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Abstract

Purpose: To assess the performance and limitations of contour propagation with

three commercial deformable image registration (DIR) algorithms using fractional

scans of CT‐on‐rails (CTOR) and Cone Beam CT (CBCT) in image guided prostate

therapy patients treated with IMRT/VMAT.

Methods: Twenty prostate cancer patients treated with IMRT/VMAT were selected

for analysis. A total of 453 fractions across those patients were analyzed. Image

data were imported into MIM (MIM Software, Inc., Cleveland, OH) and three DIR

algorithms (DIR Profile, normalized intensity‐based (NIB) and shadowed NIB DIR

algorithms) were applied to deformably register each fraction with the planning CT.

Manually drawn contours of bladder and rectum were utilized for comparison

against the DIR propagated contours in each fraction. Four metrics were utilized in

the evaluation of contour similarity, the Hausdorff Distance (HD), Mean Distance to

Agreement (MDA), Dice Similarity Coefficient (DSC), and Jaccard indices. A subfac-

tor analysis was performed per modality (CTOR vs. CBCT) and time (fraction). Point

estimates and 95% confidence intervals were assessed via a Linear Mixed Effect

model for the contour similarity metrics.

Results: No statistically significant differences were observed between the DIR Pro-

file and NIB algorithms. However, statistically significant differences were observed

between the shadowed NIB and NIB algorithms for some of the DIR evaluation

metrics. The Hausdorff Distance calculation showed the NIB propagated contours

vs. shadowed NIB propagated contours against the manual contours were

14.82 mm vs. 8.34 mm for bladder and 15.87 mm vs. 11 mm for rectum, respec-

tively. Similarly, the Mean Distance to Agreement calculation comparing the NIB

propagated contours vs. shadowed NIB propagated contours against the manual

contours were 2.43 mm vs. 0.98 mm for bladder and 2.57 mm vs. 1.00 mm for rec-

tum, respectively. The Dice Similarity Coefficients comparing the NIB propagated

contours and shadowed NIB propagated contours against the manual contours were

0.844 against 0.936 for bladder and 0.772 against 0.907 for rectum, respectively.

The Jaccard indices comparing the NIB propagated contours and shadowed NIB
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propagated contours against the manual contours were 0.749 against 0.884 for

bladder and 0.637 against 0.831 for rectum, respectively. The shadowed NIB DIR,

which showed the closest agreement with the manual contours performed signifi-

cantly better than the DIR Profile in all the comparisons. The OAR with the greatest

agreement varied substantially across patients and image guided radiation therapy

(IGRT) modality. Intra‐patient variability of contour metric evaluation was insignifi-

cant across all the DIR algorithms. Statistical significance at α = 0.05 was observed

for manual vs. deformably propagated contours for bladder for all the metrics except

Hausdorff Distance (P = 0.01 for MDA, P = 0.02 for DSC, P = 0.01 for Jaccard),

whereas the corresponding values for rectum were: P = 0.03 for HD, P = 0.01 for

MDA, P < 0.01 for DSC, P < 0.01 for Jaccard. The performance of the different

metrics varied slightly across the fractions of each patient, which indicates that

weekly contour propagation models provide a reasonable approximation of the daily

contour propagation models.

Conclusion: The high variance of Hausdorff Distance across all automated methods

for bladder indicates widely variable agreement across fractions for all patients.

Lower variance across all modalities, methods, and metrics were observed for rec-

tum. The shadowed NIB propagated contours were substantially more similar to the

manual contours than the DIR Profile or NIB contours for both the CTOR and CBCT

imaging modalities. The relationship of each algorithm to similarity with manual con-

tours is consistent across all observed metrics and organs. Screening of image guid-

ance for substantial differences in bladder and rectal filling compared with the

planning CT reference could aid in identifying fractions for which automated DIR

would prove insufficient.

K E Y WORD S
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1 | INTRODUCTION

Since 1983, only lung and bronchus cancer has caused more cancer

deaths in men than prostate cancer.1 Recently, survival rates have

increased due to advancements in detection and treatment meth-

ods.2,3 Development in supporting technologies for external beam

radiation therapy such as adoption of 3D‐computed tomography

(CT) imaging, multileaf collimators, and advanced planning software

has allowed for the clinical implementation of intensity‐modulated

radiotherapy (IMRT) for the treatment of prostate cancer.2 The stan-

dard of care now incorporates fractional image guidance for external

beam radiation therapy in the form of CT, cone beam computed

tomography (CBCT), radiofrequency waves with fiducial markers, or

ultrasound.2,4 Fractional image guidance allows for precise transla-

tional corrections of patient position and alignment prior to each

fractional treatment.4–9

Adaptive radiotherapy (ART) utilizes fractional image guidance to

improve conformity between the planned dose, as projected from

the planning CT (pCT), and the actually delivered dose throughout

the course of the treatment.8,10 Due to the steep fall‐off of the dose

distribution around the target, which is created to spare the organs‐
at‐risk (OARs), a robust verification of dose delivery and quality

assurance of the inverse treatment planning process is

required.4,8,11–17 The high dose gradients characterizing IMRT and

volumetric‐modulated arc therapy (VMAT), necessitate accurate

delineation of the OARs, which are in close proximity to the target

volume. This demand for accurate delineation highlights the need for

consideration of inter‐fractional changes in organ position, alignment,

and deformation. During treatment of prostate cancer, the degree of

filling of the bladder and rectum can cause dramatic changes to size

and shape of these organs throughout treatment. In order for ART

to be most effective, consideration must be given to the specific

anatomy for which each fraction of treatment is administered.

IMRT utilizes fractional alignment images and fiducial markers to

ensure accurate localization and alignment of the patient prior to

treatment. Rigid registration algorithms can provide translational and

rotational corrections in patient alignment between planning CT and

fractional treatments. Deformable image registration (DIR) algorithms

provide superior agreement between two registered images com-

pared to rigid registration, allowing for accurate transfer of contours
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of interest on one image set to another by accounting for internal

organ deformations and specific fractional anatomy in a manner that

rigid registration alone cannot.

Recent studies have assessed the delineation of OARs in pros-

tate cancer for single‐modality image guidance IMRT such as CT‐on‐
Rails (CTOR).18–21 Contour propagation algorithm development for

multi‐modality environments in the treatment of prostate cancer is

less common, likely due to the challenges associated with the infe-

rior soft tissue contrast provided in fractional CBCT image guidance.

One recent study involving multiple imaging modalities, incorporated

manual contour‐based approaches with DIR to generate propagated

contours.22 In this study, the performance and limitations of a DIR

algorithm, which was developed on a commercial platform were

assessed on fractional CT image guided patients as well as fractional

CBCT image guided patients. Furthermore, two fully automated DIR

methods were compared against a shadowed contour‐based and DIR

algorithm regarding their similarity to manually delineated contours.

This study aims to assess the performance and limitations of contour

propagation of three DIR algorithms implemented with a commercial

platform for image guided prostate therapy patients treated with

IMRT/VMAT.

2 | MATERIAL AND METHODS

2.A | Dataset characterization

Ten prostate cancer patients treated with IMRT and 10 prostate

cancer patients treated with VMAT were selected for analysis. Image

guidance was applied at every fraction for all patients. For the 10

IMRT patients, the CT‐on‐rails (CTOR) system was used for image

guidance, whereas the remaining 10 VMAT patients were treated

using the kV‐CBCT modality of the Elekta Versa system. Each

patient’s initial data included the planning CT (pCT) with contours

for the targets and OARs and CTOR or CBCT scans. The image reso-

lution of the fractional CTs was 0.98 mm × 0.98 mm with 3 mm

slice thickness, while the fractional CBCTs were acquired at 1 mm ×

1 mm resolution with 3 mm slice thickness. A total of 453 fractions

across those 20 patients were analyzed using bladder and rectum as

OARs. The patients included in this study did not receive special

instructions regarding bladder filling.

2.B | Manual fractional contour generation

Image data were imported to MIM version 6.8 beta (MIM Software,

Inc., Cleveland, OH). For 10 of the patients (five CTOR and five

CBCT), the contours of bladder and rectum were manually delin-

eated on each fraction by a single radiation oncologist. The remain-

ing 10 patients had manually delineated contours on the initial five

fractions and weekly thereafter.

2.C | Automated registration and contour
propagation

An initial Rigid Image Registration (RIR) was applied for each frac-

tion with the pCT as reference. A DIR processing workflow devel-

oped in collaboration with MIM Software, Inc., was implemented.

The workflow employs three algorithms in parallel for the DIR pro-

cess: two fully automated algorithms that are part of the MIM suite

(DIR Profile algorithm and a normalized intensity‐based (NIB) DIR

algorithm), and a shadowed NIB contour propagation model that

was developed in conjunction with MIM (described in the next sub-

section). DIR Profile is a nonaffine constrained intensity‐based, free‐
form deformable registration algorithm that utilizes a multi‐resolu-
tion control‐point approach when determining appropriate corre-

sponding locations in the target volume. The NIB DIR algorithm

applies normalization of intensity values to each target volume

before implementing a nonaffine intensity‐based objective function

defining the registration. The workflow registers each fraction for

which manually delineated contours were generated with the pCT

as reference. The resulting deformation vector field for each regis-

tration was applied to propagate the contours for the OARs bladder

and rectum from the pCT to each daily image. A flowchart depicting

a graphical representation of the data processing procedure is

shown in Fig. 1. Figure 2 provides examples of typical manually

drawn contours and propagated contours from the DIR Profile and

NIB algorithms.

2.D | Shadowed NIB contour propagation

This algorithm employs contour‐based approaches as well as NIB

DIR. After the manual delineation of bladder and rectum on the

F I G . 1 . Flow chart Procedure. Graphical representation of the data processing undergone for each patient outlining the stages necessary to
compare delineation methods.
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image guided radiation therapy (IGRT) scans, a contrast enhance-

ment of the interior regions of the defined volumes was applied

through the addition of a scalar value to the Hounsfield Unit (HU)

values of those regions (voxels). Rigid registration and NIB DIR

were subsequently applied between each fractional scan and the

respective pCT and the contours of bladder and rectum were prop-

agated to each fractional image via the resulting deformation vector

field. Figure 3 depicts a typical example of contours produced by

this procedure against directly applied NIB and manually delineated

contours.

2.E | Contour set comparison

Manual delineation and the three contour propagation DIR algo-

rithms applied (DIR Profile, Normalized Intensity‐Based, and Shad-

owed Normalized Intensity‐Based) for the OARs bladder and rectum

yielded six sets of comparisons for each OAR outlined below:

1. Manual vs. DIR Profile Bladder

2. Manual vs. NIB Bladder

3. Manual vs. Shadowed NIB Bladder

4. Manual vs. DIR Profile Rectum

5. Manual vs. NIB Rectum

6. Manual vs. Shadowed NIB Rectum

Four metrics for evaluation of contour similarity were utilized in

the comparison of propagated contour sets against one another and

the manually drawn contour sets. The metrics are defined as follows:

1. Hausdorff Distance (HD): The greatest distance of a point in one

set to the closest point in another set, defined for single‐sided
comparisons as

HDSmax(A,B) ¼ maxa ∈ A dða; B)f g (1)

where A and B are sets of points, a is a single point in set A, d(a, B)

denotes the minimal distance between point a and any point in set

B, and HDSmax is the single‐sided Hausdorff distance. Symmetric

Hausdorff distance is calculated by:

HDmaxðA,BÞ ¼ max HDSmaxðA,BÞ; HDSmaxðB,AÞf g (2)

A higher HD between two sets A and B indicates the existence

of pockets of dissimilarity between the two sets, whereas a HD of

zero indicates that the sets A and B are identical. Symmetric Haus-

dorff distance was utilized in all calculations and analysis for this

study.

2. Mean Distance to Agreement (MDA): Mean voxelwise compar-

ison of distance between two associative points in the contour

sets A and B, defined by.

F I G . 2 . DIR Profile Propagated Contours
against Manual Delineation. Fractional
image guidance CT for one CTOR patient
fraction with propagated contours for
bladder (yellow) and rectum (brown) shown
against manually delineated contours for
bladder (orange) and rectum (purple) in the
axial (left), sagittal (center), and coronal
(right) planes.

F I G . 3 . Contour Propagation Model example. Left: Original CBCT images data for the first fractional treatment of a prostate cancer patient
treated with the Versa system. Contours of the bladder and rectum shown in red are the contours manually delineated in the CBCT. Contours
in yellow are NIB contours propagated from the planning CT structures. Right: The same CBCT image data following contrast enhancement via
the manually drown contours (red) that enables the shadowed NIB contour propagation (yellow).
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MDA A,Bð Þ ¼ meana ∈ A; b ∈ B d(a, B) ud (b,A)f g (3)

and denotes a measure of average similarity between two contour

sets. A higher MDA between two sets A and B indicates the exis-

tence of regions of dissimilarity between the two sets, where a

MDA of zero indicates that the sets A and B are identical. Because

MDA represents an average across all points in the sets A and B,

MDA is less sensitive than HD to small pockets of high dissimilarity.

3)Dice Similarity Coefficient (DSC): Coefficient describing similarity

of two regions by relating the nonoverlapping volume and the vol-

umetric sum of the regions of interest, defined for volumes V1 and

V2 by.

DSC ¼ V1; V2ð Þ ¼ 2 V1∩V2j j= V1j j þ jV2j (4)

where a DSC of zero indicates two volumes that do not overlap and

a DSC of one indicates that the volumes V1 and V2 are identical.

4)Jaccard Index (JI): Ratio of the volume of overlap and the com-

bined volume of two volumes V1 and V2, defined by

JI ¼ V1∩V2j j=jV1∪V2j (5)

where a JI of zero indicates two volumes that do not overlap and a

JI of one indicates that the volumes V1 and V2 are identical.

The described metrics were calculated for each of the six com-

parison sets. A Linear Mixed Effect statistical model was performed

for all six comparisons (Appendix). The model established 95% Confi-

dence Intervals for each of the four metrics in every comparison and

included subfactor analysis for fractional image guidance type

(CTOR/CBCT) and fractional dependency.

2.F | Statistical analysis

We analyzed the difference of contour similarity metrics (HD, MDA,

DSC, JI) between different algorithms (DIR, NIB, shadowed NIB)

against manual contouring, using linear mixed effect (LME) models.

Given an algorithm (e.g., DIR) and a metric (e.g., DSC), there was one

observed subfactor metric value per subject per fraction of radio-

therapy. The observed metric values were clustered within patients

and were thus correlated. The LME model was used to account for

such correlated data. Specifically, in the LME model, the metric value

(e.g., DSC) was the response variable, and the fixed effect was the

algorithm, DIR or manual if we compared DIR with manual, and the

random effect was the subject. In addition, in the LME model, we

added fraction as a covariate to adjust its effect, and we assumed

the random errors over fractions (within a patient) followed an auto‐
correlation structure, AR(1). The difference between an algorithm

and the manual method was claimed as significant if the correspond-

ing estimated regression coefficient was significantly different from

0, based on the Wald‐type test at a two‐sided alpha level of 0.05.

The LME model analysis was conducted using SAS 9.4 (SAS Institute

Cary, NC).

3 | RESULTS

The mean values of the metrics calculated are tabulated by patient

for each OAR and DIR algorithm (Appendix A). The values of the

metrics show that the performance of the DIR Profile is worse than

that of the NIB DIR against the manual contours (when the patients

of both the CBCT and CTOR are considered together), however

their differences were not statistically significant (Fig. 4). The com-

parison metrics of the shadowed NIB DIR method against the man-

ual contours show significantly greater similarity than the other two

contour propagation models (Fig. 4). The performance relationship of

each method compared with manual contours (i.e., DIR Profile, NIB

DIR, shadowed NIB DIR) is consistent across both OAR (bladder or

rectum) and comparison metrics (e.g., distances). In Figs. 4–6, which

describe analysis of contour propagation models compared against

manual delineation, HD and MDA decrease with greater agreement

between contour sets while DSC and JI increase. The shadowed NIB

propagated contours were substantially more similar to the manual

contours than the DIR Profile or NIB contours for both CTOR and

CBCT imaging modalities (Figs. 4–6).
While the NIB propagated contours outperformed on average

the DIR Profile propagated contours relative to the manual contours

for the CTOR modality, the DIR Profile produced superior results for

the CBCT modality compared to NIB. However their differences

were not statistically significant (Figs. 5, 6). Further, the relationship

of each algorithm to similarity with the manual contours is consistent

across all the observed metrics and organs for each IGRT modality.

While all algorithms produced superior performance for the CTOR

modality compared to the CBCT modality, these differences were

not statistically significant (Figs. 5, 6). For Fig. 4 and Fig. 5 (total

cohort and CTOR patients only, respectively), every comparison met-

ric indicated the same relationship of performance of the contour

propagation models relative to manual delineation. For the CBCT

patient cohort, Fig. 6 shows that while significantly greater agree-

ment was shown for shadowed NIB with manual delineation than

for the fully automated contour propagation models, the perfor-

mance of the two fully automated contour propagation models did

not statistically differ from one another, and point estimates of the

metrics do not all indicate superior agreement of the same model

relative to manual delineation.

Table 1 shows the average differences between the propagated

contours against the manual contours for each of the evaluation

metrics. With the exception of DSC and JI comparing DIR Profile

propagated contours against manual delineation for the bladder,

greater similarity to manual contours were observed for the CTOR

cohort compared to the CBCT cohort. Table 2 displays the p‐values
associated with the subfactor analysis for CBCT and fraction depen-

dency based on the Linear Mixed Effect model analysis. In the com-

parisons of the subfactor metrics of NIB vs manual, and Shadowed

NIB vs manual, we found significant differences (P‐value < 0.05) in

12 of the 16 imaging modality tests. We did not find any significant

difference between DIR and manual contours in subfactor metrics.

Although we controlled for fraction in the LME analysis, subfactor
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F I G . 4 . Point Estimates and Confidence Intervals for all patients (CTOR and CBCT) and metrics. Point estimates are shown as bars, where
the 95% Confidence Intervals are shown as error bars for each point estimate. In each subplot, the results for the bladder (left) and rectum
(right) for each contour set comparison are shown. Top left: Hausdorff Distance. Top right: Mean Distance to Agreement. Bottom left: Dice
similarity Coefficient ratios. Bottom right: Jaccard Index ratios. This analysis includes all the patients (CTOR and CBCT).

F I G . 5 . Point Estimates and Confidence Intervals for all patients (CTOR) and metrics. Point estimates are shown as bars, where the 95%
Confidence Intervals are shown as error bars for each point estimate. In each subplot, the results for the bladder (left) and rectum (right) for
each contour set comparison are shown. Top left: Hausdorff Distance. Top right: Mean Distance to Agreement. Bottom left: Dice similarity
Coefficient ratios. Bottom right: Jaccard Index ratios. This analysis includes all the CTOR patients.

HAMMERS ET AL. | 19



metrics did not vary with fraction in all comparisons, except for the

comparison in MDA between Shadowed NIB vs manual for rectum

(P‐value = 0.05).

Figure 7 displays the distribution of the different metric evalua-

tions for the CTOR patients with the largest contour disparity

between delineation methods (DIR Profile). Similarly, Fig. 8 displays

the metric evaluations for the CTOR patient with the smallest con-

tour disparity between delineation methods (Shadowed NIB DIR).

Figure 9 displays the metric evaluations for the CBCT patient

with the largest contour disparity between the manual and auto-

mated delineation methods (DIR Profile). Figure 10 displays the met-

ric evaluations for the CBCT patient with the smallest contour

disparity between manual and automated delineation methods. The

relationship of agreement between the contour sets remains nearly

constant over all the measured fractions. Nearly all the fractions for

each patient possess greater agreement for the same OAR over the

other, though which OAR possesses greater agreement varies sub-

stantially across patients and image guidance modality. Intra‐patient
variability of contour metric evaluation was insignificant (Figs. 7–10).

While the four measured contour comparison metrics are sensi-

tive to different characteristics of similarities and dissimilarities

between compared sets, a great deal of agreement among them was

observed across all the patients. Because metric performance varies

only slightly across fractions for a patient, weekly contour propaga-

tion models provide a reasonable approximation of fractional contour

propagation models (Fig. 4).

Figure 4 depicts the 95% confidence intervals for the evaluated

metrics for bladder and rectum for each contour propagation method

against manually delineated contours. The Point estimates revealed

the same relationship of algorithm similarity across all the metrics.

The greater variability in HD and MDA against DSC and JI across all

the patients indicates regions of local contour set dissimilarities,

though average similarity over the entire contour set remains com-

paratively constant (Fig. 4). Greater contour set agreement observed

for CTOR patients as opposed to CBCT patients is driven by the

superior normalized‐intensity tissue contrast inherent to CTOR

image guidance modality. A greater number of metrics for intensity‐
based algorithms reported differences for rectum than for bladder

(Table 1). This is indicative of the greater tissue contrast between

bladder and surrounding tissues on CT modalities compared to rec-

tum.

4 | DISCUSSION

The high variance of Hausdorff distance for bladder compared to the

results for the rectum indicates their difference regarding the dissim-

ilarity of the deformed and manually contours across all fractions.

This appears to result from fractions for which large deformations of

the bladder caused by variable degrees of filling are not correctly

captured by the DIR algorithm. The patient treatment protocol did

not indicate the preferred filling state of the bladder or rectum

F I G . 6 . Point Estimates and Confidence Intervals for all patients (CBCT) and metrics. Point estimates are shown as bars, where the 95%
Confidence Intervals are shown as error bars for each point estimate. In each subplot, the results for the bladder (left) and rectum (right) for
each contour set comparison are shown. Top left: Hausdorff Distance. Top right: Mean Distance to Agreement. Bottom left: Dice similarity
Coefficient ratios. Bottom right: Jaccard Index ratios. This analysis includes all the CBCT patients.
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beyond avoidance of the extreme states of empty or full. Stricter

control of bladder and rectal fill status in modern treatment proto-

cols would be likely to improve the performance of delineation algo-

rithms in contour propagation relative to the “gold standard” of

manual delineation by a physician. The large deformations that result

from variable fill status of the bladder and rectum may cause the rel-

atively high HU gradient present at the bladder wall to exceed the

proximity limitation of the DIR algorithm intended to prevent exces-

sive image warping during registration. In these cases, the resulting

contour generated through DIR more closely resembles a transposi-

tion of the original bladder delineation from the reference pCT. A

manual adjustment of the propagated contour is required to ensure

accuracy for the fractions exhibiting sufficiently large deformations

to bladder anatomy relative to the pCT. Lower variance across all

modalities, methods, and metrics were observed for the rectum,

most likely as a result of less volume deformation of the rectum in

fractional image guidance compared with the bladder.

In this study, in order to eliminate additional sources of uncer-

tainty (such as inter‐observer variability), the same radiation oncolo-

gists delineated the contours of bladder and rectum on all the IGRT

images. Furthermore, although intra‐observer variability was not

addressed or evaluated, it was not expected to be large. Usually,

inter‐observer variability is larger and may have a larger impact on

the accuracy of DIR due to the fact that DIR is affected significantly

by image quality and extent of organ deformation. The scanning set-

tings of both the CT‐on‐rails and the CBCT had been optimized for

clinical use. However, no preprocessing steps (such as resampling

volumes to isotropic spacing, CBCT artifact reduction) were applied.

In the DIR Profile and NIB processes the contours of bladder and

rectum were automatically created as part of the DIR workflow

However, as it was shown in this study, the accuracy of this opera-

tion heavily relies on image quality, which (especially in the case of

CBCT) is not adequate.

While the results of the comparisons against the manually delin-

eated contours were consistent across bladder and rectum, the per-

formance characteristics of the DIR algorithm methods varied. DIR

Profile comparison metrics were similar to those of NIB DIR for the

rectum, but three of the four calculated metrics indicated substan-

tially improved performance of the NIB DIR for the bladder over the

DIR Profile. Such improvement may be derived from the improved

applicability of NIB DIR in multi‐modality in addition to single‐modal-

ity environments. While the shadowed NIB DIR incorporates a man-

ual component that was expected to produce the significantly

improved performance characteristics, which it exhibited over the

fully automated methods, the comparison against a pure contour‐
based approach on a large database would provide further insight.

TAB L E 1 Average contour comparison metrics for the propagated contours against the manual contours per imaging modality for all patients.
The unit for the metrics HD and MDA is mm.

Comparison Modality
HD
Bladder

MDA
Bladder

DSC
Bladder

Jaccard
Bladder

HD
Rectum

MDA
Rectum

DSC
Rectum

Jaccard
Rectum

Manual vs. DIR Profile CT 18.40 4.47 0.729 0.589 16.37 2.96 0.737 0.593

CBCT 20.81 4.66 0.737 0.598 16.87 3.10 0.726 0.575

Manual vs. NIB CT 15.32 2.58 0.833 0.730 15.23 2.44 0.777 0.643

CBCT 22.57 4.68 0.713 0.573 18.49 3.29 0.710 0.557

Manual vs. Shadowed

NIB

CT 7.62 0.86 0.943 0.895 9.63 0.89 0.913 0.842

CBCT 12.24 1.51 0.906 0.833 11.25 1.31 0.879 0.785

CBCT, cone beam CT; DIR, deformable image registration; DSC, dice similarity coefficient; HD, Hausdorff distance; NIB, normalized intensity‐based;
MDA, mean distance to agreement.

TAB L E 2 Subfactor analysis in Linear Mixed Effect model. Every metric’s P‐values for the associated metrics are shown.

Comparison Subfactor
HD
Bladder

MDA
Bladder

DSC
Bladder

Jaccard
Bladder

HD
Rectum

MDA
Rectum

DSC
Rectum

Jaccard
Rectum

Manual vs. DIR Profile CTOR/

CBCT

0.68 0.80 0.87 0.90 0.72 0.84 0.54 0.44

Fraction 0.46 0.18 0.17 0.14 0.35 0.51 0.77 0.96

Manual vs. NIB CTOR/

CBCT

0.08 0.01 0.02 0.01 0.03 0.01 <0.01 <0.01

Fraction 0.60 0.64 0.49 0.25 0.58 0.37 0.34 0.30

Manual vs. Shadowed

NIB

CTOR/

CBCT

0.30 0.10 0.03 0.03 0.19 0.01 <0.01 <0.01

Fraction 1.00 0.48 0.32 0.38 0.06 0.05 0.18 0.19

CTOR, CT‐on‐rails; CBCT, cone beam CT; DIR, deformable image registration; DSC, dice similarity coefficient; HD, Hausdorff distance; NIB, normalized

intensity‐based; MDA, mean distance to agreement.

The statistically significant values (P‐value < 0.05) are shown in bold.
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F I G . 7 . Matric evaluations for the Largest‐Difference CTOR Patient using DIR Profile Propagation. The values of the metrics are shown for
each fraction and were derived by comparing the DIR Profile contour propagation with the manually delineated contours. The metrics that
were used are the Hausdorff Distance (top left), Mean Distance to Agreement (top right), Dice similarity Coefficient (bottom left), and Jaccard
Index (bottom right).

F I G . 8 . Matric evaluations for the Smallest‐Difference CTOR Patient using the shadowed NIB DIR Propagation. The values of the metrics
are shown for each fraction and were derived by comparing the shadowed NIB DIR contour propagation with the manually delineated
contours. The metrics that were used are the Hausdorff Distance (top left), Mean Distance to Agreement (top right), Dice similarity Coefficient
(bottom left), and Jaccard Index (bottom right).
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Contour‐based approaches may prove more similar to shadowed NIB

DIR in performance against manual delineation, but shadowed NIB

DIR is expected to provide useful characterization of the spatial

information in the image that pure contour‐based approaches are

unable to.

The Linear Mixed Effect statistical model applied to the generated

comparison metrics was selected in collaboration with a biostatistician

in order to most accurately establish estimation of the parameters

while accounting for the variability introduced by patients, image guid-

ance modality, time/fractional dependency, and manual contour

F I G . 9 . Metric evolution for the Largest‐Difference CBCT patient with DIR Profile Propagation. The values of the metrics are shown for
each fraction and were derived by comparing the DIR Profile contour propagation with the manually delineated contours.

F I G . 10 . Matric evaluations for the Smallest‐Difference CBCT Patient with shadowed NIB DIR. The values of the metrics are shown for
each fraction and were derived by comparing the shadowed NIB DIR contour propagation with the manually delineated contours.
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delineation. The standard errors calculated in the model represent the

combined effect of variability from these sources on the measured

metrics for comparison among the automated propagation models and

the manual contours they were designed to estimate. The expected

modality dependency was identified in many of the metrics derived

using the NIB DIR algorithms, while no observed modality dependency

was identified for the DIR Profile contours. The lack of modality

dependency for the DIR Profile results suggests that the internal

restrictions of the algorithm place stricter limits on the amount of

deformation allowed in the result.

In this study, the already installed of DIR algorithms of MIM

were used. A data preprocessing step was involved only in the shad-

owed NIB case where the density of the voxels inside bladder and

rectum was escalated to the density levels of bone. So, in this sense

the results presented in this study can be replicated by other MIM

users.

The automated contour propagation methods analyzed in this

study were compared against manually delineated contours for each

fraction. While the contour review by an expert physician may

reduce intra‐observer variance, the substantial volume of fractions

delineated prevented correction for inter‐observer variance. Further

analysis against consensus‐defined contours will be possible as a

result of the reduced volume associated with analysis on partial

datasets that represent a reasonable approximation of all patient

fractions due to the relatively small observed intra‐patient metric

variance. Screening of image guidance for substantial differences in

bladder and rectal filling compared with the planning CT reference

could aid in identifying fractions for which automated DIR would

prove insufficient.

5 | CONCLUSION

This study provides an analysis of the reliability and consistency of

automated and partially automated contour propagation methods

and aims at indicating the situations in which those methods are

insufficient. The shadowed NIB propagated contours were substan-

tially more similar to the manual contours than the DIR Profile or

NIB contours for both the CTOR and CBCT imaging modalities.

While manual delineation of the OARs on each fractional image

guidance in order to improve contour propagation is clinically infeasi-

ble, weekly fractional delineation of contours may be sufficient to

establish a representation of bladder and rectal anatomy that can

inform the accumulation of dose within the bladder and rectum dur-

ing that period of treatment. The relationship of each algorithm to

similarity with the manual contours is consistent across all observed

metrics and organs. Predicting fractions for which DIR algorithms are

unable to account for the changes relative to the planning CT could

indicate the situations where manual delineation is necessary. By

reducing the total volume of manual delineation to those fractions

for which it is required to ensure accuracy, the workload required

for adaptive radiotherapy and correction of treatment for internal

fractional deformations can be substantially reduced. While the

current “gold standard” approach of manual delineation is essential

for treatment planning, pursuit of an accurate fully automated con-

tour propagation algorithm for fractional image guidance is critical to

establishing a process that is robust to the uncertainties introduced

due to inter‐observer and intra‐observer variability in contour delin-

eation for large volumes of fractions.
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