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ABSTRACT: Forecasting oil production is crucially important in oilfield
management. Currently, multifeature-based modeling methods are widely
used, but such modeling methods are not universally applicable due to the
different actual conditions of oilfields in different places. In this paper, a
time series forecasting method based on an integrated learning model is
proposed, which combines the advantages of linearity and nonlinearity and
is only concerned with the internal characteristics of the production curve
itself, without considering other factors. The method includes processing
the production history data using singular spectrum analysis, training the
autoregressive integrated moving average model and Prophet, training the
wavelet neural network, and forecasting oil production. The method is
validated using historical production data from the J oilfield in China from
2011 to 2021, and compared with single models, Arps model, and
mainstream time series forecasting models. The results show that in the early prediction, the difference in prediction error between
the integrated learning model and other models is not obvious, but in the late prediction, the integrated model still predicts stably
and the other models compared with it will show more obvious fluctuations. Therefore, the model in this article can make stable and
accurate predictions.

1. INTRODUCTION
Oil is a crucial strategic resource that supports the sustained
development of humanity and the prosperity of nations. It plays
a vital role in advancing social progress and economic growth, as
well as enhancing national defense security.1 Effective
exploitation of this precious resource is of the utmost
significance.
Improving economic efficiency through efficient energy use is

a key aspect of oilfield production development. Maintaining a
stable and efficient rate of oil production is essential for
achieving this goal. Forecasting oilfield production serves as a
foundation for the scientific management of oilfields and the
creation of production plans.2 These forecasts can be utilized to
regulate oilfield production operations and adjust production
levels to meet the changing economic market demands. The
ultimate aim is to attain maximum economic benefits while
ensuring the effective utilization of oil and energy resources.
In the realm of oil production forecasting, the existing

literature primarily employs conventional reservoir engineering
methods and statistical techniques such as Arps3−6 and
autoregressive integrated moving average (ARIMA).7,8 How-
ever, these methods are limited by their reliance on linear
assumptions and are unable to identify the underlying nonlinear
properties of oil production data. As a result, relying solely on
these traditional, statistical, and econometric methods may
result in inadequate predictive performance. Thus, it is clear that

these traditional approaches are inadequate for oil production
forecasting.

With the advancements in forecasting algorithms,9 nonlinear
and artificial intelligence methods have gained increasing
popularity in oil production forecasting. Techniques such as
artificial neural networks (ANN),10,11 genetic algorithms,12 and
long and short-term memory (LSTM)13,14 have emerged as
popular approaches. Negash and Yaw11 proposed an ANN-
based prediction model for water flooding reservoirs.
AlKhammash12 developed an optimized gradient model for
crude oil production prediction that incorporates genetic
algorithms. Sagheer and Kotb13 applied a deep-length short-
time memory structure for time series oilfield production
prediction. Ning et al.15 treated production data as time series
data and investigated and compared three different algorithms to
address the limitations of traditional production forecasting
methods: ARIMA, LSTM, and Prophet. Ibrahim et al.16

employed various artificial intelligence techniques, including
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support vector machines (SVM) and random forests (RF), to
predict production from wells with a high gas−oil ratio and
water-cut. Khan et al.17 aimed to provide a straightforward and
widely applicable solution by conducting a comparative study
between artificial neuro fuzzy inference systems (ANFIS) and
SVM algorithms to accurately predict oil production from
artificially lifted wells. Al Dhaif et al.18 utilized ANFIS and
function neural (FN) techniques to predict surface production
from volatile oil and gas condensate reservoirs, enabling real-
time production forecasting without additional operational
costs.
However, these methods also have limitations. Nonlinear

prediction models based on artificial intelligence are often
computationally complex and can be prone to falling into “local
minima” or “overfitting”. To overcome these issues, hybrid
models have been proposed that combine the strengths of
different component models and improve the forecasting
performance. Liu et al.19 introduced a LSTM learning method
for set and empirical pattern decomposition. Guo et al.20

proposed a hybrid prediction model that combines an improved
grouped data processing method (GMDH) with a back-
propagation algorithm. A hybrid approach based on linear,
statistical, and machine learning models has been successfully
applied in many other fields21,22 but has not received sufficient
attention in well-production forecasting. This model combines
the advantages of both linear and nonlinear models to improve
the forecasting performance. The ARIMAmodel is currently the
best-known and most effective linear statistical model, which
filters out linear trends in time series well. At the same time,
machine learning models are suitable for the accurate estimation

of complex nonlinear relationships. Therefore, inspired by the
success of this hybrid prediction model, an integrated model is
proposed, which is based on singular spectrum analysis (SSA),23

ARIMA,24−26 Prophet,15 and wavelet neural network
(WNN),27,28 for predicting daily oil production. The proposed
method consists of the following main steps. First, considering
the randomness and uncertainty of the raw oil production data,
the SSA algorithm, a nonparametric time series preprocessing
technique with data-driven and adaptive features, is used in the
oil production data processing stage to extract and reduce noise
from the main features of the original production time series.
Second, the ARIMA model and the Prophet model are used as
base learners by using blending integrated learning. The ARIMA
model can well obtain periodic and trend information in the time
series, while the Prophet model is good at handling the outliers
and missing values in the time series. Finally, the WNNmodel is
used as an integrated model to integrate learners’ results. The
model can handle nonlinear problems well and avoids falling
into nonlinear optimization problems like local optimality.

The main contributions of this paper are as follows: (1)
theoretically, the effectiveness of the proposed model as a
convenient and superior method for production time series
forecasting is demonstrated. (2) Practically, a useful tool for
oilfield workers to handle complex oilfield production time
series is provided. The SSA algorithm effectively reduces noise in
time series data; the ARIMA method deals well with stable
decreasing curves; the Prophet method handles outliers and
missing values; and the WNNmethod avoids local optimization
problems. By integrating these models, this novel proposed

Figure 1. Flowchart of the model in this paper.
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method offers better performance when considering both linear

and nonlinear aspects.

2. METHODOLOGY

2.1. Framework for Integrated Forecasting Methods.

As shown in Figure 1, the integrated learning prediction method

proposed in this paper involves the following main steps: data

noise reduction, segmentation of data, base learner prediction,

and integrated prediction.

(1) The SSA algorithm is applied to extract the major features
of the original oil production data and apply denoising to
the data.

(2) The processed oil production data is partitioned into
train, validation, and test data sets; base learners are built
for the training set; and then the prediction results of the
base learners on the validation set are combined with the
real data in the validation set to form the learner data set.

(3) The ARIMA model and the Prophet model are used as
base learners. The ARIMA model is good for obtaining
periodic trend information in the oil production data, and
the Prophet model is good for dealing with outliers and
missing values in the oil production data.

(4) The WNN model was chosen as an integrated model to
integrate the learners’ results, which can handle nonlinear
problems well.

2.2. Data Noise Reduction. The first step in the proposed

integrated prediction method is data noise reduction. Here, the

SSA algorithm is applied to extract the main features of the raw

oil production data and reduce the noise in the data. By refining

and reconstructing the original time series signal, the SSA

effectively identifies its periodic and oscillatory components and

creates a new time series that retains the essence of the original

signal. This helps in mitigating the complexity of the prediction

model, leading to improved accuracy and validity of the oil

production prediction.
In general, the standard SSA algorithm is executed as follows:

(1) it serves as a segment of length N time series Y = {y1,y2, ···,

yN} for the embedding window width; (2) it performs singular

value decomposition; (3) it helps in grouping; and (4) it helps in

diagonal averaging. In particular, (1) and (2) are used to

decompose the original oil production sequence and (3) and (4)

are used to reconstruct the decomposed signal.
The pseudocode of the SSA algorithm is as follows.

2.3. Segmentation of Data. The processed yield data is
divided into three data sets: train, validation, and test. The
ARIMA and Prophet models are then constructed using the
train data set. The prediction results of these two models are
computed on the validation data set, and the label values in the
validation data set are combined to form a learner result data set.
This learner result data set is once again divided into train and
validation data sets, and the WNN model is constructed using
the train data set. The end of training for the WNN model is
determined based on the prediction results from the validation
data set. Finally, the prediction accuracy of the integrated model
is evaluated on the test data set.
2.4. Base Learner Prediction. In this study, ARIMA and

Prophet models are employed as base learners in the integrated
predictionmethod. The ARIMAmethod is shown to be effective
in capturing periodic and trend-related information present in
the time series data, while the Prophet model is demonstrated to
be well-suited for handling outliers and missing values in such
data.
2.4.1. ARIMA. The ARIMA model is a popular time series

forecasting technique that combines an autoregressive (AR)
term, a moving average (MA) term, and a differencing operation
to model and forecast the future values of a time series. The
ARIMA (p, d, and q) model comprises an AR of order p, an MA
term of order q, and a difference order of d, applied to the
original time series to make it smoother.
2.4.1.1. AR Model. This model describes the relationship

between oil production data at the current moment and
historical oil production data. It uses historical data to make
predictions about the data at the current moment. A p-order AR
model with a perturbation term can be written as

X X X X u X ut t t p t p t
i

p

i t i t1 1 2 2
1

= + + ··· + + = +
=

(1)

where: Xt is the water quality data at time t; p denotes the
number of moments used for prediction; ut denotes the random
perturbation term; and ∝i is the model parameter.
2.4.1.2. MA Model. This model considers the oil production

series data to be smooth; the random disturbance term ut in the
AR model is regarded as a MA term of order q. The MA model
expression is as follows
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ut t t t q t q t
j

q

j t j1 1 2 2
1

= + + + ··· + = +
=

(2)

where: εt is the white noise series; q denotes the number of
moments affected by the white noise series; and βj is the model
parameter.
2.4.1.3. ARIMA Model. For nonstationary oil production data

using differencing to obtain a stationary series, where the
number of differences is d. Combining AR(p) and MA(q) gives
the expression for the ARIMA (p, d, and q) model

X Xt t
i

p

i t i
j

q

j t j
1 1

= + +
= = (3)

2.4.2. Prophet. The Prophet model is a highly flexible and
efficient forecasting tool for time series data. It effectively
handles missing values and outliers, making it ideal for
forecasting oil production data. This open-source model has
been designed specifically to handle time series data, providing
robust results for a variety of forecasting tasks.
The Prophet model is expressed in the following form

x t g t s t h t( ) ( ) ( ) ( ) t= + + + (4)

where: x(t) denotes the daily oil production data at moment t;
g(t) denotes the trend term, which is the part of the time series
that shows a nonperiodic trend; s(t) denotes the period term,
which is the part of the time series that shows a periodic
variation; h(t) denotes the holiday term, which is the part of the
series that is affected by holidays, as the effect of holidays is small
in production forecasting and this term is not considered in this
paper; εt is the residual term.
2.4.2.1. Trend Terms. In the Prophet algorithm, the trend

term can be calculated using two distinct functions: one based
on a logistic regression function and the other on a segmented
linear function. Taking into account the characteristics of the oil
production data itself, this paper uses a segmented linear
function to simulate the trend terms.
The model based on the segmented linear function is as

follows

g t k a t t m a t( ) ( ( ) ) ( ( ) )T= + · + + (5)

s( , , ) ,T
i j j1 2, s= ··· = (6)

where: k denotes the growth rate; a(t) ∈{0,1}S is the indicator
function; δ ∈ RS denotes the amount of change in the growth
rate; δj denotes the amount of change in the growth rate at the
time stamp sj; m denotes the compensation parameter; and S
denotes the number of variation points.
2.4.2.2. Periodic Terms. Using the Fourier series to simulate

the periodicity of a time series, the periodicity can be written in
the following form

i
k
jjjjj

i
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jjjjj
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nt
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2
sin

2
( )

n

N

n n
1
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= (7)

b b( , , , )N N
T

1 1= ··· (8)

where: p denotes the period of the time series and β is initialized
as β ∼ normal (0, σ2), with larger values of σ indicating more
pronounced seasonal effects and smaller values indicating less
pronounced seasonal effects.
2.5. Integrated Forecasting. The WNN model was

selected as the integration model in this study due to its ability
to effectively handle nonlinear problems and avoid issues
associated with nonlinear optimization, such as local optimality.
Blending integration learning was used to integrate the results of
the base learners.
2.5.1. WNN. The WNN is a combination of wavelet

transformation (WT) and ANNs. This network is formed by
replacing the discrete wavelet transform coefficients with the
weights of an ANN. This combination not only preserves the
localized properties of wavelet transform in the time and
frequency domains but also incorporates the autonomous
learning capability of ANNs. Unlike the traditional back
propagation neural network (BPNN), the activation function
in WNN is the Morlet function as opposed to the Sigmoid
function used in BPNN. Figure 2 depicts the topology of the
WNN. The main principles and steps for its application to time
series prediction are as follows

Step 1: Network initialization. First, set the input of the
network as X = {x1, x2, ···, xk}, and the output of the network as Y

Figure 2. Structure of WNNs.
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= {y1, y2, ···, ym}, and set the number of nodes of the input,
hidden, and output layers as k, l, and m. In addition, the
connection weightswij andWjk between the input layer−implicit
layer and the implicit layer−output layer are initialized, as are the
scaling parameter aj of the wavelet function and the translation
parameter bj of the wavelet function.
Step 2: Calculation of the output of the implied layer. The

output hj of the implied layer is calculated as follows

l
m
ooo
n
ooo

|
}
ooo
~
oooh F

w y b

a
j l, 1, 2, ,j j

i
k

ij i j

j

1= = ···=

(9)

where: hj is the output of node j in the hidden layer; bj is the
translation factor of the wavelet basis function hj; aj is the scaling
factor of the wavelet basis function hj; and Fj is the wavelet basis
function.
Step 3: Calculation of the output layer. The output layer is

calculated as follows

y W h k m, 1, 2, ,k
j

l

jk j
1

= = ···
= (10)

Step 4: Network error calculation. The error between the
output layer and the original time series is calculated with the
following equation

e y y k m, 1, 2, ,k k k= = ··· (11)

Step 5: Weights’ update. The connection weights wij and Wjk
between the input layer−implicit layer and the implicit layer−
output layer are updated based on the errors calculated in step 4.

3. RESULTS AND DISCUSSION
In this study, daily oil production data from the J oilfield in
China was employed as sample data to assess the performance of
the integrated model. To provide a comprehensive evaluation,
three single prediction models based on the SSA algorithm that
comprised the integrated model were selected for comparison.

These models are the SSA−ARIMA, the SSA−Prophet, and the
SSA−WNN models, respectively. To further demonstrate the
advantages of the integrated model, we also conducted
comparisons with the Arps model and current mainstream
time series forecasting models.

In addition, it is important to note that our model analyzes
historical production data and predicts the future production
trends without considering the variations in the reservoir
conditions.
3.1. Experimental Design. In this section, we describe the

details of the data set utilized in the study, including its
characteristics and preprocessing steps. We also outline the
evaluation criteria and experimental parameters that were used
to assess the performance of the integrated prediction model.
3.1.1. Data Descriptions.We utilize daily oil production data

from the J oilfield in China as the test data, as depicted in Figure
3. The daily oil production data of the well spans from 2011 to
2021, totaling 3000 observations.

In addressing the issue of data discontinuity caused bymissing
values in the data set, we employ the Prophet model for
imputation. The Prophet model utilizes a segmented linear
model to capture the trends in time series data, fitting linear
models within each segment to approximate the data trends.
When missing values are present in the time series, Prophet
utilizes its fitted segmented linear model and seasonal
components to impute these missing values.

Next, the processed sample data is partitioned into three
subsets: the training set, validation set, and testing set, with a
split ratio of 6:2:2. Furthermore, to evaluate the robustness of
the integrated model, we perform multistep prediction on the
model, the structure of which is presented in Figure 4.
3.1.2. Evaluation Criteria. In the evaluation of the proposed

integrated model, four metrics have been selected to assess its
performance and efficiency. These metrics, namely, the mean
absolute error (MAE), mean square error (MSE), mean
absolute percentage error (MAPE), and the improvement
ratio of index (Iindex), are used to compare the results of the

Figure 3. Data on daily oil production from the J oilfield in China.

Figure 4. Data structures for multistep prediction.
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predictive model. The expressions for each index are listed in
Table 1. A lower value of MSE, MAE, and MAPE indicates a
higher accuracy in prediction.

3.1.3. Setting of Model Parameters. In this article, all
methods were implemented in Python and run on a computer
equipped with a 2.7 GHz CPU, 16GB RAM, and Windows 11.
To mitigate the impact of random factors on the prediction
results, each model was executed independently for 10 runs, and
the results were averaged over 10 trials. The initial parameters
for each algorithm in the proposed integrated model were set as
follows
(1) For the SSA algorithm, the singular value decomposition

(SVD) process can be computed by calling linalg.svd in
NumPy. The window width Lw is generally chosen to be
<N/2, at most half as long as the time series data of
production.

(2) For the WNN model, the architecture was set with 2
nodes in the input layer, 4 nodes in the hidden layer, and 1
node in the output layer. The learning efficiency was set to
0.1, the maximum number of iterations to 100, and the
training precision to 0.0001.

(3) For the ARIMA model, according to the criteria of the
Akaike information criterion (AIC) and Bayesian
information criterion (BIC), a combination of parameters

is used such that p, q that minimize the sum of AIC and
BIC are used as the parameters of the ARIMA model for
this indicator. In this paper, p- and q-values are chosen in
the range 0−6 and d-values in the range 0−2.

(4) For the Prophet model, it requires the adjustment of two
hyper-parameters. The first one is “changepoint_prior_-
scale”, which determines the elasticity of the trend, and
the default value is 0.05. The second hyper-parameter,
“seasonality_prior_scale” controls the degree of flexibility
of seasonality, and the default value is 10. Cross-validation
is employed to optimize both the hyper-parameters.

For the coefficient complexity of the integrated models, as we
employ the blending integrated learning approach, which
leverages the integration of predictions from multiple base
models to enhance the overall performance, the coefficients
associated with the involved models are independent. For
instance, the order of ARIMA and the relevant parameters of
Prophet are examples of such coefficients. The primary
coefficient involved in the blending integrated learning approach
is the weight coefficient used to combine the predictions from
different base models, determining the contribution of each base
model to the final prediction.

The allocation of the weight coefficient is typically determined
through cross-validation. It involves weighting the predictions of
each base model by candidate weight coefficients, calculating
errors, and ultimately determining the optimal weight
combination based on the actual data set and the predictive
direction emphasized by the model. In this article, the weights
for ARIMA and Prophet are both set to 0.5.
3.2. Results of Experiment and Discussion. In this

section, we present the calculation process of the proposed
integrated learning model, followed by prediction experiments
performed on real daily oil production data. The results are then
compared to various benchmark models, and the comparisons
are presented.
3.2.1. Results of SSA and Division of Data. In Section 2, the

proposed integrated learning model is described as consisting of
four steps: (1) noise reduction of the data using the SSA
algorithm; (2) division of the data into training, validation, and
testing sets; (3) prediction of the base learner; and (4)
prediction of the integration. Figure 5 presents the results of

Table 1. Error Evaluation

evaluation description expressions

MAE average absolute error of
N predicted values N

x x
1

i

N

i i
1

real forecast| |
=

MSE mean squared error of N
predicted values N

x x
1

( )
i

N

i i
1

real forecast 2

=

MAPE
mean absolute
percentage error of N
predicted values N

x x
x

1
100%

i

N
i i

i1

real forecast

real ×
=

Iindex

predicted rate of
improvement of
outcome evaluation
indicators

INDEX INDEX

INDEX
100%comp prop

comp
×

Figure 5. Comparison of data before and after noise reduction by SSA.
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the noise reduction step, where it is demonstrated that the
denoised data are smoother than the raw data while retaining
their overall variability.
In the second step of the proposed integrated learning model,

the noise-reduced data are divided into three parts: training,
validation, and test data sets. The proportion of the training and
testing sets to be split is a crucial factor that affects the
performance of the model, but there is currently no theoretical
standard. If the sample size is too small, it can result in poor
performance of the model, while if it is too large, it can lead to
overfitting problems during model training. In light of this, a
6:2:2 split ratio was chosen with the first 1740 daily oil
production data serving as the training set and the next 1160
daily oil production data serving as the validation and test sets.
The statistical results are presented in Table 2.

3.2.2. Results of ARIMA. Before building the ARIMA model,
it is crucial to test the smoothness of the training data to avoid
the occurrence of the pseudoregression phenomenon, which can
render the model useless in practical applications. In this study,
we assess the smoothness of the series by examining the
autocorrelation function (ACF), partial autocorrelation func-
tion (PACF) plots, and augmented Dickey−Fuller test (ADF)
unit roots. As presented in Figure 6, the autocorrelation plot
shows slow decay to 0 without tail dragging or truncation,
indicating that the series is initially nonstationary. The ADF test
results in Table 3 reveal a p-value significance level greater than
0.05, which does not pass the significance test, further
confirming that the series is not smooth.
After conducting a difference operation on the training data of

this sequence, the first-order difference plot is displayed in

Figure 7. The ACF and PACF plots of the resulting series are
illustrated in Figure 8. The autocorrelation and partial

autocorrelation plots demonstrate a rapid decay to zero without
any noticeable trends, suggesting that the series is initially
deemed smooth. The ADF test results in Table 4 reveal a p value
of 0.00 and a significant level value much lower than 0.05,
indicating that the series has passed the significance test and is
not a white noise series. Moreover, the values of the three serial
intervals of ADF are greater than the ADF value of −7.388,
further confirming that the series is smooth. Thus, the first-order
difference series can be effectively analyzed and modeled.

As previously mentioned, the ARIMA model involves three
hyperparameters: p, q, and d. In this study, the order of
difference is 1, indicating that the hyperparameter d is equal to 1.
To determine the optimal values of p and q, the PACF and ACF
plots are initially examined. As shown in Figure 3, both the
autocorrelation and partial autocorrelation coefficients exhibit
trailing behavior, suggesting an order of 4. However, the

Table 2. Specific Division of Sample Data

sets of train sets of validation sets of test

ARIMA, Prophet (1740) (580) (580)
2011−2016 2016−2019 2019−2021

sets of train sets of validation sets of test

integrated learning model (464) (116) (580)
2016−2018 2018−2019 2019−2021

Figure 6. ACF and PACF plots of the original data.

Table 3. Undifferentiated ADF Results

t-statistic P

augmented Dickey−Fuller test statistic −2.82 0.055*
test critical values 1% level −3.447

5% level −2.869
10% level −2.571

Figure 7. First-order difference.
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autocorrelation coefficients reach a critical point at order 7,
while the partial autocorrelation coefficients reach a critical
point at order 6, making it challenging to determine the order of
themodel using the traditional Box−Jenkins method. Therefore,
the AIC and BIC statistical methods were employed to identify
the optimal values of (p, q) as (2, 5). Additionally, the Ljung−
Box test was conducted on the residuals of the ARIMAmodel to
verify if they are random. The Ljung−Box statistic yielded a p-
value greater than 0.05, indicating that the residuals are white
noise.

3.2.3. Results of Prophet. The fitting results of Prophet are
presented in Figure 9, where the blue solid line represents the
fitted value, the black point depicts the real value, and the purple
area represents the 95% confidence interval of the sequence. The
sequence’s abnormal value falls outside the interval, while the
red dotted line represents somemutations of the sequence point.
As shown in the figure, Prophet exhibits excellent outlier and
missing value handling capabilities.
3.2.4. Performance Comparison of Single Forecasting

Methods. As shown in Table 5, the integrated learning
prediction model proposed in this paper demonstrates superior
performance over the three single prediction models based on
the SSA algorithm in terms of the predictionmetricsMAE,MSE,
and MAPE for 1-step forecasting. The minimum values of these
metrics corresponding to the integrated prediction model are
0.02, 0.0005, and 2.88%, respectively, indicating a high level of
prediction accuracy. Through Figures 10−12, it can be more
intuitively concluded that the integrated learning model has
better prediction performance than the single model.

Figure 8. ACF and PACF plots of first-order difference.

Table 4. First-Order Differential ADF Results

t-statistic P

augmented Dickey−Fuller test statistic −7.388 0.000***
test critical values 1% level −3.447

5% level −2.869
10% level −2.571

Figure 9. Results of Prophet fitting, identification of sequence mutation points, and complement of missing values.
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By comparing the integrated learning prediction model with
three other single prediction models based on the SSA
algorithm, it can be concluded that the integrated learning
prediction model proposed in this article has better prediction
performance. In addition, in the case of multistep prediction of
time series, the prediction performance of the model
deteriorates with increasing prediction step length. Figure 13
shows the multistep prediction results for each model.
Table 6 records the degree of improvement in the prediction

performance of the integrated learning prediction model
compared to that of the remaining three single prediction
models based on the SSA algorithm. For one-step forecasting,
the integrated model reduced the MAE metric by 29.55, 65.41,

and 65.58% compared to SSA−WNN, SSA−ARIMA, and SSA−
Prophet, respectively, and reduced the MSE metric by 50.37,
88.04, and 88.15% compared to the three single models,
respectively, and reduced the MAPE metric by 30.4, 67.3, and
61.7%, respectively. However, as the prediction step length
increases, the improvement of the integrated model in
comparison to the single models begins to decrease. This is
shown in Figure 14, where the degree of improvement in the
MAE metric starts to decline significantly for 6-step prediction.

By comparing the prediction performance improvement of
the integrated prediction model with the other three single
prediction models based on the SSA algorithm, it can be
concluded that the performance improvement of the integrated
learning prediction model improves in the short term; however,
the improvement decreases as the prediction step size increases.
The advantages and disadvantages of each model are shown
below: (1) the ARIMA model is simple to implement, and the
decreasing production curve can be transformed into a smooth
series using the first-order difference. The results in Figure 13
show that the ARIMA model works better in short-term
forecasting and has smooth forecasting results. (2) The Prophet
model is convenient due to its fixed structure and can detect
abrupt change points and implied seasonality effects in the
series. However, it can be seen from the results in Figure 13 that
the prediction results of the Prophet model are more volatile,
which may exaggerate the seasonal effects or the absence of
seasonal effects in the series, leading to variation of the
prediction results. (3) The WNN model is able to simulate
the nonlinear downward trend, but it is not simple to choose the
appropriate network architecture. According to the results in

Table 5. Performance Comparisons of Different Steps

evaluation model one-step-ahead two-step-ahead three-step-ahead six-step-ahead

MAE SSA−WNN 0.030935 0.059888 0.093878 0.184509
SSA−ARIMA 0.063004 0.102662 0.151203 0.305079
SSA−Prophet 0.063307 0.088036 0.131225 0.314093
integration 0.021793 0.034168 0.033133 0.097522

MSE SSA−WNN 0.000957 0.004425 0.011683 0.044284
SSA−ARIMA 0.003970 0.012112 0.028623 0.122781
SSA−Prophet 0.004007 0.008361 0.021359 0.139577
integration 0.000475 0.001321 0.001202 0.015586

MAPE SSA−WNN 0.041450 0.079152 0.121183 0.215962
SSA−ARIMA 0.088210 0.144784 0.214387 0.435853
SSA−Prophet 0.075315 0.114228 0.175127 0.467449
integration 0.028847 0.043419 0.040208 0.100929

Figure 10. Comparison of MAE results in different time steps.

Figure 11. Comparison of MAPE results in different time steps.

Figure 12. Comparison of MSE results in different time steps.
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Figure 13, WNN can capture the fluctuation of oil production,
and the prediction results are similar to the trend of real oil
production. (4) The integrated model combines the advantages
of the above three models, and the predicted results are
smoother and closer to the true oil production values.
3.2.5. DM Test of Single Models and Integrated Models.

The performance of the integrated prediction model for daily oil
production time series, proposed in this paper, is further
evaluated and analyzed through the use of the Diebold−

Mariano (DM) test.29 This method is primarily employed to
determine if there is a significant difference in prediction
accuracy between the integrated model and other single models.
The fundamental principles of the DM test are described below.
3.2.5.1. DM Test. In the DM statistic, {xi;i = 1, 2, ···, t + p}

denotes a set of observation series, and {xi(1);i = 1, 2, ···, t + p}
and {xi(2);i = 1, 2, ···, t + p} denote two sets of prediction value
series obtained by two different prediction models, respectively.
The prediction errors obtained from the two prediction models

Figure 13. Prediction results of the single model and integrated model.

Table 6. Rate of Improvement of Integrated Model Evaluation Indicators

comparison evaluation one-step-ahead two-step-ahead three-step-ahead six-step-ahead

integration vs WNN IMAE (%) 29.55% 42.95% 64.71% 47.15%
IMSE (%) 50.37% 70.16% 89.71% 64.81%
IMAPE (%) 30.40% 45.14% 66.82% 53.27%

integration vs ARIMA IMAE (%) 65.41% 66.72% 78.09% 68.03%
IMSE (%) 88.04% 89.10% 95.80% 87.31%
IMAPE (%) 67.30% 70.01% 81.24% 76.84%

integration vs Prophet IMAE (%) 65.58% 61.19% 74.75% 68.95%
IMSE (%) 88.15% 84.21% 94.37% 88.83%
IMAPE (%) 61.70% 61.99% 77.04% 78.41%

Figure 14. Degree of improvement of the integrated model compared to that of the single model.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05422
ACS Omega 2023, 8, 39583−39595

39592

https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig14&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05422?fig=fig14&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05422?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


are et + m
(1) = xt + m − xt + m

(1), m = 1, 2, ···, p and et + m
(2) = xt + m −

xt + m
(2), m = 1, 2, ···, p, respectively. The accuracy of each

prediction model is estimated using the loss function L(et +m
(1)),

i = 1, 2. The DM statistic enables the prediction model to be
evaluated based on any loss function L(g), and the expression for
the DM statistic is shown below

s L e L e p

s p
DM

( ( ) ( ))/

/
m
p

t m t m
2

1
(1) (2)

2
= = + +

(12)

where: s2 is an estimate of the variance of dm = L(et + m
(1)) −

L(et + m
(2)).

Here, the asymptotic distribution of the DM statistic obeys N
(0,1). If the calculated value of DM does not lie within the
interval −z∝/2 to z∝/2, the two prediction methods are
indistinguishable and the original hypothesis will be rejected
at this point.
3.2.5.2. DM Test Results. The results of the DM test,

presented in Table 7, demonstrate that the integrated
forecasting model proposed in this paper outperforms the
three single models in terms of forecasting accuracy at the 1-step,
2-step, 3-step, and 6-step prediction horizons. The results
indicate that there is a significant difference in the forecasting
accuracy of the integrated model compared with the single
models at a 10% significance level. This suggests that the
integrated forecasting model has a superior forecasting ability
compared with some of the single forecasting models.
The results of the DM test indicate that the integrated

prediction model proposed in this study outperforms the three
single forecast models based on the SSA algorithm in predicting
daily oil production time series. This suggests that the integrated
model could be a more effective tool for actual oilfield
production forecasting, providing highly accurate results for
oil production time series.

3.2.6. Comprehensive Forecasting Studies with the
Integrated PredictiveModel. In order to evaluate the integrated
SSA-based forecasting model proposed in this paper more
comprehensively, the Arps model and the current popular time
series forecasting algorithms are further selected and compared
in this section.
3.2.6.1. Comparison of the Arps Model.The Arps prediction

model30 is a common empirical model used for forecasting oil
and gas well production. In the application process of this article,
the parameter estimation of the Arps decline model is conducted
using the method of linear fitting between cumulative
production and production. The specific steps for parameter
calculation and production forecasting are as follows: According
to the relationship between cumulative production “Np” and

production “q” given by N qp
q

d n

q

d n
n1

1
1

1
1i i

n

= . Let x =

q1−n, y = Np, b
q

d n0
1

1
i= , b

q

d n1
1

1
i
n

= . Thus, the linear
regression equation is given by y = b0 + b1x. The production
data are then fitted using this equation to obtain the regression
coefficients b0 and b1. From b0 and b1, the values of n (decline
exponent), qi (initial production), and d (decline rate) are
calculated.

The prediction results of the Arps model are shown in Figure
15, with an MSE of 0.03, MAE of 0.15, and MAPE of 0.14, from
which it can be known that the model in this paper is more
advantageous than the Arps model. The specific fitting
prediction process of the Arps model and the parameters can
be found at https://github.com/SallBryant/ACS.git.
3.2.6.2. Comparison of Current Popular Time Series

Forecasting Algorithms. In this section, three time series
prediction algorithms, LSTM,13 gated recurrent unit (GRU),31

and temporal convolutional network (TCN),32 are selected for
comparison, and the prediction results of these three types of
algorithms are demonstrated in Figure 16, from which it can be

Table 7. DM Test Results

comparison one-step-ahead two-step-ahead three-step-ahead six-step-ahead

integration vs Prophet −2.8327 (0.003) −2.5154 (0.004) −2.5387 (0.004) −3.1595 (0.002)
integration vs WNN −1.7847 (0.037) −1.7196 (0.038) −1.6786 (0.042) −0.9989 (0.047)
integration vs ARIMA −1.9264 (0.035) −1.7775 (0.036) −1.9946 (0.03) −2.1339 (0.009)

Figure 15. Prediction results of the Arps model.
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seen that the results of GRU and TCN are on the low side in the
late stage of prediction, while the overall prediction results of
LSTM are on the high side. Also, from Table 8, it can be more

directly concluded that the model in this paper has reliable
results compared to mainstream prediction models. The
implementation-specific details of the model prediction and
the setting of parameters can be found at https://github.com/
SallBryant/ACS.git.

4. CONCLUSIONS
The integrated learning time series prediction method proposed
in this paper combines the advantages of linear and nonlinear
models and is universal without considering other factors in the
oil field. The modeling process is more convenient compared to
reservoir simulation methods. For illustration and validation,
production data from the J oilfield in China is used for
calculation and testing.
From the results of the tests, it is evident that the integrated

prediction model exhibits improved performance in terms of
multistep forecasting compared to the three single prediction
models based on the SSA algorithm. The model also
demonstrates less fluctuation in its MAPE values. To further
verify the efficacy of the integrated prediction model, a DM test
was conducted, which confirmed that it has a relatively good

prediction performance and could serve as an effective
production time series model in oilfield operations. In addition,
comparisons were made with mainstream time series forecasting
models and the traditional Arps model, robustly demonstrating
the accuracy and novelty of the model proposed in this paper.

The methods employed in this study have certain limitations.
First, the accuracy of predictions is highly dependent on data
quality, with factors such as data missingness, outliers, or
instability having an impact on the results. Second, models like
ARIMA and Prophet require appropriate parameter config-
uration, and the choice of parameters may affect the accuracy of
the forecasts.

Future directions for development are suggested as follows:
first, one must consider the use of automated model selection
and parameter tuning methods, such as utilizing automated
machine learning (AutoML) tools, to reduce the need for
manual adjustments. Second, one must actively explore
additional feature engineering techniques, considering the
incorporation of useful information related to production to
further enhance the accuracy of production predictions.
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evaluation model six-step-ahead
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integration 0.033135

MSE SSA−LSTM 0.016931
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integration 0.001202
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integration 0.028847
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