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Mixture models of item response theory (IRT) can be used to detect inappropriate

category use. Data collected by panel surveys where attitudes and traits are typically

assessed by short scales with many response categories are prone to response styles

indicating inappropriate category use. However, the application of mixed IRT models to

this data type can be challenging because of many threshold parameters within items. Up

to now, there is very limited knowledge about the sample size required for an appropriate

performance of estimation methods as well as goodness-of-fit criteria of mixed IRT

models in this case. The present Monte Carlo simulation study examined these issues for

two mixed IRT models [the restricted mixed generalized partial credit model (rmGPCM)

and the mixed partial credit model (mPCM)]. The population parameters of the simulation

study were taken from a real application to survey data which is challenging (a 5-item

scale with an 11-point rating scale, and three latent classes). Additional data conditions

(e.g., long tests, a reduced number of response categories, and a simple latent mixture)

were included in this simulation study to improve the generalizability of the results.

Under this challenging data condition, for each model, data were generated based on

varying sample sizes (from 500 to 5,000 observations with a 500-step). For the additional

conditions, only three sample sizes (consisting of 1,000, 2,500, and 4,500 observations)

were examined. The effect of sample size on estimation problems and accuracy of

parameter and standard error estimates were evaluated. Results show that the two

mixed IRT models require at least 2,500 observations to provide accurate parameter and

standard error estimates under the challenging data condition. The rmGPCM produces

more estimation problems than the more parsimonious mPCM, mostly because of the

sparse tables arising due to many response categories. These models exhibit similar

trends of estimation accuracy across sample sizes. Under the additional conditions, no

estimation problems are observed. Both models perform well with a smaller sample size

when long tests were used or a true latent mixture includes two classes. For model

selection, the AIC3 and the SABIC are the most reliable information criteria.
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INTRODUCTION

Mixture models of item response theory (IRT) are a combination
of IRT models and latent class analysis (see for an overview von
Davier and Carstensen, 2007). They allow classifying individuals
into homogeneous subpopulations that are a priori unknown
(latent classes) and differ in the category characteristic curves
linking the response probabilities with the latent trait variable
(Rost, 1997). The mixture IRT approach for polytomous items
is widely applied in empirical social research, mainly with the
purpose of exploring population heterogeneity and its causes.
For example, mixture polytomous IRT models are useful for
detecting latent classes that qualitatively differ in a measured
personality trait or attitude (e.g., Egberink et al., 2010; Finch and
Pierson, 2011; Baghaei and Carstensen, 2013; Gnaldi et al., 2016;
Jensuttiwetchakul et al., 2016) or those that are characterized by
response styles (e.g., Eid and Rauber, 2000; Austin et al., 2006;
Wagner-Menghin, 2006; Eid and Zickar, 2007; Maij-de Meij
et al., 2008; Meiser and Machunsky, 2008; Wu and Huang, 2010;
Wetzel et al., 2013). Moreover, they can be applied to examine
construct validity (e.g., von Davier and Yamamoto, 2007; Tietjens
et al., 2012), to detect differential item functioning (e.g., Frick
et al., 2015; Cho et al., 2016), and to check the quality of a rating
scale in general (e.g., Smith et al., 2011; Kutscher et al., 2017).

Compared to other statistical techniques that have been
used to assess and control inappropriate category use (see for
overview Van Vaerenbergh and Thomas, 2013), a distinguished
advantage of the mixture IRT approach is that it can successfully
represent different types of category use patterns (response

styles) in one model. Mixed IRT models have been applied
to detect response styles such as the preferences for extreme

categories (ERS) or for middle categories (MRS), faking or
socially desirable responding (e.g., Ziegler and Kemper, 2013;
Mneimneh et al., 2014), and skipping superfluous response

categories (e.g., Smith et al., 2011; Kutscher et al., 2017).
Moreover, the application of a mixed IRT model does not

require an a priori idea about the types of category use that
might exist in the data, a single response style definition or
an additional set of (heterogeneous) items in the questionnaire
in order to measure response styles. Category use patterns are
interpreted a posteriori based on the estimated class-specific
item parameters. Due to their parsimony, the mixed partial
credit model (mPCM; Rost, 1997) has been most often applied
to explore category use in diverse research contexts (e.g., see
Meiser and Machunsky, 2008; Wu and Huang, 2010; Jasper et al.,
2013). The assumption of equally discriminating items can be
considered a disadvantage of the mPCM, because such data can
hardly be observed in empirical reality, and if not met, such
a restriction increases the probability of identifying a wrong
number of latent classes (Alexeev et al., 2011). Alternatively,
the mixture extensions of multi-parameter IRT models [e.g., the
generalized partial credit model (GPCM; Muraki, 1997) or the
normal response model (NRM; Bock, 1972)] are more flexible
und show a better fit to real-world data by including freely
estimated discrimination parameters of items or categories (van
der Linden and Hambleton, 1997). Only few studies applied
any of the latter group of models for exploring category use

(see Maij-de Meij et al., 2008; Egberink et al., 2010; Kutscher
et al., 2017). The hesistance to apply these models might partly
be due to the lack of systematic research on the performance
of complex mixture IRT models under various data situations
(Embretson and Reise, 2013). For example, it is unclear whether
an application of a complex mixed IRT model would require
a larger sample size or cause more estimation problems than a
more parsimonious model.

To the best of our knowledge, only four simulation studies
have examined the performance of (extended) mixture IRT
models for polytomous items (excluding single-replication
simulations), whose details are reported in Table 1. These are
mixed one-, two- and three-parameter IRT models, some of
which are extended by an additional class-specific parameter
or random effect, allowing researchers to simultaneously unmix
a sample into homogeneous latent classes and to control or
quantify specific response style effects. In general, the simulation
conditions of these studies included varying sample sizes (200
up to 6,000 respondents), scale lengths (4 up to 50 items),
response formats (with 4 up to 6 ordered response categories),
and features of latent classes (e.g., number of latent classes,
class sizes). These simulation studies focused on applying
mixed IRT models for the purpose of individual diagnostic and
obtaining accurately estimated individuals’ trait values when
latent heterogeneity of a target population as well as effects
of category use are taken into consideration. It is well known
that IRT models require sufficiently long scales to precisely
estimate individuals’ trait values (Reise and Yu, 1990; DeMars,
2003; Kieftenbeld and Natesan, 2012; Meyer and Hailey, 2012;
He and Wheadon, 2013). In these simulation studies the items
showed only a few number of response categories to prevent
estimation problems (Choi et al., 1997; De Ayala and Sava-
Bolesta, 1999; French and Dodd, 1999; DeMars, 2003; De La
Torre et al., 2006; Lange, 2008; He and Wheadon, 2013). Hence,
all these simulation studies are characterized by (relatively) long
scales (10–50 items) and few response categories (4- to 6-point
rating scales).

However, these simulation studies have hardly included the
data situation that is often observed in national panel surveys
and large-assessment surveys where themeasurement of attitudes
and traits are based on short scales [e.g., the 5-item measure of
job satisfaction in the Household, Income and Labor Dynamics
in Australia Survey (HILDA Survey; Summerfield et al., 2015);
the 5-item measure of satisfaction with working condition in
Swiss Household Panel (SHP; Voorpostel et al., 2014)]. Clearly,
in context of panel studies, it is impractical to use long-scale
measures, primarily to keep the time required to respond to
the questionnaire within a reasonable limit to prevent any
reduction in participants’ motivation and to collect data of high
quality. Moreover, short scales are usually compensated by a
rating scale consisting of many response categories (e.g., 11-
point rating scale) with the purpose to measure fine gradations
of individuals’ trait levels on a trait or an attitude of interest
(see Krosnick and Presser, 2010; Willits et al., 2016). However,
empirical research has shown that scales with many response
categories are affected by reduced psychometric data quality due
to increased error variance as a consequence of response styles
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TABLE 1 | Overview of the simulation studies on the performance of mixture polytomous IRT models.

Model description Design Main finding and acceptable data condition

Huang (2016)

Two mixed GPCMs with a

random-effect RS-variable (the

so-called mixture ERS-GPCM a

and the mixture

ERS-GPCM-CD b)

Fixed factors:

- Latent mixture: 3 classes [ORS class

(50%), ERS class (25%), and MRS

class (25%)]

Varied factors:

- Sample size: 200, 500, 1,000, and 2,000

cases

- Scale length: 10, 15, 20, and 40 items

- Rating scale: 4 and 6 categories

Bayesian estimation method

Optimal performance:

- N = 1,000 cases and 20 items.

Further relevant results:

- Accuracy of parameter estimates and classification rates are positively associated with

longer scales, larger sample sizes, and more response options;

- More accurate parameter estimates in the larger class than in small classes;

- High non-convergence rate in the case of short scales and small sample sizes.

Jin and Wang (2014)

The mixed 3P-GPCM with

class-specific decrement

parameter c

Fixed factors:

- Sample size: 2,000 respondents

- Scale length: 20 items

- Rating scale: 4 categories

- Unequal class sizes: 60 and 40%

Varied factors:

- Latent mixture: 1 and 2 classes

- Decrement parameter: 0, 0.1, and 0.2

Bayesian estimation method

- Optimal parameter recovery under all simulation conditions (RMSE < 0.11).

Wetzel et al. (2016)

The mixed PCM (mPCM; Rost,

1997)

Fixed factor:

- Rating scale: 4 categories

Varied factors:

- Latent mixture: 1 class and 2 classes [ERS

class (50%) and NERS class (50%)]

- Sample size: 200, 500, and 2,000 cases

- Scale length: 5, 10, 25, and 50 items

Marginal maximum likelihood (MML)

estimation method

- For one-class-PCM, high recovery accuracy of person parameters with 10 or more

items across all sampe sizes and scale lengths.

- For two-class-mPCM, the mean probabilities of class membership is high for all scale

lengths; moderate accuracy of person parameters for the short scale (5 items) across

all sample sizes; high accuracy of person parameters for scales with more items.

Cho (2014)

The mixed PCM (mPCM; Rost,

1997)

Latent classes represent RSs

(ORS, ERS, MRS, or ARS).

Fixed factor:

- Rating scale: 5 categories

Varied factors:

- Sample size: 1,200, 3,000, and 6,000

cases

- Scale length: 4, 10, and 20 items

- Latent mixture: 2, 3, and 4 classes

- Class sizes: equal and unequal (the ORS

class as a large one and each other RS

class consists of 10% of the sample)

Marginal maximum likelihood (MML)

estimation method

Optimal performance:

- For the four-class mPCM (equal classes), N = 3,000 cases and 10 items.

Further relevant results:

- The mPCM with less classes required less than N = 3,000 cases.

- For unequal classes, more cases are needed to achieve the same accuracy compared

to equal classes.

- Class-specific parameters of small classes showed less accurate estimates.

- The test length was the main factor affecting the accuracy of ability parameter recovery.

- The test length was the most important factor for classification accuracy, regardless of

the sample size.

- A higher misclassification rate for small classes and classes with similar class-specific

item parameters (e.g., ERS class and ARS class).

Estimation problems (non-convergence and boundary values):

- For the four-class mPCM (unequal classes), with a small sample size and short test

length, mostly due to insufficient expected category-frequencies (near zero),

especially for in small classes.

GPCM, Generalized partial credit model; RS, response style; ORS, ordinary response style; ERS, extreme response style; MRS, middle response style; NERS, non-extreme response

style; ARS, acquiescence response style, RMSE, root mean squared error; PCM, Partial credit model; mPCM, mixed partial credit model.
aThe so-called mixture ERS-GPCM allows to detect latent classes with different response patterns and additionally quantify an individual tendency for ERS. For this purpose, it includes

an additional random-effect factor that represents interindividual differences in category widths.
bThe so-called mixture ERS-GPCM-CD is an extension of the mixture ERS-GPCM and includes an additional item specific constrained discrimination (CD) parameter. It makes possible

to identify items that strongly evoke ERS.
cThe 3P-GPCM with class-specific decrement parameter is the most complex extension of the mixed GPCM. It includes a decrement parameter which allows to quality a possible

decline in respondents’ response behavior (because of a time limit, low motivation or insufficient ability).

evoked by many categories (Chang, 1994; Weng, 2004). It is
precisely this data situation which makes the use of mixed IRT
models particularly reasonable, enabling a researcher to explore
category use patterns existing in the data and to adjust estimates
of individuals’ latent trait values. Thus, the present simulation
study focuses on examining under which conditions (e.g., sample
size) mixed IRT models for polytomous items would perform
appropriately when they are applied to data assessed with a
short scale (e.g., 5 items) and many response categories (e.g., 11
response categories).

Determining the Number of Latent Classes
Using Information Criteria
One critical issue in applying mixed IRT models is the
determination of the number of latent classes. This is typically
done by applying information criteria [e.g., Akaike’s information
criterion (AIC; Akaike, 1974), Bayesian information criterion
(BIC; Schwarz, 1978) or consistent AIC (CAIC; Bozdogan,
1987)]. Because information criteria are differently affected by
the model complexity (number of model parameters) and sample
size, they usually provide inconsistent suggestions concerning the
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best-fitting class solution (Li et al., 2009; Cho, 2014; Yu and Park,
2014; Choi et al., 2017). Therefore, the conditions under which
these information criteria perform well have to be explored.
Several simulation studies have been conducted to give an answer
to this question.

In her extensive simulation study, Cho (2014) examined
the effectiveness of traditional information criteria such as the
AIC, the BIC, and CAIC for determining the true number of
latent classes of the mPCM model under different simulation
conditions. She found that the BIC generally performed well in
the most conditions, followed by the CAIC showing a slightly
lower overall accuracy rate. In contrast, the asymptotically
inconsistent AIC often overestimated the true number of latent
classes, especially with larger sample sizes. Consistent findings
have also been reported for mixture dichotomous IRT models
(Li et al., 2009; Preinerstorfer and Formann, 2012; Cho et al.,
2013). However, Cho (2014) concluded that the BIC and the
CAIC are not the best. For example, both information criteria
tend to underestimate the true number of latent classes in the
case of an insufficient sample size (e.g., <1,000 respondents)
and when complex mixture models are applied (Bozdogan, 1987;
Dias, 2006; Nylund et al., 2007; Yang and Yang, 2007; Cho, 2014;
Yu and Park, 2014; Choi et al., 2017). In these conditions the AIC
performs better.

In other studies, the AIC whose penalty term includes the
tripled number of model parameters (AIC3; Bozdogan, 1994)
and the sample size adjusted BIC (SABIC; Sclove, 1987) have
been proven to overperform the BIC, the CAIC, and the
AIC, especially for relatively small sample sizes (Andrews and
Currim, 2003; Dias, 2006; Nylund et al., 2007; Yang and Yang,
2007; Fonseca, 2010; Yu and Park, 2014; Choi et al., 2017).
The AIC3 can detect the true latent mixture structure with
a high accuracy rate (above 90%) almost regardless of the
sample size, if it consists at least of 500 respondents (Yang
and Yang, 2007; Fonseca, 2010). In contrast to the BIC, the
SABICwhich less penalizes themodel complexity showed a lower
underfitting rate under reasonably small sample sizes (Choi et al.,
2017). Both the AIC3 and the SABIC were proper in detecting
complex latent mixtures with more than two classes (Yang and
Yang, 2007; Yu and Park, 2014). Although these simulation
studies provide important insight into the appropriateness of
different information criteria, it is unknown whether they behave
appropriately in the context that is typical for survey research
(small scales, many response categories).

Objectives of the Study
The objective of this study is to examine the required sample size
for twomixed polytomous IRTmodels that are primarily used for
exploring category use bymeans ofMonte Carlo simulations. The
restricted mixed GPCM (rmGPCM; with varying discrimination
parameters of items only for the total population but not
across latent classes) and the mPCM (with equal discrimination
parameters of items) are compared regarding their performance
under small to large sample sizes. Both models have been well
established in research on category use (e.g., Eid and Rauber,
2000; Austin et al., 2006; Meiser and Machunsky, 2008; Wetzel
et al., 2013; Kutscher et al., 2017). The present simulation study

primarily focuses on a realistic data situation in the field of
national surveys, where psychological constructs are assessed
using short scales with many response categories. To prevent
the main limitation of previous simulation studies, we use
empirically-based model parameters reflecting the latent mixture
of three subpopulations with different category use patterns.
Thus, we first examine how the rmGPCM and the mPCM with
three latent classes as a true latent mixture work under varying
sample sizes when applied to the challenging data (a short scale
equipped with many response categories). In addition, for three
sample sizes (a small, medium-sized, and a large one), we study
what estimation problems can arise and how accurately the
model parameters can be estimated when these models are used
for different tests (e.g., long scales with a few response categories).
We also include conditions of data comprising a simple latent
mixture (two classes with different response styles). Furthermore,
we compare different information criteria in their performance
for correctly identifying the true class solution of both models.
This study should provide an insight into requirements and
obstacles when exploring category use by means of the mixed
IRT models in the presence of a challenging data situation (5
items with 11 response categories). To the best of our knowledge,
this is the first study investigating the mixed one- and two-
parameter IRT model for polytomous data in the context of
a short scale and a large number of response categories and,
therefore, will add a valuable contribution to the literature on
mixture IRT approaches.

MATERIALS AND METHODS

Data-Generating Models
In the current simulation study, we use the rmGPCM and
the mPCM (Rost, 1997) as data generating models. As a
parsimonious variant of the mixed GPCM (GPCM; Muraki,
1997; mGPCM; von Davier and Yamamoto, 2004), the rmGPCM
defines for each latent class the conditional probability of
endorsing a response category x of an item i as a function of
the latent trait variable by two types of item parameters: (i)
class-specific threshold parameters that define the location of
transition between two adjacent categories of an item i (x – 1 and
x) on the latent continuum and (ii) a class-fixed discrimination
parameter of an item i (as a multiplicative parameter) that
indicates how well the item differentiates between individuals
with different values on the trait that is measured. That means
that the location and the order of thresholds can differ between
latent classes. The discrimination parameters are freely estimated
for items and are fixed across latent classes. The rmGPCM is
defined by the following equation:

Pvix(θ) =

G
∑

g=1

πg
exp [

∑x
s=0 δi(θvg − τisg)]

∑m
c=0 exp[

∑c
s=0 δi(θvg − τisg)]

(1)

with x ∈{0,. . . , m}, s ∈{0,. . . , c}, δi > 0;
∑G

g=1 πg = 1, E(θvg)

= 0 for all g, τi0g = 0 for all i in all g, δ1 = 1 (as
identification constraints).
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In Equation 1, the proportion of individuals in each latent
class (class sizes) πg (0 < πg < 1), the class-specific threshold
parameters for item i (τisg), the item-specific discrimination
parameters (δi), and the class-specific values on the latent
trait which are measured for person v (θvg) are all model
parameters to be estimated. Pvix(θ) denotes the probability of
an individual v endorsing a category x of item i. The number
of a priori unknown subpopulations (G) can be determined
by comparing goodness-of-fit statistics of models differing in
the number of latent classes (Rost, 1997). In addition, the
class membership g (g = 1,. . . , G) of each individual can be
determined by his or her maximal class assignment probability.
Mathematically, the mPCM (Rost, 1997) is a special variant of
the rmGPCM. It assumes that the discrimination parameters do
not differ between items and classes and are usually fixed to
one. In both models, the threshold parameter values have the
same meaning.

In the present simulation study, data generating and data
analysis were implemented in the Latent GOLD 4.5 package
(Vermunt and Magidson, 2008). It should be noted that in
this software the parametrization of mixed IRT models is
based on the generalized linear model (GLM), and, therefore,
model parameters are partially generated in a different metric
as commonly used in the IRT approach (e.g., difference of
adjacent category parameters instead of threshold parameters).
For example, the model equation for the rmGPCM has the
following form of a logistic regression model:

log
P(Yi = m|Fv, g)

P(Yi = m− 1|Fv, g)
= (β i

0mg − β i
0m−1g)+ λiFv, (2)

where Yi is an observed response for item i and, Fv is a person’s
latent trait value (representing the weighted average of one’s class-
specific ability parameters) (β i

0mg− β i
0m−1g), denotes a parameter

for the difference of category difficulty parameters of two adjacent
categories m and m – 1 for item i in the class g (the so-called
delta beta parameter, 1β i

0sg), and λi is an item discrimination

parameter. The results are reported with respect to the Latent
GOLD parameterization.

Simulation Design
The present simulation study primarily examined what sample
size is required to avoid estimation problems and to obtain
accurately estimated model parameters, standard errors
and correct model fit coefficients for the challenging data
characterized by a short scale and a large number of response
categories (namely, a 5-item scale with 11 response categories).

To strengthen the ecological validity of the simulation study,
the data-generating models used under this data condition
were the three-class rmGPCM and the three-class mPCM
(described in their general form in the previous section). The
generating parameter values of both models (taken as population
parameters) were drawn from an application to empirical survey
data reported by Kutscher et al. (2017) and are shown in
Table 2. In this empirical application, five items measuring job
satisfaction on an 11-point rating scale from the first wave of the
Household, Income and Labor Dynamics in Australia [HILDA]

Survey (Summerfield et al., 2015) were analyzed. Fitting the data
with both models, three latent classes with different category use
were detected based on a subsample of 7,036 employees and
employers. In this application, the three-class rmGPCM showed
the best-fit. The three classes can be characterized as follows: The
first class shows an ERS with a large number of avoided categories
(indicated by many unordered thresholds); the second class is
characterized by a roughly ordinary response style (ORS) and
a few avoided response categories (indicated by approximately
equal widths between adjacent threshold parameters and a few
unordered thresholds); members of the third class prefer the
two lowest and two highest response categories (semi-ERS) with
many avoided categories between. Therefore, the ORS class and
the ERS class substantially differ in their class-specific item
parameters, while the semi-ERS class has a certain similarity to
each of these latent classes. In that application, the class sizes were
as follows: 0.33, 0.40, and 0.27 for the rmGPCM and 0.32, 0.43,
and 0.25 for the mPCM. Notably, these class sizes are consistent
with previous findings, suggesting that most respondents usually
show an appropriate category use and a third of a sample prefers
the ERS (cf. Eid and Rauber, 2000; Wetzel et al., 2013).

For this data condition (namely, a short test with many
response categories and three-class mixture), two factors were
manipulated in the simulation study: (i) model type (the
rmGPCM, the mPCM) and (ii) sample size (starting from
500 observations up to 5,000 observations with a step of
500 observations). Sample sizes were chosen to represent
realistic data conditions. These two manipulated factors were
crossed, resulting in 20 simulation conditions. Five hundred
replications were generated per sample size condition. Within
a replication, we estimated the one- to four-class solutions of a
corresponding model.

To increase the generalizability of the results from the present
simulation study, we included three additional data conditions:
a large scale with many response categories (15 items with
11 categories), a short scale with a few response categories
(5 items with 6 categories), and a typically designed test (15
items with 6 categories). Thus, these data conditions should
provide evidence of how the performance of two mixed IRT
modelsmay improve by increasing the number of items, reducing
the number of response categories, or by using a traditionally
designed test. In doing so, to generate the responses for the 6-
category conditions, 5 of 10 delta beta parameters of each item
were selected from the empirical application of the rmGPCM and
the mPCM (see in Table 2 for item parameters that are given
in italics). The selected item parameters represented the three-
class mixture with the identical response styles, as described
for the challenging data condition. To create 15-item tests, the
item parameters of the five items were taken triple. In addition,
we have also examined how the rmGPCM and the mPCM
would work under four different data conditions (incl. a 5-item
test with 11 response categories) when the data comprises a
simple latent mixture of two classes. This type of latent mixture
has often been found in empirical studies (for example, see
Wetzel et al., 2013). To generate responses under the two-
class mixture, the model parameters of the first two classes
obtained from an empirical application of the rmGPCM and the
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TABLE 2 | Generating parameters of the rmGPCM-3 (upper lines) and the mPCM-3 (bottom lines).

λi 1β i
01g 1β i

02g 1β i
03g 1β i

04g 1β i
05g 1β i

06g 1β i
07g 1β i

08g 1β i
09g 1β i

010g λg πg

Class 1

Item 1 1a −0.98 0.77 0.52 0.08 1.22 −0.61 0.78 0.24 −1.24 1.89

1 −0.87 0.85 0.58 0.16 1.25 −0.58 0.80 0.24 −1.26 1.86

Item 2 0.71 −0.79 0.71 −0.07 0.03 1.26 −1.04 0.56 0.96 −0.69 2.49

1 −0.59 0.94 0.09 0.20 1.38 −0.94 0.64 1.02 −0.70 2.43

Item 3 1.27 −0.28 1.07 0.56 0.07 1.76 −0.32 0.81 0.62 −0.94 2.05 0.21 0 a

1 −0.20 0.98 0.59 0.09 1.76 −0.29 0.80 0.64 −0.97 2.08 0.28 0 a

Item 4 2.57 −0.31 1.98 0.66 0.39 1.97 −0.55 0.88 0.75 −1.43 2.27

1 −0.74 1.39 0.23 0.00 1.72 −0.81 0.76 0.72 −1.39 2.45

Item 5 1.76 −0.52 1.00 0.32 0.28 1.63 −1.12 1.21 0.67 −0.95 2.43

1 −0.67 0.73 0.18 0.18 1.53 −1.27 1.21 0.67 −0.95 2.54

Class 2

Item 1 1a 2.27 1.52 0.86 0.40 0.64 0.25 0.46 0.10 −1.92 −1.16

1 2.01 1.39 0.94 0.42 0.74 0.20 0.48 0.06 −1.66 −1.32

Item 2 0.71 1.72 1.21 0.83 −0.03 0.82 0.04 0.59 0.70 −0.67 −0.21

1 1.96 1.34 1.05 0.11 0.98 0.06 0.70 0.67 −0.55 −0.25

Item 3 1.27 −3.10 4.00 b 1.80 0.58 1.05 0.38 0.68 0.45 −1.38 −1.20 0.24 0.20 c

1 0.63 2.78 1.58 0.54 1.02 0.34 0.68 0.42 −1.20 −1.01 0.30 0.30 c

Item 4 2.57 4.00 b 3.28 1.70 1.07 1.05 0.28 0.59 0.06 −2.21 −1.73

1 4.00 b 2.02 1.10 0.55 0.76 0.03 0.51 0.12 −2.12 −1.86

Item 5 1.76 1.91 1.86 0.98 0.38 0.84 0.30 0.59 0.29 −0.99 −0.93

1 1.49 1.43 0.73 0.19 0.68 0.15 0.55 0.27 −0.96 −0.98

Class 3

Item 1 1a 1.61 0.60 0.35 −0.22 0.83 0.01 0.85 0.03 0.11 −1.93

1 1.73 0.78 0.40 −0.15 0.80 0.17 0.84 0.04 0.01 −1.89

Item 2 0.71 0.27 0.20 −0.43 0.48 1.01 −0.94 1.58 0.23 0.96 −0.66

1 0.47 0.44 −0.35 0.71 1.07 −0.69 1.46 0.27 0.86 −0.74

Item 3 1.27 2.27 0.60 0.34 −0.01 1.06 0.33 0.87 0.20 0.96 −1.46 0.21 −0.18

1 2.27 0.59 0.29 −0.13 1.26 0.37 0.91 0.29 0.93 −1.53 0.28 −0.25

Item 4 2.57 4.00 b 0.65 0.79 0.22 1.51 0.21 0.63 0.12 0.77 −2.03

1 4.17 0.13 0.16 −0.34 1.56 0.18 0.65 0.33 0.95 −1.68

Item 5 1.76 1.15 0.68 0.26 0.32 1.04 −0.32 0.63 0.54 0.78 −0.70

1 0.90 0.51 −0.13 0.29 1.27 −0.37 0.63 0.68 0.94 −0.56

λi , discrimination parameter; 1β i
0sg = (β i

0mg − β i
0m−1g ), delta beta parameter; λg, estimate of the variance of the class-specific latent trait variable; πg, latent class-size parameter. All

parameters are given in Latent GOLD metric (see Vermunt and Magidson, 2006). The delta beta parameters used as the population parameters under the conditions of tests with six

response categories are given in italics.
aDefault setting.
bExtreme parameters were substituted by |4|.
cFor the population models with a two-class mixture, the class-size parameter of the second latent class is set to 0.75.

mPCM, as described above, were used. We only optimized the
class-size parameters so that the first class (ERS class) included
approximately a third of a sample (33%) and the second class
(ORS class) contained two-thirds of cases (67%). Finally, we
varied sample size (N = 1,000, 2,500, and 4,500) within each
of additional conditions. These sample sizes represent a small,
medium-sized, and a large sample, respectively. This resulted in
42 conditions. Fifty replications were generated per condition.
Within each replication, we estimated the two- to four-class
solutions when the population model represents a three-class
mixture and the one- to three-class solutions in the case of a true
two-class mixture.

In the present study, the marginal maximum likelihood
(MML) estimator implemented in Latent GOLD was used for
estimation of both models. For effective MML estimation, the
stable EM algorithm (Bock and Aitkin, 1981) is used in the initial
stage of the estimation process and it switches to the speedy
Newton-Raphson (NR) method in the final stage (Vermunt
and Magidson, 2013). Each estimation algorithm stops when
its maximum number of iterations or the convergence criterion
(equals to 0.01 and 10−8 per default for the EM algorithm
and the NR algorithm, respectively) is reached. In order to
prevent estimation problems (such as non-convergence or local
maximum), the following estimation options were chosen, for all
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class solutions in all sample size conditions: (i) the number of
iterations for the EM algorithm and the NRmethod were fixed to
10,000 and 600, respectively; (ii) the number of multiple sets of
starting values was set to 100 and the number of EM iterations
performed within each start set was set to 200; (iii) following
Muraki suggestion (1997), the number of quadrature points was
set to 80. Further options were left to Latent GOLDdefault values.

Analyses
Monitoring Convergence and Estimation Problems
To evaluate the estimation performance of the rmGPCM and the
mPCM, convergence checks were conducted for each analysis of
each replication by considering the convergence rate of the EM
algorithm and the NR estimation method and the occurrence
of boundary values. Latent GOLD indicates these estimation
problems with warning messages. Consequently, replications
with warning messages were inspected. A high rate of boundary
values within a class solution (e.g., over 10%) is indicative for an
improper solution. In the conditions of a true three-classmixture,
replications with an improper three-class solution of rmGPCM
and mPCM were eliminated from sequential analyses (on details
on this issue, see Results section).We proceeded identically in the
conditions of a true two-class mixture.

Detection of Label Switching
Evaluating the estimation accuracy of the rmGPCM and the
mPCM across replications requires the match in the order of
latent classes between the data-generating model and replications
(exclusion of label switching). A useful approach to detect
switched classes within a replication is based on comparing
class-specific item parameters used for data generating with the
estimates from each replication (see Li et al., 2009; Cho et al.,
2013; Cho, 2014).

In the present simulation study, label switching should
actually be prevented by using data-generating parameters as
starting values for estimating three-class rmGPCM and the three-
class mPCM in the corresponding replications within the three-
class mixture conditions (Vermunt and Magidson, 2016). The
same holds for the conditions of the two-class mixture. To ensure
that it had worked well, we checked the occurrence of switched
classes by means of the multinomial logistic regression analysis
within each condition. This method was based on variables
containing delta beta parameter estimates from replications
and predicted their assignment to a certain latent class. For
example, 50 variables of delta beta parameters were used in the
condition of a 5-item scale with 11 categories. In all conditions,
perfect correspondence between observed and predicted class
assignments of delta beta parameters was found (complete
separation). Hence, as expected, no label switching occurred.

Measures of Estimation Accuracy
The estimation accuracy was evaluated using the following robust
accuracy indices: Root median squared error (RMdSE), standard
error bias (biasse), median width of the confidence interval
(MdwidthCI ), Spearman’s rank correlation coefficient (rs), and
95% coverage. We primarily used the median-based measures
that are robust to extreme estimates that might occur as

a consequence of the sparse data problem. The preliminary
analysis revealed that the estimates of a particular parameter or
standard error across replications were approximately normally
distributed. However, the estimates of lower thresholds primarily
indicated some large values on one side of the distribution. This
would make the results obtained using mean-based indices (e.g.,
RMSE) questionable.

The RMdSE is a robust measure of absolute accuracy of
parameter estimation computed by

RMdSE =
√

Md
(p̂−p)2

(3)

where p̂ denotes the parameter estimate of the tth replication
and p represents the generating parameter value. Thus, this
index is based on squared differences between estimated and
the true parameters each of those is calculated for a replication;
the squared root of median is then used to aggregate these
differences across replications. The less parameter estimates
across replications deviate from the true parameter value, the
smaller the RMdSE is observed.

The standard error bias (biasse) demonstrates how well the
standard error of a parameter is reproduced by the standard
deviation of empirical distribution of its estimates across
replications. Thus, standard error bias was calculated as the
median of absolute differences between standard error (ŝe)
estimate of a parameter in tth replication and empirical standard
deviation (SDp̂) of parameter estimates across all replications:

biasse = Md|ŝe −SDp̂|
(4)

If standard error estimates of a parameter are close to the
empirical standard deviation of the parameter distribution, the
biasse should be close to zero.

The median width of confidence interval (MdwidthCI ) is a
robust measure of the estimation accuracy of standard errors.
Small standard errors affect narrow confidence intervals and
thus indicate accurate parameter estimation. For a parameter
in the tth replication, the width of 95% confidence interval
was calculated using the estimated standard error and the
97.5th quantile of the standard normal distribution; then, the
median was used to aggregate these statistics across replications
as follows:

MdwidthCI= Md(2∗z(.975)∗ ŝe) (5)

To obtain only one statistic for the RMdSE, biasse, andMdwidthCI
across delta beta parameters in latent classes, all calculated
accuracy indices were aggregated based on the median. Similarly,
the average coverage was calculated, separately for latent classes.
Before calculating the estimation accuracy indices, extreme
parameter estimates (>|10|), extreme standard error estimates
(>50), and boundary values of standard errors, including their
corresponding standard errors and parameters, were eliminated
(for details, see Result section). The cutoff values for extreme
parameter and standard error estimates were set based on their
empirical distributions found across the replications.
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In addition, for class-specific delta beta parameters of each
item, Spearman’s rank correlation (rs) was calculated between the
population parameters and their estimates within a replication.
It provides how accurately these estimates represent a class-
specific response pattern which is inherent in the data-generating
parameters. Correlation coefficients were then averaged across
replications and items. A high average correlation coefficient (at
least 0.90) demonstrates the highly concordant order of estimated
and generating delta beta parameters in latent classes.

Finally, the 95% coverage was calculated that reflects the
proportion of replications for which a 95% confidence interval
covers the generating parameter value. We considered the
coverage rate of at least 0.90 to be optimal. All analyses were
performed using R 3.3.0 (R Core Team, 2016).

Detection of the True Class Solution
The current study evaluated how effective five information
criteria implemented in Latent GOLD are for identifying a true
class solution for applications of the rmGPCM and the mPCM
under the different data conditions and latent mixtures. The
information criteria considered are defined as follows:

AIC = −2LL+ 2∗Npar (6)

BIC = −2LL+ log(N)∗Npar (7)

CAIC = −2LL+ [log(N)+ 1]∗Npar (8)

AIC3 = −2LL+ 3∗Npar (9)

SABIC = −2LL+ [log(
N+ 2

24
)]∗Npar (10)

where −2LL is −2 times the log-likelihood of the class solution,
Npar is the number of parameters to be estimated, and N is the
sample size.

The class solution with the smallest value of an information
criterion is indicated as the best-fitting model. In the present
study, for each information criterion coefficient, the proportion
of replications in which a specific class solution of the rmGPCM
or the mPCM was identified as the best-fitting model was
calculated and compared under different sample size conditions.
We considered an information criterion as appropriate when it
could correctly identify the true class solution at least in 95% of
replications generated by the corresponding mixed IRT model.

RESULTS

Convergence and Estimation Problems
Under the Challenging Data Condition
Table 3 gives an overview of convergence and estimation
problems for the three-class rmGPCM (rmGPCM-3) and the
three-class mPCM (mPCM-3) when the data comprised a true
three-class mixture. For the rmGPCM-3, the EM algorithm
converged in all replications. Contrarily, the convergence rate of
the rapid NR algorithm reached only 69% of replications across
all sample size conditions and this is considerably reduced with
increasing sample size (from 84 to 56% with N = 500 and N =

5,000, respectively). Coincidently, boundary estimates occurred
in almost all non-convergent replications. A detailed analysis

revealed that the boundary values problem mostly referred to
the standard error estimates of the same delta beta parameters
1β i=3

02, g=2 (in 83% of non-convergent replications). Note that

in the empirical application of the rmGPCM-3 to HILDA data
(population model), this parameter was estimated to be extreme
(see Table 2) because the expected frequencies of two lower
categories of item 3 in the second class were null (see Table S7).
Obviously, a sparse table seems to be a challenge for the NR
method. By increasing the sample size, the high rate of boundary
estimates of the standard error concerned (and consequently
that of non-convergent replications) may be explained by the
fact that these adjacent response categories still did not provide
sufficient data points required for accurate estimation of this delta
beta parameter by the NR algorithm in the certain sample size
condition. Furthermore, seven replications across all conditions
were identified as improper (see in parentheses in the column
“BVSE” in Table 3) and were completely excluded from the
subsequent analyses.

In turn, the mPCM-3 showed more satisfactory results
(see the bottom part of Table 3). The EM algorithm also
converged in all sample size conditions. The non-convergence
rate of the NR algorithm was maximal 4% and concerned
only sample size conditions with <3,000 cases. This was
mostly combined with the occurrence of the standard error
of (extreme) delta beta parameters indicating a boundary
value. No improper solutions were found. Regarding other
class solutions of the two models, the same non-convergence
and estimation problems in a greater extent were found for
the four-class solutions (see Tables S1, S2). To conclude, the
NR algorithm can fail to achieve a convergent solution in a
case of a high model complexity (e.g., mixed multi-parameter
IRT model, many latent classes) and in the presence of
sparse data.

Accuracy of Estimates Under the
Challenging Data Condition
At first, we examined the amount of extreme values of the
parameter and standard error estimates in the three-class
solutions. For the rmGPCM-3, a total of 3% of the parameters
and a few standard errors (0.03%, excl. boundary values)
were estimated to be extreme in all replications across all
sample size conditions. Mostly, it referred to four delta beta
parameters (1β i=4

01,g=3, 1β i=4
02,g=2, 1β i=3

01,g=2, 1β i=4
01,g=2) whose

values in the population model are also relatively high (see
Table 2). The standard errors of the first and second delta beta
parameters often obtained extreme values, primarily because
of the sparse table problem concerning the lower response
categories (see Table S7). For the same reasons, the mPCM-
3 produced a few extreme values of parameter estimates
(0.01%) and of standard errors (0.4%) across all replications.
All extreme estimates, boundary values, and their corresponding
parameters and standard errors were excluded from the following
analysis. Below, we will report relevant results separately for
accuracy indices. (Details on the distributions of accuracy indices
under the different sample size conditions are provided in
Tables S3–S6).
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TABLE 3 | Convergence rates of the EM algorithm and the Newton-Raphson algorithm, number of required iterations, occurrence of boundary values and improper

solution, and mean classification probability for the rmGPCM-3 and the mPCM-3 under the condition of a true three-class mixture and a 5-item scale with 11 categories.

N Conv. EM, % MdEM (RangeEM) Conv. NR, % MdNR (RangeNR) BVSE, % (improper) MP(Y|G)

rmGPCM3

500 100 303 (111–2,133) 84 8 (5–600) 16 (3) 0.88

1,000 100 256 (99–1,256) 79 8 (4–600) 21 (1) 0.85

1,500 100 197 (67–1,467) 69 9 (3–600) 31 (0) 0.84

2,000 100 160 (58–1,158) 68 9 (3–600) 32 (0) 0.83

2,500 100 139 (59–956) 72 9 (3–600) 28 (1) 0.82

3,000 100 127 (54–402) 68 9 (3–600) 32 (1) 0.82

3,500 100 122 (58–1,897) 65 9 (3–600) 35 (0) 0.82

4,000 100 110 (49–377) 62 9 (3–600) 38 (0) 0.82

4,500 100 109 (51–373) 62 9 (3–600) 38 (0) 0.82

5,000 100 99 (50–603) 56 10 (3–600) 44 (1) 0.82

mPCM3

500 100 293 (126–1,188) 96 8 (6–600) 4.4 (0) 0.89

1,000 100 247 (75–1,415) 98 8 (4–600) 2.2 (0) 0.86

1,500 100 208 (70–1,033) 99 8 (3–600) 0.8 (0) 0.85

2,000 100 171 (66–920) 99.6 8 (3–600) 0.4 (0) 0.84

2,500 100 151 (50–719) 99.8 7 (3–600) 0.2 (0) 0.84

3,000 100 138 (60–677) 100 7 (2–23) 0 0.84

3,500 100 124 (57–497) 100 6 (2–19) 0 0.83

4,000 100 119 (53–506) 100 6 (2–21) 0 0.83

4,500 100 112 (47–541) 100 6 (2–14) 0 0.83

5,000 100 110 (55–331) 100 5 (3–17) 0 0.83

N, sample size condition; Conv.EM, convergence rate of the EM algorithm; MdEM (RangeEM ), median (range) of iterations required to reach a convergent solution of the EM algorithm;

Conv.NR, the convergence rate of the Newton-Rapson algorithm; MdNR (RangeNR ), median (range) of iterations required to reach a convergent solution of the Newton-Rapson algorithm

(Note, solutions with 600 iterations did not converge); BVSE (improper), proportion of replications with boundary values (the number of replications with an improper solution); MP(Y |G),

mean classification probability.

Root Median Standard Error
Figure 1 shows an effect of the sample size on the estimation

bias of parameter types regarding the rmGPCM-3 (Figure 1A)

and the mPCM-3 (Figure 1B). For both models, the RMdSE
values generally decreased by increasing the sample size with the
exception of the class-specific variances of the latent trait variable
that were accurately estimated already with the smallest sample
size (maximal RMdSEN=500 = 0.04 and 0.05 for the rmGPCM-3
and the mPCM-3, respectively). Furthermore, the class-specific
class-size parameters were also only slightly biased (maximal
RMdSEN=500 = 0.23 and 0.22 andmaximalRMdSEN=5,000 = 0.06
and 0.08 for the rmGPCM-3 and the mPCM-3, respectively). In
contrast, the estimation bias was higher for both types of item
parameters across all sample size conditions (for class-specific
delta beta parameters, maximalRMdSEN=500 = 0.76 and 0.80 and
maximal RMdSEN=5,000 = 0.18 and 0.21 for the rmGPCM-3 and
the mPCM-3, respectively; for item discrimination parameters
of the rmGPCM-3, maximal RMdSEN=500 = 0.52 and maximal
RMdSEN=5,000 = 0.16). For both types of item parameters, the
RMdSE curves show an inflection point at N=1,500 indicating
a sufficient decline in bias up to this sample size while further
increasing the sample size had only a slight effect on the
reduction of the RMdSE values. Discrimination parameters of
items possessing higher discrimination power were estimated less
accurately (e.g., item 4). Furthermore, the class size additionally

affected the amount of bias for the class-specific parameters
(e.g., class sizes and delta beta parameters). In particular,
the parameters of the largest class (g2) were estimated more
accurately compared to those of the smaller classes (g1 and g3).

Standard Error Bias
The accuracy of standard error estimates for the rmGPCM-3
and the mPCM-3 is illustrated in Figures 2A,B, respectively.
In general, the results are mostly identical with those reported
for the RMdSE. A slight bias was found for the standard
errors of latent variances (maximal biasN=500

se = 0.02 and 0.03
for the rmGPCM-3 and the mPCM-3, respectively) and the
class-size parameters (maximal biasN=500

se = 0.12 and 0.11 for
the rmGPCM-3 and the mPCM-3, respectively). In turn, the
standard error estimates of item parameters were more biased
in the case of small sample sizes but they showed a rapid
reduction of bias by increasing the sample size: The bias was
below 0.10 from N = 1,500 on for standard error estimates of
the discrimination parameters and from N = 2,000 on for those
of the delta beta parameters of both models. Exceptionally, the
standard error bias of delta beta parameters of the small class (g3)
could be accurately estimated from N = 2,500 and N = 3,000 on
for the rmGPCM-3 and the mPCM-3, respectively. In addition,
item discrimination size and class sizes had an additional effect
on standard error bias values.
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FIGURE 1 | Root median squared error for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under the condition of a three-class mixture and a 5-item

scale with 11 categories.

Median Width of Confidence Interval
Similar tendencies were also found for the widths of confidence
intervals for model parameter estimates (see Figures 3A,B

for the rmGPCM-3 and the mPCM-3, respectively). Small
standard errors and consequently narrow confidence intervals
were estimated primarily for both the latent variances (maximal
MdN=500

widthCI
= 0.20 for both models) and class sizes (maximal

MdN=500
widthCI

= 0.80 for both models) even with a small sample size.

Again, confidence intervals of item parameters were comparably
wider (for delta beta parameters, maximal MdN=500

widthCI
= 3.15

and 3.40 and maximal MdN=5,000
widthCI

= 1.04 and 1.15 for the

rmGPCM-3 and the mPCM-3, respectively; for discrimination
parameters, maximal MdN=500

widthCI
= 2.97 and maximal MdN=5,000

widthCI
= 0.88 for the rmGPCM-3). For these parameters, the inflection
point was observed at N = 1,500 with small confidence
intervals from that point on. Identically, larger standard
errors and consequently wider confidence intervals were also
found for class-specific parameters of smaller classes and large
discrimination parameters.

Estimation Accuracy for Specific Delta Beta

Parameters
All three accuracy indices pointed out that, especially the delta
beta parameters and their standard errors of both models were
more biased compared to other parameter types. In particular, it

concerned the first five delta beta parameters (see Figures S1–S6
for the rmGPCM-3 and the mPCM-3, respectively). The first
delta beta parameter in the ORS class (g2) showed high accuracy
indices even with the largest sample size. Primarily, it may be
caused by the low frequency of the lower categories expected
for all classes, but especially for the ORS class (see Tables S7, S8
for the rmGPCM-3 and the mPCM-3, respectively). By contrast,
the upper five delta beta parameters were estimated more
accurately already with the medium-sized samples. Furthermore,
the amount of bias of the delta beta parameters is linked to the
response style. The accuracy indices were smaller in the ERS and
semi-ERS classes (g1 and g3, respectively) for the lower and the
upper delta beta parameters and in ORS class for themiddle ones.

Spearman’s Rank Correlation
Table 4 reports averaged Spearman’s rank correlations between
generating and estimated delta beta parameters. In general,
for both models, the correlation coefficients in latent classes
increased with enlarging the sample size, indicating that the order
of estimated parameters is more and more in accordance with
that of the generating parameters. Delta beta parameters of the
rmGPCM-3 showed a high concordance in order (above rs =
0.90) with at least N = 1,500 cases for two first classes (ERS
class and ORS class). For the small class (semi-ERS class), a larger
sample size was needed (at leastN = 3,500), primarily because the
delta beta parameters of this class were generally less accurately
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FIGURE 2 | Bias of standard error estimates for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under the condition of a three-class mixture and a

5-item scale with 11 categories.

estimated (as reported above). For the mPCM-3, we found very
similar results (see right column of Table 4).

Coverage
Table 5 reports the coverage values for parameter types of
the two generating models. In general, class-size parameters
showed good coverage (≥0.90) from the medium-sized samples
(N = 2,500) on. The class-specific variances of the latent trait
demonstrated good coverage rate (≥0.90) even for the relatively
small sample for the rmGPCM-3 (from N = 1,000 on) and
with medium-sized samples for the mPCM-3 (from N = 2,500
on). In the case of small samples, the insufficient coverage of
these parameter types can be explained by too narrow confidence
intervals resp. small standard errors. In turn, item parameters
generally achieved acceptably high coverage in all sample size
conditions (above 0.94 for discrimination parameters and above
0.93 and 0.94 for delta beta parameters of the rmGPCM-3 and the
mPCM-3, respectively).

To conclude, under the challenging data condition, the
two complex mixture models (with a true three-class mixture)
mostly showed similar trends of estimation accuracy with
varying sample size. Primarily, an accurate estimation of item
parameters and their standard errors generally requires a larger
sample size (at least 1,500–2,000 observations) than the other
parameter types. On the contrary, the class-size parameters and
the variances of a latent trait could reach a high coverage rate

with at least 2,500 observations. Beyond the sample size, both the
size of the latent classes and the expected category frequencies are
further influential factors for estimation accuracy.

Performance of the Mixture IRT Models
Under Other Data Conditions
Combined With a True Three-Class Mixture
When the data reflected a three-class mixture, the rmGPCM-3
and mPCM-3 showed 100% convergence of the EM algorithm
and the NR method when applied to the data characterized by
a long test with many response categories, a short test with few
response categories, or a long test with few categories. None
of the replications indicated boundary values and no improper
solutions were found (for details, see Table S9).

Figure 4 shows how the parameter estimation bias (assessed
as the RMdSE) differs for the rmGPCM-3 (part A) and mPCM-
3 (part B) under different test and sample size conditions.
Both models indicated similar tendencies: (i) a reduction of
bias by increasing the sample size, regardless of the type of
test, and (ii) a higher estimation accuracy of the class-size
parameters and latent variances than for the item parameters.
Compared to the challenging data condition as the reference
condition (drawn as a solid black line), all parameter types
could be estimated more precisely with long tests, suggesting
that enlarging test length increases the accuracy of estimates.
Conversely, in the condition of a short test with a few
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FIGURE 3 | Width of confidence interval for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under the condition of a three-class mixture and a 5-item

scale with 11 categories.

TABLE 4 | Averaged Spearman’s rank correlations between the generating and

estimated 1β i
0sg-parameters for the rmGPCM-3 and the mPCM-3 under the

condition of a true three-class mixture and a 5-item scale with 11 categories.

rmGPCM-3 mPCM-3

N g1 g2 g3 g1 g2 g3

500 0.77 0.70 0.59 0.76 0.75 0.58

1,000 0.88 0.85 0.71 0.88 0.87 0.70

1,500 0.93 0.91 0.78 0.94 0.93 0.73

2,000 0.95 0.95 0.83 0.96 0.96 0.81

2,500 0.97 0.97 0.87 0.98 0.98 0.85

3,000 0.98 0.98 0.89 0.99 0.99 0.87

3,500 0.99 0.99 0.92 1.00 0.99 0.90

4,000 0.99 1.00 0.92 1.00 0.99 0.90

4,500 1.00 1.00 0.93 1.00 1.00 0.92

5,000 1.00 1.00 0.93 1.00 1.00 0.92

g1, g2, and g3 indicate three latent classes of two models.

categories, a larger bias was observed for the class-size parameters
(RMdSEN=1,000 = 0.33 and 0.25 and RMdSEN=4,500 = 0.15
for the rmGPCM-3 and mPCM-3, respectively), the latent
variances (RMdSEN=1,000 ≤ 0.05 and RMdSEN=4,500 ≤ 0.03 for
both models), and the discrimination parameters (RMdSEN=1,000

= 0.27 and RMdSEN=4,500 = 0.14 for the rmGPCM-3). In
this data condition, only delta beta parameters were estimated
more precisely than in the reference condition, indicating that

sufficient category-frequencies positively affect the accuracy of
threshold parameter estimates. Coincidently, in the conditions
with a few response categories, a perfectly matched order of delta
beta parameters to that of a corresponding population model was
found by means of Spearman’s rank correlation (for details, see
Table S10). In contrast, in the test conditions withmany response
categories, the result was better for a long test than found in the
reference condition. Specifically, with at least N = 1,000 cases,
a high concordance in the order of the delta beta parameters
was reached (with the exception of a class g3, rs ≥ 0.80 for the
rmGPCM-3 and mPCM-3).

Figure 5 illustrates the accuracy of the standard error
estimates for the rmGPCM-3 (part A) and the mPCM-3 (part
B) under different test and sample size conditions. For long
tests, the standard errors of all model parameters were accurately
estimated (biasN=1,000

se ≤ 0.05 and biasN=4,500
se ≤ 0.02 for both

models). The largest bias was found in the standard errors in
the condition of a short test with a few response categories
(for class-size parameters, biasN=1,000

se = 0.28 and 0.22 and
biasN=4,500

se = 0.03 and 0.08 for the rmGPCM-3 and mPCM-3,
respectively; for delta beta parameters, biasN=1,000

se = 0.53 and
0.57 and biasN=4,500

se = 0.03 for the rmGPCM-3 and mPCM-3,
respectively), suggesting that with regard to model complexity
(three-class mixture), individual response vectors did not provide
enough information required for reliable unmixing the sample
into latent classes and accurate estimation of item parameters
(especially with small samples).
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TABLE 5 | Coverage for parameters of the rmGPCM-3 and the mPCM-3 under the condition of a true three-class mixture and a 5-item scale with 11 categories.

N

Parameter type Class 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

rmGPCM-3

πg 2 0.82 0.85 0.91 0.91 0.92 0.93 0.93 0.94 0.94 0.95

3 0.80 0.81 0.84 0.89 0.92 0.90 0.92 0.92 0.93 0.93

λg 1 0.92 0.92 0.94 0.95 0.94 0.94 0.94 0.92 0.92 0.95

2 0.88 0.91 0.91 0.93 0.94 0.94 0.96 0.93 0.94 0.92

3 0.92 0.90 0.93 0.90 0.93 0.91 0.95 0.91 0.93 0.90

1β i
0sg

a 1 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.95

2 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

3 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95

λi a 0.95 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.94

mPCM-3

πg 2 0.82 0.85 0.88 0.90 0.94 0.92 0.91 0.95 0.95 0.93

3 0.78 0.83 0.85 0.86 0.91 0.92 0.92 0.91 0.90 0.92

λg 1 0.88 0.91 0.92 0.93 0.93 0.91 0.94 0.92 0.94 0.90

2 0.87 0.89 0.91 0.93 0.94 0.95 0.94 0.94 0.95 0.95

3 0.84 0.89 0.88 0.88 0.92 0.94 0.95 0.91 0.94 0.91

1β i
0sg

a 1 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.95

2 0.94 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.95 0.95

3 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

πg, latent class-size parameter; λg, estimate of the variance of the class-specific latent trait variable; 1β i
0sg, delta beta parameter; λ

i , item discrimination parameter.
aMean coverage is reported for this parameter type.

Coverage rate under 0.90 is shown in bold.

Figure 6 shows the widths of confidence intervals for the
parameter estimates of the rmGPCM-3 (part A) and the mPCM-
3 (part B) under different test and sample size conditions. The
width of a confidence interval depends on size of standard
errors of a particular parameter type found across replications.
We found similar tendencies, as reported above for parameter
estimates (using the RMdSE), indicating that the standard errors
of accurately estimated parameters were small. Compared to the
reference condition, the standard errors of all parameter types
were smaller for long tests and larger for a short test with few
categories (for class-size parameters, MdN=1,000

widthCI
= 0.81 and 0.85

for the rmGPCM-3 and the mPCM-3, respectively; for latent
variances,MdN=1,000

widthCI
= 0.22 and 0.18 for the rmGPCM-3 and the

mPCM-3, respectively; for discrimination parameters,MdN=1,000
widthCI

= 1.70 and MdN=4,500
widthCI

= 0.74 for the rmGPCM-3). In the last

condition, the standard errors of delta beta parameters were
exceptionally smaller than in the condition of a short test with
many categories (MdN=1,000

widthCI
= 1.50 and MdN=4,500

widthCI
≤ 0.75 for

both models, respectively). Coincidently, the model parameter
showed good coverage (≥0.90) even with a small sample under
the conditions of long tests (see the upper part of Table 6).
Exceptions were found for the class-size parameters of both
models at N = 1,000 (≥0.88) and the latent variances at N =

2,500 (0.87) in the condition of a long test with few categories,
suggesting a reduced classification accuracy of complex IRT
models whenmodeling data of a small sample in which responses
were assessed with a short rating scale. In the condition of
a short test with few categories, sufficient coverage rates were

observed for all parameter types of the rmGPCM-3 at N = 4,500.
In contrast, the class-size parameters of the mPCM3 were not
covered sufficiently even with a large sample (0.87). These results
were poorer than found for the reference condition. (Details on
the distributions of accuracy indices for the rmGPCM-2 and the
mPCM-2 are provided in Tables S11–S13).

Combined With a True Two-Class Mixture
When the data represented a simple latent mixture, the
rmGPCM-2 andmPCM-2 produced no estimation problems (see
Table S9). Furthermore, under all data conditions, these models
had a general tendency to produce more accurate estimates,
as reported above for the complex mixture IRT models (see
Figures 4–6; for details, see also Tables S11–S13). In particular,
in the challenging data condition (drawn as a solid gray line),
the rmGPCM-2 and mPCM-2 indicated a low bias in the class-
size parameters (RMdSEN=1,000 = 0.06) and the latent variances
(RMdSEN=1,000 = 0.02) and a slightly higher bias in the item
parameters (for delta beta parameters, RMdSEN=1000 ≤ 0.26
and RMdSEN=4,500 ≤ 0.13 for both models; for discrimination
parameters, RMdSEN=1,000 = 0.17 and RMdSEN=4,500 = 0.07
for the rmGPCM-2). In further data conditions, the parameter
estimates showed an equal or superior estimation accuracy
[with an exception of the discrimination parameters of the
rmGPCM-2 in the condition of a short test with few categories
(RMdSEN=1,000 = 0.32 and RMdSEN=4,500 = 0.14)]. In addition,
the simple mixture IRT models could well represent the correct
order of the thresholds under different data conditions, regardless
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FIGURE 4 | Root median squared error for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under further data conditions.

of sample size [with an exception of the rmGPCM-2 in the
challenging data condition at N = 1,000 (≥0.87)]. Moreover,
the standard errors of all model parameters were estimated
with a low bias (biasN=1,000

se ≤ 0.11 for both models). The
confidence intervals were small for the class-size parameters
(MdN=1,000

widthCI
≤ 0.40 and MdN=4,500

widthCI
= 0.19 for both models)

and the latent variances (MdN=1,000
widthCI

≤ 0.19 and MdN=4,500
widthCI

=

0.09 for both models), whereas those were larger for the delta
beta parameters, especially in the challenging data condition
(MdN=1,000

widthCI
≤ 1.51 and MdN=4,500

widthCI
≤ 0.70 for both models), and

for the discrimination parameters of the rmGPCM-2, primarily
in the condition of a short test with few categories (MdN=1,000

widthCI
=

1.60 andMdN=4,500
widthCI

= 0.73). All types of parameters of the simple

mixture IRT models reached a sufficient coverage rate.

Model Selection
Table 7 reports the proportion of replications in which the true
class solution of the two population models consisting of a true
three-class mixture was correctly identified as the best-fitting
solution by the examined information criteria as well as their
under- or overestimation rate across sample size conditions.
(Conditions with a proper performance are marked in bold).
Under the challenging data condition, for the rmGPCM, the
AIC3 was the best criterion for selecting the three-class solution
from medium-sized samples (from N = 1,500), followed by

the SABIC (from N = 2,500). In contrast, the BIC and the
CAIC constantly underestimated the true number of classes
in the conditions with small and medium-sized samples, but
they properly worked primarily with large samples (from N =

4,500/5,000, respectively). Whereas the AIC showed a consistent
tendency to overestimate the true number of classes (with only
79–84% success rate across sample-size conditions). Referring
to the mPCM, the results are similar to those of the rmGPCM.
Under the long test conditions, all information criteria (with
the exception of the AIC) worked more effectively. Specifically,
when the models were applied to the data assessed with a long
test with many categories, the AIC3 and SABIC showed 100%
success rate from a small sample (N = 1,000) and the BIC and
CAIC from a medium-sized sample (N = 2,500). For modeling
data assessed with a long test and few categories, the AIC3 and
SABIC could perfectly identify the correct class solution from
the medium-sized sample and the BIC and CAIC from large
sample size (N = 4,500). With regard to a short test with few
categories, these information criteria worked unsatisfactorily: for
the rmGPCM, only the AIC3 was effective for a large sample
(98% success rate); for the mPCM, the AIC3, and SABIC were
successful from a medium-sized sample, whereas the BIC and
CAIC showed a high success rate from a large sample. Regarding
the populationmodels with a simple truemixture, all information
criteria (with the exception of the AIC) could perfectly identify
the correct number of latent classes under all data conditions
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FIGURE 5 | Bias of standard error estimates for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under further data conditions.

(see Table 8). However, the AIC tended to overestimate the
correct class solution for complex and simple mixed IRT models
(indicating the success rate of 0–98%).

DISCUSSION

The results of the present simulation study are useful for
researchers interested in applying mixed polytomous IRTmodels
for analyzing rating scales that are widely used in the social
and behavioral sciences. When a rating scale consists of many
response categories, it is likely to be confronted with the problem
of sparse tables when different items are analyzed together.
Therefore, the question of what sample size is required for the
proper performance of the model is of high importance. Because
only very few simulation studies have been conducted to examine
mixed polytomous IRT models in general, and no simulation
studies were found that considered the performance of these
models under the challenging data condition that is typically
observed in survey studies (a short scale with a large number of
response categories), this application-oriented simulation study
focused on the sample size requirements for two models, the
rmGPCM and the mPCM, that are useful for exploring category
use when applied to such data. Unlike most previous research, we
took data-generating model parameters from an empirical model
application in order to ensure ecological validity.We additionally
examined what sample size is needed for an application of

these models under different data conditions such as a long test
with many response categories, a long test with a few response
categories, and a short test with a few response categories.
Moreover, we varied the complexity of the latent mixture.

Required Sample Size for the Challenging
Data Condition
For the challenging data condition, study results indicated the
effectivity of the EM algorithm to achieve a convergent solution
for the mixed polytomous IRT models independently of model
complexity and sample size. For more complex mixed IRT
models as the rmGPCM-3 (as well as for overfitting models
like the rmGPCM-4 or the mPCM-4), the NR method often
produced non-convergent solutions in all sample size conditions.
In contrast, for the more parsimonious model (the mPCM-3),
this problem occurred to a small extent and disappeared from the
medium-sized sample (N = 3,000) on. Because of this failure of
the NR method to work well in the context of complex models
in the presence of sparse data, it could be recommended for
researchers whose intention is to apply the rmGPCM or an other
complex model to use only the EM algorithm (Vermunt and
Magidson, 2013).

For the best-fitting three-class solution of the rmGPCM
and the mPCM, the accuracy of parameter and standard
error estimates was evaluated. For both models, all parameter
types (class-size parameters, class-specific variances of the

Frontiers in Psychology | www.frontiersin.org 15 November 2019 | Volume 10 | Article 2494

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kutscher et al. Sample Size for Mixed IRT Models

FIGURE 6 | Width of confidence interval for parameter estimates in (A) the rmGPCM-3 and (B) the mPCM-3 under further data conditions.

latent trait variable, class-specific delta beta parameters, and
item discrimination parameters only in the rmGPCM) and
their corresponding standard errors mostly indicated the
same trends. First, the estimation accuracy of parameters and
standard errors improved as sample size increased. Specifically,
delta beta parameters mainly showed slight improvement and
appropriately reproduced true order within items (rs > 0.90)
from the sample size of 1,500 observations (except for the small
class g3 concerning the last point). Precise standard errors (biasse
< 0.10) could be obtained only from N = 2,000 on (with the
same exception of the class g3). Similar results were observed
for discrimination parameters and their standard errors. In turn,
class-size parameters and class-specific variances of the latent
trait variable and corresponding standard errors were estimated
pretty accurately even with small sample sizes. To obtain
appropriate coverage rates for these parameters at least 2,500
observations were, however, necessary. That may be explained
by narrow confidence intervals due to small standard errors
for these parameters compared to those of item parameters.
Second, we observed that class-specific parameters and their
standard errors are more precisely estimated in the largest class
(g2) and less accurately in the small class (g3). For example, we
found that for estimating delta beta parameters of the small class
appropriately and to reproduce their true order of the population
model sample sizes of 3,500 and 4,000 observations are necessary
for the rmGPCM-3 and mPCM-3, respectively. An effect of the

class size on estimation accuracy has been already pointed out
in previous research (Preinerstorfer and Formann, 2012; Cho,
2014). Third, class-specific delta beta parameters and standard
errors of the categories preferred in latent classes were estimated
more accurately. For example, the first delta beta parameter
and its standard error, especially in the ORS class (g2), was
extremely biased due to very low expected frequencies of the
lower categories.We found that by increasing the sample size, the
bias could be partly compensated in the semi-ERS class (g3) but
hardly in the ORS class (g2). The crucial relevance of sufficient
category frequencies to gain satisfactory estimation accuracy and
to avoid boundary and extreme values has been emphasized
in previous research on traditional polytomous IRT models
(DeMars, 2003; He and Wheadon, 2013). Fourth, discrimination
parameters and standard errors of highly discriminating items
were more strongly biased.

We conclude from our results that an application of both
models with an assumed three-class mixture to short-scale data
assessed with many response categories can be reasonable with
the sample size of at least 2,500 observations. Compared to
bias statistics from previous research, the estimation accuracy
primarily of delta beta parameters of both models in this
simulation study was somewhat lower. However, in contrast to
other simulation studies, the present study is based on empirically
found parameters as true model parameters, which include
unordered thresholds, nearly located parameters on the latent
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TABLE 6 | Mean coverage for the parameters of the rmGPCM and the mPCM under further data conditions.

Condition 5 items 11 cat. 15 items 11cat. 5 items 6 cat. 15 items 6 cat.

N 1,000 2,500 4,500 1,000 2,500 4,500 1,000 2,500 4,500 1,000 2,500 4,500

True latent mixture Parameter type

Three-class mixture rmGPCM-3

πg 0.95 0.96 0.94 0.57 0.77 0.90 0.89 0.96 0.91

λg 0.95 0.96 0.90 0.89 0.94 0.91 0.96 0.98 0.95

1β i
0sg

a 0.96 0.95 0.95 0.81 0.87 0.93 0.95 0.95 0.95

λi a 0.96 0.94 0.93 0.56 0.78 0.90 0.96 0.98 0.94

mPCM-3

πg 0.95 0.95 0.96 0.74 0.80 0.87 0.88 0.94 0.94

λg 0.93 0.95 0.96 0.96 0.90 0.93 0.93 0.87 0.95

1β i
0sg

a 0.96 0.95 0.95 0.92 0.93 0.95 0.94 0.95 0.95

Two-class mixture rmGPCM-2

πg 0.98 0.90 0.92 0.92 0.94 0.96 0.96 0.92 0.92 0.96 0.92 0.92

λg 0.93 0.94 0.94 0.98 0.94 0.96 0.98 0.90 0.96 0.93 0.90 0.95

1β i
0sg

a 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.96 0.96

λi a 0.96 0.95 0.96 0.96 0.96 0.95 0.97 0.92 0.95 0.95 0.94 0.93

mPCM-2

πg 0.98 0.90 0.98 0.92 0.94 0.96 0.92 0.94 0.90 0.98 0.94 0.94

λg 0.95 0.99 0.94 0.98 0.98 0.96 0.97 0.95 0.96 0.94 0.93 0.92

1β i
0sg

a 0.96 0.95 0.96 0.96 0.95 0.95 0.97 0.95 0.95 0.96 0.95 0.95

πg, latent class-size parameter; λLGg, estimate of the variance of the class-specific latent trait variable; 1β i
0sg, delta beta parameter; λ

i , item discrimination parameter.
aMean coverage is reported for this parameter type.

Coverage rate under 0.90 is shown in bold.

continuum, and some extreme parameters, as it is often the
case in the real research studies. Moreover, due to the rating
scale with many response categories, both models include many
delta beta parameters within an item to be estimated. These
specifics make the present simulation study unique and its results
relevant for applied research. Nevertheless, researchers should
be aware of the problem of low category frequencies that will
probably occur in the context of the considered data situations
and cause estimation problems (in form of boundary, extreme,
and inaccurate parameter estimates) that can hardly be remedied
only by increasing the sample size. A widespread way of dealing
with this problem is to collapse a category with few responses
into one of adjacent categories. However, it may lead to a loss of
trait information and reduce the accuracy of latent trait estimates
(Wetzel and Carstensen, 2014). Also, we discourage practitioners
to use a small sample size of fewer than 1,500 observations under
which both mixture polytomous IRT models were especially
unsuccessful in providing less biased estimates.

Required Sample Size for Further Data
Conditions
Under further data conditions considered, the two complex
mixture IRT models (with a true three-class mixtures) had no
estimation problems and indicated similar trends in estimation
accuracy with varying sample sizes. With a medium-sized sample
(N = 2,500), the rmGPCM-3 and the mPCM-3 performed better
when applied to long tests than under the challenging data
condition. Thus, an enlargement of test length improves the

accuracy of estimates. With a small sample (N = 1,000), both
models mainly indicated satisfactory accuracy of estimates when
long tests were used, with the exception of their item parameters
which were slightly larger biased. Moreover, for the rmGPCM-
3, a reduced number of response categories, even with a long
test, could impair the classification accuracy resulted from the
model application due to an insufficient coverage rate of class-
size parameters with a small sample. This suggests that using a
rating scale with few response categories can limit a variety of
individual response vectors compared to rating scales with many
response categories. In contrast, when applied to a short test with
few categories, the rmPCM-3 and the mPCM-3 showed poorer
performance. This test condition is more challenging than a short
test with many categories and, therefore, required large samples
(at leastN = 4,500). Furthermore, the simplemixture IRTmodels
(with two latent classes) generally performed well under all data
conditions examined even with a small sample. However, when
applied to long tests, the rmGPCM-2 and mPCM-2 produced
a slightly larger bias in the item parameter estimates and their
standard errors. Moreover, for the rmGPCM-2 applied to the
data which were assessed with a short test and few categories, we
would recommend using a medium-sized sample due to biased
discrimination parameters found with a small sample. Therefore,
this result confirmed that a complex latent mixture is a further
crucial factor for estimation accuracy.

Effectivity of Information Criteria
The last focus of this work was to examine five information
criteria concerning their effectiveness to detect the true class
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TABLE 7 | Model selection for the rmGPCM and the mPCM under the condition of a true three-class mixture.

AIC BIC CAIC AIC3 SABIC

Condition N g2 g3a g4 g2 g3a g4 g2 g3a g4 g2 g3a g4 g2 g3a g4

rmGPCM-3

5 items 11 cat. 500 17 77 6 2 0 0 0 0 0 98 2 0 99 1 0

1,000 0 84 16 99 0 0 83 0 0 37 63 0 91 9 0

1,500 0 81 19 100 0 0 100 0 0 1 99 0 56 44 0

2,000 0 80 20 100 0 0 100 0 0 0 100 0 16 84 0

2,500 0 79 21 100 0 0 100 0 0 0 100 0 2 98 0

3,000 0 82 18 92 8 0 100 0 0 0 100 0 0 100 0

3,500 0 81 19 69 31 0 97 3 0 0 100 0 0 100 0

4,000 0 78 22 21 79 0 66 34 0 0 100 0 0 100 0

4,500 0 82 18 5 95 0 40 60 0 0 100 0 0 100 0

5,000 0 80 20 0 100 0 7 93 0 0 100 0 0 100 0

15 items 11 cat. 1,000 0 92 8 100 0 0 100 0 0 0 100 0 0 100 0

2,500 0 36 64 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 16 84 0 100 0 0 100 0 0 100 0 0 100 0

5 items 6 cat. 1,000 32 24 44 100 0 0 100 0 0 100 0 0 100 0 0

2,500 0 52 48 100 0 0 100 0 0 68 32 0 100 0 0

4,500 0 40 60 100 0 0 100 0 0 2 98 0 90 10 0

15 items 6 cat. 1,000 0 18 82 100 0 0 100 0 0 6 94 0 68 32 0

2,500 0 10 90 72 28 0 96 4 0 0 100 0 0 100 0

4,500 0 2 98 0 100 0 0 100 0 0 100 0 0 100 0

mPCM-3

5 items 11 cat. 500 18 78 4 04 0 0 0 0 0 98 2 0 99 1 0

1,000 0 86 14 100 0 0 87 0 0 33 67 0 87 13 0

1,500 0 83 17 100 0 0 100 0 0 1 99 0 47 53 0

2,000 0 82 18 100 0 0 100 0 0 0 100 0 12 88 0

2,500 0 81 19 99 1 0 100 0 0 0 100 0 1 99 0

3,000 0 80 20 85 15 0 100 0 0 0 100 0 0 100 0

3,500 0 80 20 39 61 0 79 21 0 0 100 0 0 100 0

4,000 0 79 21 13 87 0 53 47 0 0 100 0 0 100 0

4,500 0 78 22 1 99 0 11 89 0 0 100 0 0 100 0

5,000 0 82 18 0 100 0 3 97 0 0 100 0 0 100 0

15 items 11 cat. 1,000 0 98 2 96 4 0 100 0 0 0 100 0 0 100 0

2,500 0 42 58 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 14 86 0 100 0 0 100 0 0 100 0 0 100 0

5 items 6 cat. 1,000 0 12 88 100 0 0 100 0 90 0 6 94 76 24 0

2,500 0 0 100 94 6 0 100 0 0 0 100 0 0 100 0

4,500 0 0 100 0 100 0 0 100 0 0 100 0 0 100 0

15 items 6 cat. 1,000 0 12 88 100 0 0 100 0 0 6 94 0 76 24 0

2,500 0 0 100 94 6 0 100 0 0 0 100 0 0 100 0

4,500 0 0 100 0 100 0 0 100 0 0 100 0 0 100 0

AIC, Akaike’s information criterion; BIC, Bayesian information criterion; CAIC, Consistent Akaike’s Information Criterion; AIC3, Akaike Information Criterion; SABIC, sample size adjusted

BIC.

g2, g3, and g4 indicate a two-class to a four-class solution as the best-fitting model, respectively.
aThe true class solution.

A sufficient proportion of replications selected by a certain information criterion is shown in bold.

solution of the rmGPCM and the mPCM: AIC, BIC, CAIC,
AIC3, and SABIC. These information criteria worked differently
depending on the latent mixture. When a complex latent mixture
was present in the data, for bothmodels, the best result was found
for the AIC3, following by the SABIC. The AIC3 showed 99%
accuracy of N = 1,500 for the challenging data condition and
100% accuracy of N = 1,000 for a long test with many response
categories and of N = 2,500 for a long test with a few response

categories. The SABIC indicated 98% accuracy of N = 2,500 for
the challenging data condition and worked identically well as the
AIC3 in the conditions of long tests. This is consistent with the
research in the field of finite mixture modeling, reporting that
these information criteria are effective for identifying complex
latent mixtures (above two classes) with sufficiently small sample
size (Fonseca, 2010; Yu and Park, 2014; Choi et al., 2017). But
these results are in opposite to the research evidence suggesting
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TABLE 8 | Model selection for the rmGPCM and the mPCM under the condition of a true two-class mixture.

AIC BIC CAIC AIC3 SABIC

Conditions N g1 g2a g3 g1 g2a g3 g1 g2a g3 g1 g2a g3 g1 g2a g3

rmGPCM-2

5 items 11 cat. 1,000 0 58 42 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 48 52 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 52 48 0 100 0 0 100 0 0 100 0 0 100 0

5 items 6 cat. 1,000 0 96 4 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 64 36 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 34 66 0 100 0 0 100 0 0 100 0 0 100 0

15 items 6 cat. 1,000 0 66 34 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 68 32 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 66 34 0 100 0 0 100 0 0 100 0 0 100 0

15 items 11 cat. 1,000 0 46 54 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 26 74 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 4 96 0 100 0 0 100 0 0 100 0 0 100 0

mPCM-2

5 items 11 cat. 1,000 0 70 30 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 62 38 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 26 74 0 100 0 0 100 0 0 100 0 0 100 0

5 items 6 cat. 1,000 0 90 10 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 42 58 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 8 92 0 100 0 0 100 0 0 100 0 0 100 0

15 items 6 cat. 1,000 0 72 28 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 58 42 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 54 46 0 100 0 0 100 0 0 100 0 0 100 0

15 items 11 cat. 1,000 0 26 74 0 100 0 0 100 0 0 100 0 0 100 0

2,500 0 0 100 0 100 0 0 100 0 0 100 0 0 100 0

4,500 0 0 100 0 100 0 0 100 0 0 100 0 0 100 0

AIC, Akaike’s information criterion; BIC, Bayesian information criterion; CAIC, Consistent Akaike’s Information Criterion; AIC3, Akaike Information Criterion; SABIC, sample-size adjusted

BIC.

g1, g2, and g3 indicate a one-class to a three-class solution as the best-fitting model, respectively.
aThe true class solution.

A sufficient proportion of replications selected by a certain information criterion is shown in bold.

the BIC and the CAIC to be as favorites for model selection
applied to mixed IRTmodels (e.g., Li et al., 2009; Cho, 2014). The
present simulation study indicated that these information criteria
generally underestimated the true number of classes and worked
well only for large samples (of N = 4,500/5,000, respectively)
under the challenging data condition and for a long test with a
few response categories. However, the BIC and CAIC were more
effective in the conditions of a long test with many response
categories (100% success of N = 2,500). In general, the results
of this study showed that in the context of mixed polytomous
IRT models the more effective information criteria are those
that do not or slightly penalize the sample size used for the
model application. All four information criteria were unable to
identify the true latent mixture when data were assessed with
a short test and a few response categories (with the exception
of the AIC3 of N = 4,500), indicating that such data possess
insufficient variety that is required to correctly identify the true
latent mixture. However, all four information criteria worked
perfectly in all data conditions examined when data comprised a
simple latent mixture (two-class mixture). Concerning the AIC,

this information criterion selected the correct class solution on
average only in 54% of all cases and otherwise preferred an
overparameterized model solution. This result is consistent with
previous research on mixed dichotomous IRT models (e.g., Cho
et al., 2013). Based on our results, we primarily recommend to
use the AIC3 and the SABIC for selecting the best-fitting solution
of the rmGPCM and the mPCM.

LIMITATIONS AND FUTURE RESEARCH

The generalization of the reported simulation results is limited
due to the specificity of the data situation considered and the
latent mixtures (three or two unequally-sized classes with certain
category use). In addition, we did not include further useful
mixed IRT models (e.g., the mixed NRM, the mixed GPCM with
a random response style effect or mixed multidimensional IRT
models) because of their high complexity. Future research should
expand the range of data conditions, latent mixtures, and mixed
polytomous IRT models in accordance with further application
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fields of mixed IRT approach. For example, researchers may
examine how specific features of a latent mixture (e.g., class sizes,
similarity of class-specific item parameters, and the interaction of
these factors) would affect the effectivity of information criterion
for selecting the true class solution.

In general, simulation results depend on the used estimation
method. In the present simulation study, model parameters
were estimated by means of the maximum likelihood estimation
method, which is implemented in Latent GOLD. However, more
and more recent studies on mixed IRT models use the Bayesian
estimation method, which is also flexible for model restrictions
and extension. Therefore, future research should focus on the
comparison of two estimation methods as previous studies
on mixed dichotomous IRT models has indicated benefits of
the latter method concerning parameter estimation bias and
classification accuracy for short scales, small sample sizes, and
complex latent mixtures (e.g., Finch and French, 2012).

Future studies should examine whether including external
covariates into mixed polytomous IRT models may improve
correct identification of the underlying structure and accuracy
of class assignments and parameter estimates, especially when
data conditions or latent mixtures are challenging. Empirical
evidence on this issue has been shown in the context of mixed
dichotomous IRT models (see Smit et al., 2000; De la Torre
and Hong, 2010; Dai, 2013) but not yet for mixed polytomous
IRT models.

CONCLUSION

The current application-oriented simulation study was aimed at

identifying the required sample size for the mixed one- and two-
parameter IRT models for polytomous data (rmGPCM, mPCM)
and investigating diverse information criteria concerning their
capacity to correctly detect the best-fitting model solution.
Focusing on the specific data situation present in panel surveys
by assessing aspects of life satisfaction with short scale and
many response categories and on the latent mixture of typical
category use patterns in that context, this simulation study
produced results suggesting that two models exhibited similar
trends of estimation accuracy at manipulated sample sizes.
Under the challenging data conditions and a complex latent

mixture, the sample size of fewer than 1,500 respondents was
insufficiently small, and a sample size of 2,500 respondents
seemed to be sufficient. A further increase of the sample size
had a positive effect on the estimation accuracy, especially in
the small class, but was hardly helpful for extremely biased
item parameters and standard errors arising in the case of low-
frequency categories. In particular, the mixed two-parameter
IRT model (rmGPCM) indicated more estimation problems (in
form of non-convergence of the Newton-Raphson algorithm,
occurrence of extreme parameter estimates, and boundary
standard error estimates) due to insufficient responses of few
categories as the mixed one-parametric IRT model did. However,
increasing test length can prevent estimation problems and
improve estimation accuracy even with a smaller sample. The
same is valid when data represent a simple latent mixture. The
latent mixture can, however, be determined only by the model
application. Of information criteria, the AIC3, followed by the
SABIC, performed better compared to the BIC and the CAIC.
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