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Abstract 

Background: Hepatocellular carcinoma (HCC) causes death mainly by disseminated metastasis progression 
and major challenge of clinical management is to distinguish lethal metastatic stage from indolent stage. It is 
shown that metastatic progression is closely related to cellular metabolism. But detailed metabolic alterations 
and molecular mechanisms still kept unclear between subtypes of different lung metastatic potentials. 
Methods: The current work used NMR-based metabolomics in the study of HCC cells with high malignancy 
but differed in lung metastatic potentials. Cell extracts and cultured media from MHCC97L and MHCC97H 
were utilized to reveal metabolic alterations related to metastatic potentials. Multivariate analyses were 
performed to identify characteristic metabolites which were used subsequently to draw the map of relative 
biochemical pathways by combining KEGG database. 
Results: The NMR spectra of both MHCC97L and MHCC97H include various signals from necessary 
nutritional components and metabolic intermediates. A series of characteristic metabolites were determined 
from both cell extracts and media. The ability on nutrient uptake varied from cell lines. Most of amino acids 
decreased in high metastatic cell line, so altered amino acid metabolisms and energy metabolism were revealed 
in high metastatic MHCC97H cell line. The majority pathways involved six essential amino acids in which the 
observed branched-chain amino acids together with lysine contributed to biosynthesis or degradation. Basically 
MHCC97H cell line could induce more active events than that of MHCC97L to progress to high metastasis 
with certain molecular events. Characteristic metabolites-derived classifiers performed robustly during 
prediction and confirmed their critical role in supporting metastasis progression. 
Conclusions: Our results provide evidence that NMR-metabolomics analyses of cells are able to understand 
metastatic characteristics accountable for biological properties. The proposed characteristic metabolites will 
help to understand HCC metastatic characterizations and may be filtered as potential biomarkers. 

Key words: hepatocellular carcinoma, metastatic potential, metabolic profiling, nuclear magnetic resonance 
spectroscopy, cell, pathway analysis 

Introduction 
Human hepatocellular carcinoma (HCC), with 

the third highest mortality, is one of the most common 
malignant tumors in the world. Even though more 
than half of HCC cases come from China, a 
dramatically increasing incidence of HCC has recently 

been reported in developed countries like America, 
England, France, and Japan [1]. As an aggressive 
tumor, most deaths caused by HCC are mainly 
disseminated metastasis progression from confined 
organ [2]. Clinical metastasis is a pivotal prognostic 
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factor and will significantly shorten the survival rate 
and long-term prognosis of HCC patients. Major 
challenge of clinical management is to distinguish 
lethal metastatic stage from indolent stage [3, 4]. 
Researches have shown that metastatic progression is 
closely related to cellular metabolism [5], but detailed 
metabolic changes and molecular mechanisms still 
kept unclear. Consequently, there is an urgent need to 
seek biomarkers from cell level for possible in vivo 
diagnosis of HCC. Metabolomic platform allows the 
analysis of cell metabolome that is defined as all the 
low molecular weight metabolites inside cells with 
given set of physiological activity. Therefore metabo-
lomic analysis will be very helpful to understand the 
molecular mechanisms of HCC progression and to 
exploit biomarkers. 

Metabolomic analysis based on NMR spectro-
scopy has now been applied to various researches on 
tumor cell lines. In the last decade, NMR spectroscopy 
has been playing a significant role in this field because 
of its ability to offer rich molecular information and 
detect individual species in complex mixtures. For 
instance, this technology has been successfully used to 
investigate the differentiation, proliferation and 
resistant effects in cell models. By NMR-based 
metabolic profiling, cellular metabolism in a 
proliferation-arrested cell line is shown to increase 
productivity via which revealed important metabolic 
pathways for further detailed studies [6]. Gottschalk 
et al. applied metabolomic analysis to variants inside 
cell lines with different levels of resistance or different 
lung tumor origins. A general demonstration of both 
whole cells and extracts for the resistant variants were 
presented [7]. Process of cells differentiation into 
enterocyte has also been investigated to learn more 
detailed mechanisms, so that levels of certain 
metabolites were shown to change dramatically 
between undifferentiated state and late differentiated 
states [8]. In addition to discussing the mechanisms 
for cellular differentiation, proliferation or resistance, 
some researchers have turned their attention to 
specific problems arising from preparation of 
experiment. In NMR experiment, different prepara-
tion protocols for cell samples might exert differential 
metabolite profiling, bringing insights from culture 
media to cell extracting and harvesting methods [9]. 
Relative results showed that contaminants in cell 
extracts under different extract methods appeared in 
plastic ware. Besides, the metabolic profiling of 
epithelial ovarian cancer cell lines and multiresistant 
subline were performed to illustrate the metabolic 
responses that might result from different cell 
harvesting strategies [10]. It is interesting that 
composition of culture media may also affect the 
metabolic behavior of cells. Huang et al. has proved 

that morphology and proliferation of cells cultured in 
different media may be the same, but metabolic 
profiles were quite different in discrepant metabolites 
[11]. Therefore, it can be said that the cellular 
metabolic behaviors and patterns are complex and 
meanwhile they are sensitive to surrounding 
environment. Recently, progress in understanding the 
metabolic differences of cells related to oncogenic 
transformation and metastatic potential has also been 
supported by a few researches. Vered et al. 
demonstrated that RAS-driven physiologic alterations 
will affect water soluble metabolites and help to 
distinguish lung epithelial cells with different RAS 
oncogenic isoforms [12]. The most recent progress was 
conducted by malignancy-associated cancer cell lines 
from human and murine models. Metabolic 
heterogeneity of different degrees of astrocytoma cell 
lines from glioma tissues was revealed to be 
associated with malignancy [13]. Santana-Filho et al. 
applied 2D multiplicity-edited HSQC NMR techni-
ques to obtain fingerprints murine cell lines, including 
high metastatic melanoma cell line, and relative 
amounts of altered metabolites were determined [14]. 
With the observation of metabolic profiling from 
tumor cells, it could provide a sound reference for 
exploring characteristic metabolites with respect to 
high metastatic potential. However, metabolomic 
profiling of cell lines from different metastatic HCC 
has not been reported yet, even though the molecular 
mechanisms of disseminated metastasis progression 
are crucial to clinical management. 

In this work we explored metabolic characteris-
tics of HCC cell lines associated with different lung 
metastatic potentials. We aimed to understand the 
molecular mechanisms of metastasis by NMR 
spectroscopy conjugated with statistical analysis. To 
the best of our knowledge, this is the first study to 
explore metabolic profiles of HCC cell lines with low 
and high metastatic potentials using NMR-based 
metabolomics analyses. 

Materials and Methods 
Cell lines and culture condition 

Two cell lines, including MHCC97L and MHCC 
97H were chosen to represent low and high metastatic 
potential of HCC, respectively. These cell lines were 
almost similar in malignancy but differed in lung 
metastatic potentials. They were obtained from 
Peking Union Medical College Hospital (Beijing, 
China). These cells were cultured in DMEM (Hyclone, 
USA) media which was supplemented with 10% fetal 
bovine serum (Gibco, USA), 100 U/mL penicillin, and 
100 μg/mL streptomycin, and then grown in an 
incubator humidified 5% CO2 atmosphere at 37 ºC. 
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Fresh stock of cells was seeded in 30 identical flasks 
until the cells entered into logarithmic growth phase. 
Then cells were harvested by trypsinization with 1 mL 
of trypsin solution. Cell culture media from each flask 
was separately collected before harvesting, and every 
three flasks from same type of cell line were combined 
as a cell sample in order to enrich cell number for 
intracellular extraction. Every three samples from the 
same type of cells were combined as a NMR sample 
and the quantity of cells is approximately 1×106/mL 
per NMR sample according to the result of cell count. 
Finally, the sample amount for each cell line was 10 
and 30 from cells and cultured media (CM), 
respectively. 

Sample preparation for NMR spectroscopy 
Both media and cell extracts were used for NMR 

detection. The collected cells were quenched by a 
direct cell quenching method and intracellular 
metabolites were extracted using a dual phase extrac-
tion procedure [15, 16]. Briefly, mixture of methanol, 
chloroform and water under volume ratio of 2:2:3 was 
used to generate a two-phase extract. Aqueous-phase 
extracts were then dissolved in 500 μL of D2O- 
prepared phosphate-buffered saline (PBS, pH=7.4). 
For media samples, 400 μL of the media was mixed 
with 100 μL of D2O-prepared PBS (pH=7.4) containing 
0.05% sodium 3-(trimethylsilyl) propionate-2,2,3,3-d4 
(TSP) which was served as reference (δ0.00). Both 
media and cell samples were oscillated for blending 
and centrifuged at 10,000 rpm for 10 min at 4 °C to 
remove insoluble components. The supernatant (500 
μL) was transferred to 5 mm NMR tubes for later 
measurements. 

NMR experimentation 
The NMR measurements were performed at 298 

K on a 500 MHz Varian NMR spectrometer, operating 
at a 1H frequency of 499.74 MHz. One-dimensional 
1H-NMR spectra were obtained using a nuclear Over-
hauser enhancement spectroscopy pulse sequence 
(NOESYPR1D) (recycle delay-90º-t1-90º-tm-90º-acquis-
ition) with acquisition time of 2 s. And low-power 
water signal presaturation was also used during both 
the 3 s recycle delay and the 100 ms mixing time (tm). 
The spectral width was 12 ppm with 64 K complex 
data points and 64 transients. 

Data preprocessing and pattern recognition 
Free induction decays of all samples were 

multiplied by a 1.0 Hz line-broadening factor prior to 
Fourier transformation. All NMR spectra were 
manually phased and baseline-corrected via 
MestReNova (version 8.1.2, Mestrelab Research S.L., 
Spain). The spectra of media and cell extracts were 
referenced to signals of TSP (δ0.00) and lactate methyl 

(δ1.33), respectively. The region of δ4.29-6.40 ppm 
was excluded to remove effects of residual water 
variation in media and cell extracts, and the region of 
δ1.40-1.80 ppm was also excluded to remove effects of 
residual lipid signals in cell extracts. Subsequently, 
the spectra were divided into 0.002 ppm integral 
regions and integrated in the region of 0.5-8.5 ppm 
(for cell extracts) or 0.5-9.0 ppm (for CM). To account 
for variations in sampling gains used for different 
samples, the spectra were normalized to the total sum 
of the spectrum before multivariate statistical 
analysis. 

Principal components analysis (PCA) and 
orthogonal projection to latent structure with 
discriminant analysis (OPLS-DA) were carried out 
using SIMCA-P+ v14.0 (Umetrics, Sweden). Data used 
in PCA were mean-centered scaled while in OPLS-DA 
were unit variance scaled. The optimal number of 
orthogonal components for building OPLS-DA 
models was selected using cross validation procedure. 
The goodness of fit and prediction parameters of 
OPLS-DA models, R2 and Q2 were calculated. Then a 
correlation coefficient of |r|>0.75 (for cell extracts) or 
|r|>0.36 (for CM) was used as the cut-off value for 
determination of discriminatory metabolites, in which 
those with significance level of P<0.05 according to 
Student’s t-test analysis were considered as 
characteristic metabolites. A MATLAB-based toolbox 
was used to draw the map of relative biochemical 
pathways [17], and the custom sub-networks for HCC 
cells were created by using main substrate-product 
pairs as defined by Kyoto encyclopedia of genes and 
genomes (KEGG) online database. Finally, the 
associative characteristic metabolites were fed back to 
identify different cell lines by combining with support 
vector machines (SVMs) via LIBSVM package [18]. 
Since only a dozen of metabolites were involved, the 
SVMs algorithm proposed by Vapnik was very 
suitable for such small-sample problems [19]. 
Automatic optimization parameters together with 
leave-one-out cross validation were performed to 
predict unknown samples and evaluate the reliability. 

Results 
Metabolic profiling of HCC cells with different 
lung metastatic potentials 

The cell lines involved in the present study 
provided metastasis characteristics of HCC in 
different metastatic stages. As shown in Figure 1, the 
appearances of cell extract spectra were broadly 
similar for MHCC97L and MHCC97H cell lines, and 
so were the media samples. Tentative assignments 
which were consistent with existing literatures and 
further confirmed by public HMDB database were 
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tabulated in Table 1 [20-23]. Various signals were 
assigned to individual metabolites and allowed the 
assessment of relative averaged concentration. 

 

Table 1. Assignments and splitting patterns for metabolites 
identified by 1H NMR analysis of both media and cell extracts. 

Metabolite Abbr. 1H Shift (multiplicity) Sample 
Acetate Ace 1.92(sa) Cb, D 
Acetone Act 2.23(s) C 
Adenine Ade 8.20(s), 8.21(s) C 
Alanine Ala 1.48(d) D 
Choline Cho 3.19(s) D 
Citrate Cit 2.53(d), 2.65(d) D 
Creatine Cr 3.04(s), 3.93(s) C, D 
Ethanol Eth 1.18(t), 3.67(q) C, D 
Formate For 8.46(s) C 
α-Glucose Glc 3.42(t), 3.54(dd), 3.70(t), 3.74(m), 

3.84(m) 
C, D 

β-Glucose Glc 3.25(dd), 3.41(t), 3.46(m), 3.49(t), 
3.89(dd) 

C, D 

Glutamate Glu 2.07(m), 2.11(m), 2.35(m), 3.78(t) C, D 
Glutamine Gln 2.12(m), 2.45(m), 3.78(t) C, D 
Glycerol GL 3.54(m), 3.64(m), 3.75(m) C 
Glycerophosphocholine GPC 3.22(s) C 
Glycine Gly 3.56(s) C, D 
Histidine His 7.07(s), 7.79(s) C, D 
Inosine Ino 8.24(s), 8.35(s) C 
Isobutyrate Ibe 1.13(d) D 
Isoleucine Ile 0.93(t), 1.01(d), 1.26(m) C, D 
Lactate Lac 1.33(d), 4.12(q) C, D 
Leucine Leu 0.96(t) C, D 
Lysine Lys 1.46(m), 1.73(m), 1.91(m), 3.01(t), 

3.75(m) 
C, D 

Methionine Met 2.14(s), 2.65(t) C, D 
Methylmalonate Mem 1.25(d) C 
Myo-Inositol Myo 3.27(t), 3.54(dd), 3.61(t), 4.07(t) C, D 
Phenylalanine Phe 7.33(d), 7.38(t), 7.42(m) C, D 
Phosphocholine PC 3.21(s) C, D 
Proline Pro 2.34(m), 3.39(m), 4.18(m) C, D 
Pyruvate Pyr 2.38(s) D 
Succinate Suc 2.41(s) D 
Threonine Thr 1.33(d), 3.59(d), 4.24(m) D 
Trimethylamine TMA 2.89(s) C 
Tryptophan Trp 7.29(t), 7.36(s), 7.54(d), 7.74(d) C, D 
Tyrosine Tyr 6.89(d), 7.19(d) C, D 
Valine Val 0.99(d), 1.04(d) C, D 
aMultiplicity: s singlet; d doublet; t triplet; dd doublet of doublets, m multiplet; q 
quartet 
bAbbrevations: C=cell extract; D=cultured DMEM media 
 

In the 1H NMR spectra, the aliphatic regions are 
dominated by various metabolites, containing numer-
ous resonances from amino acids like isoleucine, 
leucine, valine, lysine, etc, TCA intermediates such as 
lactate and others metabolites. The low field region 
represents chemical shifts of the aromatic nucleoside 
and ribose signals as well as shows the aromatic 
amino acids. Moreover, inspection the spectra of cell 
extract revealed some obvious metabolic differences 
among the cell lines, and that differences in some 
metabolites concentrations were linked to major 
alterations in metabolisms which occur in tumori-
genic cells (Figure 1A & Figure 1B). Notably, the 
compositional changes in CM reflect not only 

consumption of nutrients but also the physiological 
function of the cells. The NMR spectra of CM were 
characterized by various necessary nutritional 
components including amino acids and glucose for 
the cellular growth (Figure 1C & Figure 1D). 
Metabolic end-products and intermediates, such as 
the intermediates of glycolysis were also observed. 
However, the spectra of CM exhibited almost similar 
profiles possibly because both MHCC97L and 
MHCC97H are high malignancy cell lines despite of 
different metastatic potentials. Therefore, more 
precise and detailed information need to be confirmed 
by further supervised and unsupervised analyses so 
as to determine differences between these cell types. 

Determination of characteristic metabolites 
for HCC cells 

In order to seek possible outliers and determine 
how well these metabolites correlate with the 
metastatic potential of HCC cell lines, we carried out 
PCA on the 1H NMR spectra obtained from the cell 
extracts and CM. The PCA is based on unsupervised 
analysis and the scores plot exhibited different trends. 
Notably, plot (PC1 and PC2) of cell extract showed 
that there were significant differences between cell 
lines with low and high metastatic potentials (Figure 
2A), while CM samples exhibited slight overlap after 
incubating with MHCC97L and MHCC97H cell lines 
(Figure 2B). Even so, some significantly discrimina-
tory metabolites could be identified by supervised 
analysis from OPLS-DA models (Figure 3). 
Permutation tests with 200 iterations were then 
performed to assess the possibility of model over 
fitting. The obtained results (Figure 4) indicated that 
the models were reliable and possessed pertinent 
predictive capability. According to the OPLS-DA 
scores and corresponding loading plots, a series of 
discriminating metabolites were identified between 
MHCC97L and MHCC97H cell lines. Based on these 
discriminatory metabolites, relative concentrations 
were calculated by peak integration and then 
compared by Student’s t-test analysis for further 
determination of characteristic metabolites. 

Pathway analysis based on characteristic 
metabolites 

With the help of KEGG online database, the 
metabolic networks of HCC cell lines with different 
metastatic potentials could be rationally derived. As 
shown in Figure 5, based on characteristic metabolites 
from cell extracts, we summarized metabolic path-
ways composing the characteristic metabolomic 
profiles of metastatic behaviors. The majority path-
ways that were determined to be under-concentrated 
in HCC metastasis were amino acids, including six 
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essential amino acids (EAAs). Among these EAAs, 
different concentrations of branched-chain amino 
acids (BCAAs, including isoleucine, leucine, and 
valine) were observed and together with lysine 
contributed to EAAs biosynthesis or degradation.  

Classification of HCC cells with different 
metastatic potentials 

Finally, characteristic metabolites derived from 
both cell extracts and CM were fed back to explore the 
ability in classifying these two cell lines via LIBSVM 
package. The task and type of LIBSVM was support 
vector classification (SVC) and radial basis function 
(C_SVC), respectively. Both sides are committed to 
construct optimal hyper-plane in a higher dimens-

ional space that maximal margin two classes. We 
randomly extracted 50% samples from each group as 
training sets and remainders were used as validation 
sets. As shown in Figure 6, the receiver operating 
characteristic (ROC) curve determined the overall 
performances during SVC-based prediction. The area 
under the curve (AUC) was 0.75 and 0.94 for cell 
extracts and CM models, respectively, whereas the 
AUC for a perfect model would be 1.00. The result 
showed that both models here performed robustly, 
while CM model performed with better robustness. 
These proposed models acquired different perform-
ance in both sensitivity and specificity. 

 

 
Figure 1. Representative 1H NMR spectra of cell extracts and cultured media from MHCC97L (A and C) and MHCC97H (B and D) cell lines. 

 

 
Figure 2. Scores plots in PCA analysis for cell extracts and cultured media from MHCC97L versus MHCC97H. A cell extracts; B cultured media. 
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Figure 3. Scores and loading plots for determination of metabolites in cell extracts and cultured media responsible for the metabolic variations between MHCC97L 
and MHCC97H cell lines via OPLS-DA analyses. A cell extracts (R2X=69.3%, R2Y=0.868, Q2=0.517, P<0.0001); B cultured media (R2X=42.8%, R2Y=0.777, Q2=0.460, 
P<0.0001). 

 
Figure 4. Validation plots of the OPLS-DA models, generated from the permutation tests which were randomly permuted 200 times with the first three 
components. A cell extracts; B cultured media. The green triangle and blue square are R2Y and Q2 standing for explained variance and predictive ability of model, 
respectively. 

 

Discussion 
Although both MHCC97L and MHCC97H cells 

are high metastatic cell lines, MHCC97H exhibits 
stronger metastatic potential than MHCC97L from 
physiological aspect. Increased acetate and formate 
concentrations were observed in low metastatic 
MHCC97L compared to the high metastatic MHCC9 
7H. It was reported that such observation is possibly 
due to enhanced lipid metabolism, as demonstrated in 
human HCC subjects [24]. By supervised and unsup-
ervised analysis, some significantly discriminatory 
metabolites were identified and how well these 
metabolites correlate with the metastatic potentials of 

HCC cells were also determined. As a result, 
metabolites considered significant (P<0.05) were 
included in the final list of characteristic metabolites, 
as shown in Table 2 and Table 3 for cell extracts and 
CM sample, respectively. These characteristic 
metabolites were considered to be responsible for 
alterations due to different metastatic potential. 

According to Table 2, most of the amino acids 
including leucine, methionine, phenylalanine, and 
valine decreased in MHCC97H cells, revealing some 
alterations of amino acid metabolisms related to high 
metastatic potential. On the other hand, it was 
interesting that the isoleucine level increased in 
MHCC97H cell line, but the reason remained unclear. 
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We think levels of certain amino acids may infect by 
transport type and ability from media into cells. There 
is evidence that transport activity may affect cell 
growth and proliferation. Hepatoma cells were 
proved to transport specific amino acids with 
different velocity [25, 26]. Higher levels of glucose and 
glutamate revealed higher consumption of glucose 
through glycolysis in MHCC97H. Some additional 
characteristic metabolites were also identified, among 
which lower levels of formate, methylmalonate, and 
trimethylamine were observed in MHCC97H, 
suggesting some metabolic differences. Therefore, we 
assume that lower levels of amino acids may become 
a common feature for high metastatic potential cell 
line. Furthermore, metabolites in Table 3 reflected 
consumption of nutrients or release of products 
between cells and media. Cells seemed to consume 
unequal concentrations of glucose and several 
essential amino acids like leucine, tryptophan, and 
tyrosine. Meanwhile extensive products such as 
glutamate, lactate and phosphocholine were released 
to media. Lower level of glucose in CM of MHCC97H 
cells than that of MHCC97L cells indicated that more 
glucose was consumed by energy metabolism to 
support active growth of cells. It is unsurprising 
because high metastatic cells are supposed to 
consume more energy. Notably, as precursor 
metabolite of choline, phosphocholine has been 
proved to be elevated in human hepatic tumors [27], 
and here it was filtered as characteristic metabolites 
between low and high metastatic cells. Therefore it 
may demonstrate and further confirm some cellular 
metabolism alterations related to metastasis. 
According to earlier discussions above, the ability on 
nutrient uptake varied from low and high metastatic 
cells, especially for glucose and amino acids. Thus it is 
suggestive that altered amino acid metabolisms and 
energy metabolism would become significant in 
different metastatic cells and, consequently these 
characteristic metabolites may be filtered as potential 
biomarkers of HCC from cell line aspect. Besides, the 
corresponding biochemical pathways responsible for 
metastasis features will be helpful to understand the 
metastatic process of HCC cells. 

During the pathway analysis, the BCAAs were 
involved in anaplerosis, protein synthesis or 
catabolizing into sources for glucose and lipid 
production during tumor cell proliferation and 
growth. The resulting products may infect proteolysis 
and cell cycle progression related to cancer 
development or cachexia [28]. According to our 
previous study, the present result further confirmed 
their critical role in contribution to HCC metastasis 
progression [29]. The exploration of phenylalanine 
metabolism could also be involved in anaplerosis, and 

together with 2-oxoglutarate from TCA cycle for 
further conversion to pyruvate [30]. Interestingly, 
decreased phenylalanine level was observed in 
MHCC97H compared with that of MHCC97L, 
indicating that abnormal aromatic amino acid 
metabolism occurred in MHCC97L. In contrast, others 
also reported a decreased level in patients with acute 
hepatitis and this decrease was attributed to low level 
of biosynthesis precursors [31]. According to these 
amino acid metabolism features, MHCC97H cells 
were typically accompanied by BCAAs and EAAs 
metabolisms and may progress to high metastasis 
with certain molecular events. 

 

Table 2. Relative concentrations of cell extract-derived 
characteristic metabolites. 

Metabolite MHCC97L MHCC97H 
Formate 7.64±1.13a 4.02±0.34 
β-Glucose 1.74±0.83 2.82±1.49 
Glutamate 17.82±6.30 23.81±7.53 
Glycerol 7.75±2.24 11.36±3.15 
Isoleucine 15.35±5.43 17.41±5.50 
Leucine 26.78±8.43 14.17±4.39 
Lysine 25.35±8.85 45.85±13.52 
Methionine 4.51±1.59 1.35±0.41 
Methylmalonate 36.06±8.74 12.00±1.98 
Phenylalanine 3.70±1.31 2.90±0.75 
Trimethylamine 2.17±0.77 0.53±0.17 
Valine 12.54±2.88 4.51±1.43 
a The relative concentrations of metabolites are presented as mean±SE of the 
integration value of the characteristic resonance of each metabolite 

Table 3. Relative concentrations of CM-derived characteristic 
metabolites. 

Metabolite MHCC97L MHCC97H 
α-Glucose 36.19±0.68a 34.33±0.41 
β-Glucose 33.27±0.67 31.96±0.36 
Glutamate 9.45±0.19 9.29±0.10 
Lactate 59.12±1.05 52.46±0.47 
Leucine 9.70±0.83 9.54±0.09 
Phenylalanine 1.38±0.03 1.31±0.02 
Phosphocholine 8.30±0.16 8.00±0.09 
Succinate 1.97±0.05 1.91±0.03 
Tryptophan 8.76±0.20 8.45±0.09 
Tyrosine 1.80±0.05 1.73±0.03 
a The relative concentrations of metabolites are presented as mean±SE of the 
integration value of the characteristic resonance of each metabolite 
 

 
Notably, the β-glucose level reflects alteration of 

energy production. Elevated glucose suggested high 
consumption of glucose by MHCC97H in response to 
more active aerobic glycolysis or the Warburg effect 
[32]. The other mediate, glycerol was up-regulated 
and also involved in energy metabolism like 
glycerolipid and galactose metabolisms. In addition, 
elevated glutamate may suggest alternative sources of 
carbon and nitrogen, which was in agreement with 
previous report from HCC tissues [33, 34]. In general, 
MHCC97H cell line induced more active events than 
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MHCC97L from energy and amino acids 
metabolisms. Our result confirmed this and further 
suggested critical role of characteristic metabolites in 
supporting cellular metastasis progression. Finally, 
the ROC analysis showed that SVC algorithm based 
on characteristic metabolites data sets performed 
robustly. The results emphasized again different 
biological characterization between low and high 

metastatic HCC cell lines accountable for 
metabolomics profiles. Nevertheless, the potential 
and extend of transforming characteristic metabolites 
to disease biomarkers still need to be tested in future 
clinical applications. Further metabolic analysis 
associated with different metastatic HCC subjects 
should be necessary for exploring disease-related 
biomarkers. 

 

 
Figure 5. Schematic diagram of metabolic pathways associated with metastatic potential. The metabolites in yellow backgrounds are the characteristic metabolites, 
and the corresponding metabolic pathways are demonstrated in the red box. Relative levels of characteristic metabolites within these pathways are also shown. 1 and 
2 stand for cell extracts taken from MHCC97L and MHCC97H, respectively. 

 

 
Figure 6. Classification of MHCC97L and MHCC97H cells based on characteristic metabolites. A cell extracts; B cultured media. The ROC curve of SVC classifier, 
as well as the sensitivity, specificity, AUC, and diagnostic reference line are shown. 
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Conclusions 
In summary, NMR-based metabolomic techni-

ques were used to identify the characteristic metabolic 
profiles from cell extracts and CM of different 
metastatic HCC cell lines. The NMR spectra of both 
MHCC97L and MHCC97H exhibited almost similar 
spectral profiles, including various signals from 
necessary nutritional components and metabolic 
intermediates. A series of characteristic metabolites 
were determined from both cell extracts and CM. 
Notably, altered amino acid metabolisms and energy 
metabolism were revealed in high metastatic MHCC 
97H cell line. The corresponding metabolic pathways 
confirmed relevance for molecular mechanisms 
composing characteristic metabolomic profiles of 
metastatic progression. The BCAAs metabolisms 
related to amino acids biosynthesis and degradation 
were involved and the resulting products may infect 
proteolysis and cell cycle progression during cancer 
development or cachexia. According to the amino 
acid metabolism features, MHCC97H cell line was 
typically accompanied by BCAAs and EAAs 
metabolisms, so basically MHCC97H cell line could 
induce more active events than that of MHCC97L to 
progress to high metastasis. The characteristic 
metabolites were used to explore the ability in 
classifying these two cell lines via SVC algorithm. The 
result showed that all models performed robustly, 
while CM model performed with better robustness. 
Our results provide evidence that metabolic analysis 
of cell extract and media are able to understand 
metastatic characteristics accountable for biological 
properties, and will be helpful for the determination 
of metabolic markers for hepatocellular carcinoma. 
Consequently the proposed characteristic metabolites 
may be filtered as metastatic potential biomarkers of 
HCC from cell aspect. 
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