants were divided into stems and leaves before heading stage, and 
stems, leaves and panicles after the heading stage. All the plant samples were oven-dried to a constant biomass 
at 70 °C and weighed. The samples were passed through a 0.15 mm sieve, and subsamples were collected for total 
N and total P determination as described by Ye et al.2. The total N was analyzed using the semi-micro Kjeldahl 
method, and the total P was analyzed using the vanadium molybdate yellow colorimetric method32. Tissue N or 
P concentrations were multiplied by the yield of dry matter to calculate total N or P uptake.

Treatment

Basal application
Topdressing 
one

Topdressing 
two

CRF (kg 
ha−1)

CCF (kg 
ha−1)

U (kg 
ha−1)

S (kg 
ha−1)

PC (kg 
ha−1) U (kg ha−1) U (kg ha−1)

CN / 700 / 158 / 117 /

U + CRF 450 / 117 438 108 / /

ON / 417 / 347 70.8 114 49

Table 1.  Fertilization scheme for rice under the different nitrogen fertilizer treatments. Note: / represents that 
there was no fertilization. S, superphosphate; U, urea; CRF, controlled-release nitrogen fertilizer; CCF, common 
compound fertilizer; PC, potassium chloride.
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Rice yield.  Yield of grain was measured from a 5 m2 area in the center of each plot at maturity stage. The rice 
was harvested manually, and the grains were air dried.

Data analysis.  According to Zhu et al.33, the deep underground leaching was ignored owing to high water 
table (0.8–1.5 m below the surface) in the paddy fields at Jianghan Plain and the negligible plant interception 
(approximately 0.2% of precipitation amount). Precipitation use efficiency (Y) was calculated as follows:

=
−

×Y RT R
R

100%
(1)

t

T

where RT is the total amount of precipitation (mm) during a certain period of time, and Rt is the amount of runoff 
water (mm) during a certain period of time.

The amount of N or P loss was calculated as follows:

∑= ×
=

P Ci Vi( )
(2)i

n

1

where Ci is the concentration of N or P (mg L−1) in the runoff or leaching water at the i time, and Vi is the volume 
of runoff or leaching water at the i time (L).

An analysis of variance (ANOVA) was performed using the general linear model-univariate procedure from 
SPSS 12.0 software (USA). ANOVAs were conducted with irrigation method and fertilizer management as the 
main effects and included their interactions. The mean values were compared for any significant differences 
among different treatments using the Duncan’s multiple range tests at a significance level of P ≤ 0.05

Results
In total, the leaching water was measured 20 times for SIDS and FI; the runoff water was measured four times 
for SIDS and seven times for FI during the rice growing season. The average of TN concentration from leaching 
water was 3.78 and 3.89 mg L−1 for FI and SIDS, respectively, which was comparable between the two irrigation 
regimes. However, the average of TN concentration from leaching water was 4.21 mg L−1 for the CN treatment, 
which was 18.7% and 20.3% significantly greater than that for the U + CRF and ON treatments, respectively. The 
average of TN concentration from runoff water and average of TP concentration from runoff and leaching water 
showed a highly similar amount of variation compared with the average of TN concentration from leaching water.

Precipitation, runoff, irrigation and leaching water.  Within 110 days after the transplantation (DAT) 
of rice, the accumulated precipitation was 550.3 mm. The maximum daily precipitation of 70.3 mm was recorded 
on July 2, 2016 (Fig. 1). For the FI treatments, the field was irrigated seven times, and the amount of total irri-
gation water, total water consumption (sum of the accumulated precipitation and the total irrigation) and run-
off water was 440.5, 990.8 and 194.8 mm, respectively. The runoff water of 157.3 mm was measured at tillering 

Figure 1.  The volume of precipitation, irrigation and runoff water during rice grown season under 
continuously flooding (FI) irrigation and shallow-irrigation and deep-sluice (SIDS).
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stage and accounted for 80.8% of total runoff water. The rest of total runoff water (37.5 mm) was measured at 
jointing-booting stage of rice. For the SIDS treatments, the field was irrigated four times, and the amount of total 
irrigation water, water consumption and runoff water was 257.0, 807.3 and 105.6 mm, respectively. The runoff 
water was only measurable at the tillering stage of rice. Compared with the FI treatment, the SIDS treatment 
significantly decreased the amount of irrigation water, total water consumption and runoff water by 41.7%, 18.5% 
and 45.8%, respectively, and significantly increased the precipitation use efficiency by 16.2% (Fig. 1). The amount 
of total leachate water from paddy field was 268 mm for SIDS and 343 mm for FI.

Losses of N and P during the whole grown season.  The FI treatments had the following runoff 
losses during the whole growth period of rice: NH4

+-N 1.99–2.69 kg ha−1; NO3
−N 0.77–1.16 kg ha−1; DON 

2.69–4.87 kg ha−1; TN 4.30–6.07 kg ha−1; DP 0.14–0.16 kg ha−1; PP 0.17–0.19 kg ha−1; and TP 0.32–0.34 kg ha−1. 
Compared with the FI treatments, the runoff losses of NH4

+-N, NO3
−N, DON, TN, DP, PP and TP were 28.5–

35.7%, 22.4–54.5%, 26.1–48.9%, 32.6–35.9%, 35.7–60.0%, 36.8–47.1% and 36.4–53.1% significantly smaller in 
the SIDS treatments, respectively. Both the U + CRF and ON treatments significantly decreased the loss of TN 
through runoff compared with that of CN treatment under the two irrigation treatments. FI coupled with CN 
resulted in the greatest runoff loss of TN, while SIDS coupled with U + CRF or CN resulted in the smallest one 
(Fig. 2). However, the runoff loss of TP was comparable among the different N treatments under FI and SIDS 
(Fig. 2). NH4

+-N and DON were the major components of TN lost through runoff and accounted for 41.1–
41.3% and 45.1–46.1% of the TN loss, respectively. PP was the major component of TP lost through runoff and 
accounted for 52.9–60.0% of the TP loss.

The FI treatments had the following amount of leaching losses during the whole growth period of rice: 
NH4

+-N 8.98–13.83 kg ha−1; NO3
−N 1.40–2.83 kg ha−1; DON 4.38–13.57 kg ha−1, TN 14.26–19.38 kg ha−1; DP 

0.20–0.32 kg ha−1; PP 0.17–0.17 kg ha−1; and TP 0.37–0.49 kg ha−1. Compared with the FI treatments, the total 
amount of NH4

+-N, NO3
−N, DON, TN, DP, PP and TP lost through leaching was 23.5–28.1%, 12.9–37.5%, 

16.8–28.8%, 22.8–32.0%, 5.0–36.4%, 23.5–29.4% and 16.2–33.3% significantly smaller in the SIDS treatments, 
respectively. Both the U + CRF and ON treatments significantly decreased leaching loss of TN compared with 
that of CN under the two irrigation treatments (Fig. 3). FI coupled with CN resulted in the greatest loss of TN 
by leaching, while SIDS coupled with U + CRF or CN resulted in the smallest loss of TN (Fig. 3). The loss of TP 
by leaching was very similar to that observed from the loss of TN by leaching (Fig. 3). NH4

+-N was the major 

Figure 2.  Total nitrogen (TN) and total phosphorus (TP) losses through runoff during the whole grown season 
of rice as affected by different water and nitrogen management strategies. Note: Values (mean ± standard error, 
n = 3) by different letters are significantly different at P < 0.05.

Figure 3.  Total nitrogen (TN) and total phosphorus (TP) losses through leaching during the whole growth 
season of rice as affected by different water and nitrogen management strategies. Note: Values (mean ± standard 
error, n = 3) by different letters are significantly different at P < 0.05.
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component of TN lost through leaching and accounted for 65.9–75.4% of the TN loss. DP was the major compo-
nent of TP lost through leaching and accounted for 53.8–65.8% of the TP loss.

Runoff losses of various forms of N and P.  For FI, approximately 70% of the various N and P forms lost 
through runoff took place at tillering stage, and the other 30% took place at jointing-booting stage of rice. For 
SIDS, all of the various N and P forms lost through runoff took place at tillering stage (Table 2). Compared with 
FI, SIDS decreased the amount of NH4

+-N, NO3
−N, DP and PP losses. However, SIDS increased the amount of 

DON loss at U + CRF and ON (Table 2). Compared with the CN treatment, the U + CRF and ON treatments 
decreased amount of NH4

+-N and NO3
−N at tillering stage. The amount of DP and PP losses was comparable 

among the three N treatments under FI and SIDS (Table 2).

Leachate losses of various forms of N and P.  The amount of various N and P forms lost through leach-
ing during the re-greening to booting stages was approximately 75% of the whole rice growing stage. The other 
25% was lost during heading to maturity. Compared with FI, SIDS decreased the amount of losses of NH4

+-N, 
NO3

−N and DON in each N treatment (Table 3). Compared with CN, the U + CRF and ON treatments decreased 
the amount of NH4

+-N and NO3
−N under FI and SIDS. However, the losses of DP and PP were comparable 

among different treatments (Table 3).

N and P uptake by rice.  As shown in Table 4, the N and P uptake by rice at re-greening and tillering stages 
was comparable between FI and SIDS treatments in each N  treatment with the exception of uptake of P in the ON 
treatment. Compared with FI, SIDS increased the uptake of N by rice at the jointing, filling and maturity stages 
in each N treatment. Similarly, SIDS treatments increased the P uptake by rice at jointing, filling and maturity 
stages in each N treatment. For the two irrigation regimes, compared with CN treatment, the U + CRF treatment 
increased the N and P uptake at all measured stages with the exception of uptake of P at the filling stage. The ON 
treatments increased uptake of N and P in general at the jointing, filling and maturity stages of rice. SIDS coupled 
with U + CRF achieved the greatest uptake of N and P by rice at maturity stage.

Growth stage Index

FI SIDS

CN U + CRF ON CN U + CRF ON

Tillering

NH4
+-N 2.27 a 1.53 b 1.54 b 1.73 b 1.43 c 1.28 c

NO3
--N 1.07 a 0.90 b 0.73 b 0.90 b 0.66 b 0.35 c

DON 1.42 a 0.77 c 0.73 c 1.26 a 1.11 b 1.27 b

DP 0.11 a 0.12 a 0.12 a 0.09 b 0.08b 0.06 b

PP 0.16a 0.15a 0.14a 0.12a 0.11a 0.09b

Jointing-booting

NH4
+-N 0.43 a 0.47 a 0.45 a / / /

NO3
--N 0.09 a 0.06 b 0.04 b / / /

DON 0.79 a 1.14 a 1.02 a / / /

DP 0.03 a 0.03 a 0.03 a / / /

PP 0.03a 0.04a 0.03a

Table 2.  Amount of various nitrogen (N) and phosphorus (P) form losses through runoff (kg ha−1) as affected 
by different water and nitrogen management strategies. Note: DON, dissolved organic nitrogen; DP, dissolved 
phosphorus; PP, particulate phosphorus. Means within a row followed by different letters are significantly 
different at P < 0.05.

Growth stage Index

FI SIDS

CN U + CRF ON CN U + CRF ON

Regreening-booting

NH4
+-N 11.32 a 8.64 b 7.06 b 8.58 b 6.87 c 5.96 c

NO3
−N 1.92 a 1.26 a 0.85 a 1.48 a 1.00 ab 0.90 b

DON 1.84b 1.38b 2.44a 0.95c 1.32b 1.72b

DP 0.23 a 0.15 a 0.14 a 0.21 a 0.16 a 0.13 a

PP 0.10 a 0.13 a 0.10 a 0.09 a 0.08 a 0.09 a

Heading-maturity

NH4
+-N 2.51 a 1.88 b 1.92 b 1.36b 1.16c 0.91 c

NO3
−N 0.91 a 0.28b 0.55 ab 0.32 a 0.26 a 0.29 a

DON 0.88c 1.05b 1.45a 0.52d 0.58d 0.61d

DP 0.09 a 0.05 a 0.08 a 0.04 a 0.03 a 0.04 a

PP 0.07 a 0.04 a 0.07 a 0.04 a 0.04 a 0.03 a

Table 3.  Amount of various nitrogen (N) and phosphorus (P) form losses through leaching (kg ha−1) as 
affected by different water and nitrogen management strategies. Note: DON, dissolved organic nitrogen; 
DP, dissolved phosphorus; PP, particulate phosphorus. Means within a row followed by different letters are 
significantly different at P < 0.05.
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Residual soil N and P after the rice harvest.  As shown in Fig. 4, the amounts of soil NH4
+-N, NO3

−N, 
TN, available P and TP content in the 0–40 cm soil depths were comparable between the FI and SIDS treatments 
for the three N treatments. For the two irrigation regimes, the content of NH4

+-N in the 0–40 cm soil depths was 
significantly greater in the U + CRF and ON treatments than that in the CN (Fig. 4A,B). The content of NO3

−N in 
the 0–40 cm soil depths was greater in U + CRF than in the other N fertilizer treatments (Fig. 4C,D). The contents 
of TN and TP in the 0–40 cm soil depths were comparable among three N fertilizer treatments with the exception 
of TP content in the 0–20 cm soil depth under SIDS (Fig. 4E–H). The U + CRF and ON treatments increased soil 
available P content compared to FFP under FI and SIDS (Fig. 4I,J).

Yield of rice.  As shown in Fig. 5, the SIDS treatments increased yield of rice grains compared with the FI 
treatments, although a significant difference was only observed from the U + CRF treatment. The U + CRF 
resulted in a greater yield of grain compared with the other N treatments under SIDS. SIDS coupled with U + CRF 
resulted in the greatest yield of grain among the different treatments.

Discussion
N and P losses from paddy fields.  Alternate wetting and drying irrigation could slightly increase the 
concentration of N compared with conventional flooding irrigation21. Consistently, SIDS resulted in an average 
of 2.9% higher TN concentration from leachate water compared with FI. This could be related to the smaller 
water depth of field and irrigation amount under water-saving irrigation, which led to an increase in substrate 
concentration34.

Earlier studies have shown that the amount of N and P lost through runoff and leaching are closely related 
to the water management measures23,35. Greater amounts of irrigation lead to more substantial nutrient losses 
through runoff and leaching from a paddy field23. In this study, the SIDS treatments significantly reduced the 
irrigation frequency by 42.3% and amount of irrigation by 41.7%, leading to the lower runoff and leaching water 
(reduced by 45.8% and 21.9%, respectively). This resulted in the significantly reduced amount of TN and TP lost 
through runoff and leaching under SIDS (Figs. 2 and 3), which is consistent with the findings of Liang et al.36 
derived from alternate wetting and drying irrigation. This confirms the substantial water-saving and environ-
mental protection effects of SIDS13,14. The possible reasons include the fact that field water depth is an important 
factor that contributes to occurrence of surface runoff and deep leaching from paddy fields2,20,21. A high field 
water depth results in more surface runoff when faced with concentrated or heavy precipitation2. SIDS signifi-
cantly decreased the field water depth compared with FI (data not shown) and thereby decreased the occurrence 
and amount of surface runoff (Fig. 1), resulting in the increased use of precipitation and reduction in losses of N 
and P. Moreover, the low water level and large air exchange capacity at water-soil interface under SIDS helped to 
increase the P fixation by soil. Fe2+ is oxidized to Fe3+, and then Fe3+ easily combines with PO4

3− to form insol-
uble Fe(PO4)37. In addition, Liang et al.36 suggested that alternate wetting and drying irrigation reduced the irri-
gation water, runoff water and TN loss through runoff by 13.4–27.5%, 30.2–36.7% and 23.3–30.4%, respectively, 
in comparison with FI, which were lower than the corresponding values obtained from this study. This could be 
related to the ability of SIDS to more effectively use precipitation compared with alternate wetting and drying 
irrigation13, thereby enhancing the WUE and reducing losses of nutrients. In addition, the reduced frequency of 
irrigation results in a more economical use of the labor force38.

An earlier study has shown that there was a substantial difference in the loss of TN through runoff during 
rice growing season, which ranged from 0.5 to 54.3 kg ha−1,39. The variation was associated with differences in 
precipitation, soil types, crop growth conditions and management of irrigation water and mineral fertilizers23,36. 
In this study, the loss of TN through runoff during the rice grown season was 2.90–6.07 kg ha−1 among different 
treatments, which are relatively low levels39. Nevertheless, our measured losses are within the range of those in 
other studies that quantified losses of N from paddy fields21,23. This was primarily attributed to the low total runoff 
volume (105.6–194.8 mm). Moreover, the time of runoff events was long behind N fertilization (>8 d), result-
ing in the low N concentration in the surface water of paddy fields. It has been shown that the amount of N lost 
through runoff can be significantly reduced when the runoff occurred one week after the N fertilization34.

In this study, the U + CRF and ON treatments reduced loss of TN through runoff by 19.7–29.2% and 25.4–
51.7%, respectively, and loss of TN through leaching by 15.1–25.2% and 20.9–26.4%, respectively, in comparison 
with the CN treatment (Fig. 2). These results are consistent with the findings of Yang et al.23 and Ji et al.40 Because 
controlled-release N fertilizer has the characteristics of “peak cutting and valley filling,” namely its N release 

Irrigation 
method

Fertilizer 
management

Re-greening Tillering Jointing Filling Maturity

NU PU NU PU NU PU NU PU NU PU

FI

CN 1.12a 0.13ab 41.53a 2.91b 61.19b 12.31b 124.51c 30.40a 153.64c 48.86b

U + CRF 1.40a 0.23a 49.40a 5.49a 73.14a 13.56b 157.55a 25.13b 171.87b 55.96b

ON 1.05a 0.13b 26.21b 3.38b 70.59a 13.13b 138.82b 20.68a 154.79c 53.82b

SIDS

CN 1.13ab 0.16ab 41.66a 3.39b 71.13a 14.85b 137.51b 34.82a 157.37c 52.27b

U + CRF 1.21a 0.19a 56.99a 6.39a 82.95a 16.78a 158.11a 30.38a 179.02a 63.29a

ON 0.92ab 0.10b 30.23b 5.37a 76.06a 15.90a 139.00b 30.93a 167.72b 57.68b

Table 4.  Nitrogen (N) and phosphorus (P) uptake by rice (kg ha-1) as affected by different water and nitrogen 
management strategies. Note: Means within a column followed by different letters are significantly different at 
P < 0.05. NU, nitrogen uptake; PU, phosphorus uptake.
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amount is not too much at the early growth stages and not too small at the later growth stages of rice30,41, this 
effect was conducive to improving the metabolism of N in rice40, which corresponded to the increased N uptake 
(Table 4) and decreased TN concentration from leaching and runoff water. Consequently, this reduced the loss 
of N. In terms of the ON, numerous studies have shown that the optimal application of fertilizer can reduce con-
centration of nutrients from source42,43, which is consistent with our results. Moreover, an earlier study has shown 
that TN leaching increases in a significantly linear fashion in parallel with the increase in rate of application of N 

Figure 4.  Soil NH4
+-N, NO3

−N, total nitrogen, available phosphorus and total phosphorus content in the 
0–40 cm soil depths after rice harvest as affected by different water and nitrogen management strategies. Note: 
Values (mean ± standard error, n = 3) within the same soil depth and item followed by different letters are 
significantly different at P < 0.05.
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in a typical open field for vegetable planting26. A 40% reduction in traditional N rate of synthetic fertilizer could 
reduce amount of NO3

−N leaching by 39.6%44. Thus, these results strongly suggest that appropriately reducing 
fertilizer inputs can be an efficient approach to reduce loss of N from paddy fields. In addition, both the U + CRF 
and ON treatments could partially avoid adverse effects of plum-rain season owing to relatively low concentration 
of N in paddy water, resulting in a reduction in loss of N. Most dramatically, SIDS coupled with the U + CRF or 
ON treatments achieved the smallest N and P losses through runoff and leaching, suggesting that SIDS coupled 
with U + CRF or ON can help reduce the N and P losses through runoff and leaching from paddy fields.

The U + CRF and ON treatments reduced loss of TP through leaching by 18.4–24.5% and 20.4–31.6%, respec-
tively, compared with that of the CN treatment (Fig. 3). This was attributed to the lower concentration of P in 
the leachate water. It has been shown that the concentration of P in leachate water increased with increase in rate 
of N fertilization21. Since the N fertilization could occupy the soil colloid or iron and aluminum oxide surface 
adsorption and decrease the ability of soil to absorb P, this type of fertilization could result in the enhancement of 
dissolution of P and its release into water45. In the U + CRF treatment, the controlled release N fertilizer enabled 
the process of release of N to become slower and longer compared to that of CN46. In the ON treatment, the rate of 
N fertilizer input was reduced by approximately 17%. As a result, both the U + CRF and ON treatments resulted 
in a lower concentration of N in leachate water. In addition, Peng et al.30 found that controlled-release N fertilizer 
reduced the loss of TN through leaching by 53.6%, which was far greater than the corresponding data in this 
study, which was 18.4–24.5%. This was attributed to the N rate of controlled release N fertilizer treatment being 
far smaller than that of standard fertilization by the farmer (180 vs 403 kg N ha−1) in Peng’s study30, but the same 
N rate was used for the U + CRF and CN treatments (180 vs 180 kg N ha−1).

In this study, NH4
+-N was the major component of loss of TN through leaching (Table 3). This is consistent 

with the findings of Peng et al.30 and Ji et al.47. Owing to long-term flooding and the high groundwater table in 
paddy fields at Jianghan Plain (less than 150 cm below the surface), the paddy soil is maintained in a reduced 
state23. The anaerobic environment inhibits the activity of autotrophic nitrifying bacteria, resulting in limited 
soil nitrification. Moreover, ammonization, denitrification, and biological nitrogen fixation are the three primary 
forms of N transformation in flooded soil, with the result that most inorganic N exists in the form of NH4

+-N21,48. 
Moreover, PP was the major component of TP loss through runoff (Table 2). This is consistent with the findings 
of Liang et al.49 and Ye et al.20. Because precipitation or irrigation would impact the soil surface, which causes a 
substantial amount of PP in the soil to move to paddy water and consequently be lost through runoff. However, 
DP was the major component of loss of TP through leaching (Table 3). This was attributed to the fertility of paddy 
soil in Jianghan Plain and the generally high contents of clay and organic matter in soil27, leading to the strong 
adsorption and filtration function of PP in percolating water.

N and P uptake by rice and rice yield.  The optimization of water management can realize the purpose of 
promoting effect of fertilizer with water, which is of substantial importance on the efficiency of improvement of 
water and fertilizer use to achieve a stable and high yield of rice50. In this study, the SIDS treatments resulted in a 
higher uptake of N and P at maturity and yield of rice grain compared with those of FI treatments (Table 4, Fig. 5). 
This can be explained as follows: SIDS enhanced the air exchange between soil and the atmosphere owing to the 
alternate wetting and drying cycles11,51. Therefore, the root system was surrounded by relatively sufficient oxygen 
to accelerate mineralization of soil organic matter and inhibit soil N immobilization, resulting in the increased 
soil available nutrients for rice growth52,53. It has been shown that water-saving irrigation resulted in higher activ-
ities of glutamine synthetase, glutamate synthase, and glutamate dehydrogenase (the main enzymes involved in 
plant N metabolism) compared to conventional flooded irrigation7. Therefore, the root growth, N metabolism, 
and photosynthetic rate in leaves of rice were improved under SIDS, leading to a high yield of grain54,55.

Optimal fertilization measures help to improve the uptake of nutrients, yield of grain, conserve soil nutri-
ents and reduce excessive nutrient loss to prevent water eutrophication19. In this study, the U + CRF and ON 
treatments resulted in comparable TN and TP contents in the 0–40 cm soil depths after rice harvest (Fig. 4) and 
resulted in a better or comparable uptake of N and P at the latter growth stages (Table 4). These results indicate 
that the U + CRF and ON treatments improved uptake of N and P by rice and did not lead to excessive accumu-
lation of TN and TP in soil. Similar results were also reported from other studies21,35. The increased uptake of N 
and P can be explained as follows: in the U + CRF treatment, the use of controlled-release N fertilizer prolonged 

Figure 5.  Grain yield of rice as affected by different water and nitrogen management strategies. Note: Values 
(mean ± standard error, n = 3) by different letters are significantly different at P < 0.05.
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the amount of soil available N at latter growth stages of rice, which is conductive to promote effective panicles 
per m2 and spikelets per panicle, and thereby enhance the uptake of N2. In the ON treatment, postponing and 
decreasing the application of N fertilizer reduces the transfer rate of N in leaves and delays leaf senescence, result-
ing in a high accumulation of N in rice56. In addition, approximately reducing the rate of fertilizer usage could 
enhance uptake of N and P by rice57. The relatively lower TN and TP losses through leaching under ON (Fig. 3) 
supported this conclusion. Thus, it is no surprise that the U + CRF treatment significantly increased yield of grain, 
and the ON treatment maintained yield of grain compared with that of CN treatment (Fig. 5). Higher grain yield 
obtained under controlled release N fertilizer than under urea with an equivalent rate of N had been reported 
previously2,58. Most dramatically, compared to FI coupled with CN, SIDS coupled with U + CRF or ON resulted 
in a better or comparable uptake of N and P (Table 4) and yield of rice grains (Fig. 5). These results suggest that 
SIDS coupled with U + CRF or ON was effective at improving or maintaining the N and P uptake and grain yield 
of rice.

This study strongly illustrates that water-saving irrigation can reduce the losses of N and P from runoff and 
leaching from paddy fields owing to decreasing amounts of runoff and water. Controlled release N fertilizer and 
optimized and reduced N fertilization reduce the losses of N and P by lowering concentrations of N and P in the 
runoff and leaching water. Thus, the combination of SIDS and U + CRF or ON obviously reduced N and P losses 
during rice grown season. In the future, the mechanism of reducing N and P losses from SIDS coupled with new 
N management should be considered from perspective of soil N and P cycles.

Conclusions
This study demonstrated that SIDS enabled the paddy field to receive fewer irrigation frequencies (a decrease 
of 42.3%) and less irrigation water (savings of 41.7%) while using more water from precipitation (an increase of 
16.2%), resulting in the reduced total amount of surface runoff and leaching water by 45.8% and 21.9%, respec-
tively. Consequently, SIDS significantly reduced the losses of TN and TP through runoff and leaching. The 
U + CRF and ON treatments generated a lower loss of TN through runoff and leaching and loss of TP through 
leaching compared with that of CN treatment. The combined SIDS and U + CRF or ON reduced the N and P 
loss through runoff and leaching and enhanced or maintained N and P uptake at the later growth stages of rice, 
subsequently improving the yield of rice grains.
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