
Published online 3 May 2019 Nucleic Acids Research, 2019, Vol. 47, No. 13 e78
doi: 10.1093/nar/gkz315

Accurate prediction of boundaries of high resolution
topologically associated domains (TADs) in fruit flies
using deep learning
John Henderson1,†, Vi Ly1,†, Shawn Olichwier1,†, Pranik Chainani1,†, Yu Liu2,* and
Benjamin Soibam 1,*

1Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA and
2Biology and Biochemistry, University of Houston, Houston, TX 77204, USA

Received January 09, 2019; Revised April 02, 2019; Editorial Decision April 17, 2019; Accepted April 18, 2019

ABSTRACT

Genomes are organized into self-interacting chro-
matin regions called topologically associated do-
mains (TADs). A significant number of TAD bound-
aries are shared across multiple cell types and con-
served across species. Disruption of TAD boundaries
may affect the expression of nearby genes and could
lead to several diseases. Even though detection of
TAD boundaries is important and useful, there are
experimental challenges in obtaining high resolution
TAD locations. Here, we present computational pre-
diction of TAD boundaries from high resolution Hi-C
data in fruit flies. By extensive exploration and test-
ing of several deep learning model architectures with
hyperparameter optimization, we show that a unique
deep learning model consisting of three convolu-
tion layers followed by a long short-term-memory
layer achieves an accuracy of 96%. This outperforms
feature-based models’ accuracy of 91% and an ex-
isting method’s accuracy of 73–78% based on motif
TRAP scores. Our method also detects previously
reported motifs such as Beaf-32 that are enriched in
TAD boundaries in fruit flies and also several unre-
ported motifs.

INTRODUCTION

Genomes of different organisms are organized into do-
mains called topologically associated domains (TADs),
which consist of self-interacting chromatin regions. Recent
studies have shown that boundaries of TADs are conserved
across different cell types and related species (1). Disrup-
tion of TAD boundaries affects the expression of nearby
genes and is associated with diseases including neuroblas-
toma (2,3), medulloblastoma (4) and leukemia (5,6). The

boundaries show distinct deviation from regions within the
TADs because they harbor binding sites for insulator pro-
teins such as CTCF (7) in mammals and Beaf-32 in insects
(8).

To study TADs and to understand how chromatin is or-
ganized in the nucleus, chromosome conformation capture
experiments such as Hi-C are usually performed. However,
these experiments are costly and time consuming. For larger
genomes such as those found in mammals, achieving TAD
boundaries with a resolution of a few hundred bases is still
a challenge and most of the Hi-C experiments done on hu-
mans achieve 10–40 kb resolution (1). High sub-kb reso-
lution TAD boundaries are much easier to achieve with
smaller genomes such as insects (8). These experimental
challenges appeal for computational approaches to predict
the boundaries of TADs from DNA sequence information.

In predictive analytics of DNA sequences, there are pri-
marily two approaches: feature-based models, which use k-
mers as features, and deep learning models, which rely on
convolutional neural networks (CNNs). Recently, CNNs
have proven to perform better than the k-mer-based mod-
els in the context of classifying genomic sequences (9–11).
There is also another kind of deep learning model known as
a recurrent neural network (RNN) or long short-term mem-
ory network (LSTM), which has not been widely applied in
classifying DNA sequences. CNN focuses on learning lo-
cal sequence patterns, RNN or LSTM relies on long-range
correlation across the entire sequence.

In this study, we focused on 500-bp resolution Hi-C data
obtained from the fruit flies cell line kc167 (8). This data
consist of ∼5400 TAD boundaries, each boundary of length
1000 bp. Equal number of intervals were randomly se-
lected from within the TADs to be used as the background
set. To perform prediction of the boundaries, genomic se-
quences were extracted for the boundaries and background
set and were numerically represented with one-hot encod-
ing. We explored 12 different deep learning model archi-

*To whom correspondence should be addressed. Tel: +1 713 226 5216; Email: soibamb@uhd.edu
Correspondence may also be addressed to Yu Liu. Email: yliu54@uh.edu
†The authors wish it to be known that, in their opinion, the first four authors should be regarded as Joint First Authors.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0002-1532-9955


e78 Nucleic Acids Research, 2019, Vol. 47, No. 13 PAGE 2 OF 9

tectures which contained CNN, LSTM and dense layers in
different permutations. Each of these 12 architectures also
went through hyperparameter tuning to achieve the best set
of hyperparameters. We found that a deep learning model
with three CNN layers followed by a bidirectional LSTM
layer performed the best by achieving an accuracy of 96%,
outperforming a previous study with an accuracy of 73–
78% (8). In comparison, feature-based models were able
to achieve an accuracy of 91%. For unbiased metrics such
as the Matthews correlation coefficient, the deep learning
models performed at least 10% or better than feature-based
models. Better performance of a model with both CNN and
LSTM layers indicates that TAD boundaries are character-
ized by local sequence motifs with long-range dependencies.
These sequences were ‘learned’ and embedded by the 64 ker-
nels in the first CNN layer of the best deep learning model.
Out of the 64 motifs, only 12 matched known annotated
motifs of fruit flies. Interestingly, the Beaf-32 motif was de-
tected as the second highest scoring motif by our model res-
onating with previous reports of strong enrichment of Beaf-
32 motif in TAD boundaries of fruit flies. Previously re-
ported insulator proteins associated with TAD boundaries
in insects such as Trl and Z4 were also detected. Factors
involved in the development and chromatin modeling such
as Byn, Ovo and Pho were also detected but not previously
reported in the context of TAD boundaries. This indicates
that there are several other motifs, which may be binding
sites of uncharacterized insulator factors important to the
formation of TAD boundaries.

MATERIALS AND METHODS

First, we describe the different layers of the deep learning
models for classifying DNA sequences: input layer, convo-
lution layer, LSTM layer and output layer.

Input layer

The input layer to a deep learning model represents the in-
put data and should be numerically encoded. Because the
input sequences consist of a series of bases (A, T, G or C),
each of the four letters was one-hot encoded by a binary
vector of four entries with all 0s except for the matching let-
ter entry being a 1. A, T, C and G were encoded as [1, 0, 0,
0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1], respectively. If the
length of each sequence is L, each sequence was converted
to a matrix of shape (L, 4). This encoded matrix was used
as the input layer to the deep learning models.

Convolution and pooling layer

A DNA sequence of length L with the bases as one-hot en-
coded is a matrix X of shape (L, 4). This can be treated as
a one-dimensional image with length = L, and four chan-
nels. Instead of applying a two-dimensional CNN layer, a
1D CNN layer can be applied to a DNA sequence. A one-
dimensional CNN layer for the case of one-hot encoded
DNA sequence consists of a collection (let’s say N) of fil-
ters or kernels of shape (k, 4), where k is the length of the
kernel. Each of the kernels, when convolved with the input
DNA matrix X followed by an activation function, yields an

activation map of size ((L + 2(p – d)(k – 1) – 1)/s, 4), where p
is the padding length, d is the dilation, and s is the stride. In
our case, we set p = 0, d = 1 and s = 1. Hence, for N kernels,
it yields N activation maps, each activation map of size (L +
(k – 1), 4). Each of these kernels represents a sequence pat-
tern and is designed to locate a particular pattern or motif
along the sequence. High values in the activation map in-
dicate the existence of that sequence pattern represented by
the kernel. In this study, the ReLU (rectified linear unit) ac-
tivation function was used in each CNN layer.

Bidirectional LSTM

The LSTM layer consists of a sequence of LSTM ‘blocks,’
each ‘block’ containing the same number of hidden LSTM
units. An LSTM unit is the basic building unit for the
LSTM layer. Unlike a traditional RNN unit, an LSTM unit
contains four gates: input gate, forget gate, output gate and
input modulation gate. Using these gates, the LSTM unit
captures both long- and short-range dependencies. LSTM
units are widely used and well documented. We refer to
these papers for further details (12,13). The length of the
LSTM layer is equal to the number of ‘time’ steps (T) in the
input data sequence. The input to an LSTM layer is a se-
quence of vectors ht ∈ R

d , where t = 1, 2, . . . , T, and d is an
integer > 0. We used a many-to-many architecture where
the output at each time step is ‘remembered.’ We used a
bidirectional version consisting of two LSTMs running in
parallel: one on the input sequence and the other on the re-
verse of the input data sequence. The outputs of the two
parallel LSTMs were concatenated to capture the forward
and backward information in the DNA sequence. LSTM
architecture has been used to solve the problem of explod-
ing or vanishing gradients in traditional sequence models
such as RNNs.

Deep learning model architectures

Table 1 summarizes the different deep learning model ar-
chitectures explored in this study. We first explored mod-
els (1layerCNN, 2layerCNN, 3layerCNN, 4layerCNN and
8layerCNN) which consist primarily of 1D CNN layers
only. The number of CNN layers in the model is indicated
by the prefix before the word ‘CNN’ in the model name.
For example, the 4layerCNN model had four CNN layers,
where each CNN layer was followed by a max-pooling layer
(Table 1). In the case of 8layerCNN, only the third, sixth and
eighth CNN layers were followed by max-pooling layers of
size = 5 and stride = 2. To prevent overfitting, the dropout
technique of removing 30% of the nodes in a CNN layer
during each training epoch was used. An illustration of a
1layerCNN is shown in Figure 1A.

The second set of four models had a series of CNN-
pooling layers and a bidirectional LSTM layer following
the final max-pooling layer. 1layerCNN LSTM, 2layer-
CNN LSTM, 3layerCNN LSTM, and 4layerCNN LSTM
had 1, 2, 3 and 4 CNN layers, respectively. Every CNN layer
was immediately followed by a max-pooling layer with pool
size = 5 and stride = 2. The final pooling layer was fol-
lowed by a bidirectional LSTM layer. To prevent overfit-
ting, the dropout technique of removing 30% of the nodes



PAGE 3 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 13 e78

Figure 1. Three representative deep learning models. Panel (A) shows the 1layerCNN model, which consists of an input layer, CNN layer, pooling layer,
flatten layer and output layer. Panel (B) shows the 1layerCNN LSTM model, which is comprised of an input layer, CNN layer, pooling layer, bidirectional
LSTM layer, and output layer. Panel (C) shows the 1layerCNN Dense consisting of an input layer, CNN layer, pooling layer, two dense layers and output
layer. The output layer has one neuron with sigmoid activation function indicated by �.

Table 1. Deep learning models. The table shows the deep learning model architectures explored in this study with model name and hidden layers shown in
columns 1 and 2, respectively. A repeated layer is indicated as ‘N × {layer},’ where N is the number of repetitions. For example, 4 × {CNN, Maxpooling}
means a CNN – Maxpooling layer repeated four times. The respective hyperparameters that were tuned for each model are shown in column 3. For example,
for the 1layerCNN model, the hyperparameter ‘Batch Size’ was tested for two permutations: 50 and 100

Model Hidden layers Parameters/hyper-parameters

1layerCNN 1 x {CNN, Maxpooling} Number of kernels (16, 32, 64, 96)
2layerCNN 2 x {CNN, MaxPooling} Length of kernel (9, 15)
3layerCNN 3 x {CNN, MaxPooling} Learning Rate (0.001, 0.005, 0.01)
4layerCNN 4 x {CNN, MaxPooling} Batch Size (50, 100)
8layerCNN 2xCNN, {CNN, pooling}, 2xCNN, {CNN,pooling},

CNN, {CNN,pooling}
1layerCNN LSTM 1 x {CNN, Maxpooling}, 1 bidirectional LSTM layer Number of kernels (16, 32, 64, 96)
2layerCNN LSTM 2 x {CNN, Maxpooling}, 1 bidirectional LSTM layer Length of kernel (9, 15)
3layerCNN LSTM 3 x {CNN, Maxpooling}, 1 bidirectional LSTM layer Learning Rate (0.001, 0.005, 0.01)
4layerCNN LSTM 4 x {CNN, Maxpooling}, 1 bidirectional LSTM layer Number of LSTM units (10, 20, 30, 40) )

Batch Size (50, 100)
1layerCNN Dense 1 x {CNN, Maxpooling}, Dense layers Number of kernels (16, 32, 64, 96)
2layerCNN Dense 2 x {CNN, Maxpooling}, Dense layers Length of kernel (9, 15)
3layerCNN Dense 3 x {CNN, Maxpooling}, Dense layers Learning Rate (0.001, 0.005, 0.01)
4layerCNN Dense 4 x {CNN, Maxpooling}, Dense layers Number of Dense Layers (1, 2, 3, 4)

Batch Size (50, 100)

in the CNN layer was used. An illustration of a 1layer-
CNN LSTM is shown in Figure 1B.

The third set of models (1layerCNN Dense, 2layer-
CNN Dense, 3layerCNN Dense and 4layerCNN Dense)
had a series of CNN-pooling layers followed by a series
of fully connected dense layers after the final max-pooling
layer (Table 1). Each dense layer had 100 neurons with
ReLU activation functions. To prevent overfitting, we added
a dropout layer with 30% nodes removed during each epoch
of training. An illustration of a 1layerCNN Dense with two
dense layers is shown in Figure 1C.

Output layer

For all the models, the output layer had only one node with
sigmoid activation function. If the value of the activation
function was >0.5, the input sequence was classified as a
TAD boundary, otherwise not.

Training

The dataset was split into three nonoverlapping sets
for training, validation and testing with a ratio of
0.80:0.10:0.10. The training set was used to train the weights
of the model, the validation set was used to avoid over-



e78 Nucleic Acids Research, 2019, Vol. 47, No. 13 PAGE 4 OF 9

fitting, and the testing set was used to ‘validate’ the pre-
dicting ability of the trained model. The deep learning
networks were implemented using Keras with TensorFlow
as the backend. During the training process, we used the
‘Adam’ optimization algorithm to minimize the binary
cross-entropy loss function. The training period was set for
150 epochs but an early stopping criterion was introduced
in the optimization process when the loss function on the
validation set failed to decrease for five consecutive epochs.
This was done to prevent overfitting.

Within each model architecture, we also varied the values
for a set of hyperparameters as shown in Table 1. This in-
cluded number of kernels and kernel length in each hidden
CNN layer, learning rate of the optimizer, batch size, num-
ber of hidden units in the LSTM layer, and number of dense
layers (Table 1). Finally, the models were evaluated using
six different metrics: area under the curve (AUC), accuracy,
Matthews’s correlation coefficient, precision, recall, and f1
score/measure. We used these different metrics to view the
model performance from different perspectives. AUC mea-
sures the overall performance of the model across the entire
prediction probability threshold.

Motif analysis

The N filters or kernels from the first CNN layer of the
best deep learning model (3layersCNN LSTM) are matri-
ces of shape (9, 4). For each kernel (k), the subsequence in
each positive testing sequence (DNAn, where n = 1 to T/2,
T represents the total number of testing sequences) which
maximally matched the kernel were collected. Specifically,
for each kernel of length 9, the subsequence Sn (of length
9) within each sequence DNAn which yielded the maximal
activation (Akn, n = 1 to T/2 and k = 1 to N) from the
first CNN layer were collected. From these collected subse-
quences, only those were retained with activations greater
than 0.5 of the maximum activation of the kernel across
all positive sequences, i.e., Akn > 0.5 × maxn(Akn). These
retained subsequences were aligned and visualized as se-
quence logos using WebLogo and the corresponding posi-
tion weight matrix (PWMk) was computed.

To compute the importance score of each kernel, we
used two different techniques. In the first approach (or the
‘activation-ratio’ approach), the sums of the maximal ac-
tivity score across positive testing sequences and negative
testing sequences were computed. The ratio of the former
to the latter was used as the importance score of the kernel.
The higher the value of this ratio, the higher the importance
score of the motif. The PWMs were compared with known
fruit fly motifs in the JASPAR database using TOMTOM
with a q-value threshold of <0.05. In the second approach,
we used a method based on ‘gradients’ similar to a previ-
ous work (14). In this approach, the gradient contributed
by the motif (kernel) to the model output was measured.
The gradient of the model prediction with respect to each
kernel in the first CNN layer was computed. A dot product
was taken between the gradient and representation of the
kernel followed by summing across the vector to aggregate
the effect into one single value which represents the motif
or kernel importance. The higher the value of this aggregate

value, the higher the importance of the motif represented by
the kernel.

To group similar motifs together, the PWMs were clus-
tered using the STAMP tool with column comparison met-
ric as Pearson Correlation Coefficient, Ungapped Smith–
Waterman as the alignment algorithm, UPGMA as the
hierarchical tree-building algorithm, and Iterative Refine-
ment as the multiple alignment strategy. For a better group-
ing of the PWMs, motif edges with an information content
of <0.4 were trimmed. After trimming, the motifs of length
>4 were retained.

Feature-based models

To apply traditional feature-based models, we first split
each DNA sequence into k-mers using a sliding window
approach. We extracted all subsequences of length k with
stride = 1 from all the training sequences. A unique set
of k-mers was obtained and their frequencies in the train-
ing sequences served as the features. We then trained Ran-
dom Forest, K-nearest neighbor, Decision Trees, elastic-net
logistic regression, dense neural network with two hidden
layers, and Boosted Trees by tuning the appropriate model
parameters (Supplementary Table S1) using 10-fold cross-
validation. We also trained gkmSVM, which applies sup-
port vector machines to gapped k-mer features. For each of
these feature-based models, three different k-mer lengths (6,
9 and 12) were tested using 10-fold cross-validation.

RESULTS

Training

We implemented the deep learning models shown in Table 1
using Keras and Tensorflow as backend. During the train-
ing process, we used ‘binary cross-entropy’ as the loss func-
tion to be minimized and ‘Adam’ as the optimization algo-
rithm. To prevent overfitting, we applied an early stopping
criterion to stop the optimization iterations during train-
ing after five epochs of unimproved loss on the validation
set. Different values for hyperparameters such as batch size
and learning rate were tested as indicated in Table 1. The
maximum number of epochs was set to 100. The models
were evaluated using six different metrics: AUC, accuracy,
Matthews correlation coefficient (MCC), precision, recall,
and f1 score/measure. We used these different metrics to
view the model performance from different perspectives.
AUC measures the overall performance of the model across
the entire prediction probability threshold. Precision and re-
call focus on the model performance in one specific ‘class
label’; the f1 score combines precision and recall scores.
MCC is a balanced metric and can indicate a model’s per-
formance compared with a random model. The deep learn-
ing models in python code are available in this GitHub page
https://github.com/lincshunter/TADBoundaryDectector.

The choice of hyperparameters can affect model performance

We found that the performance of deep learning models de-
pends on the choice of hyperparameters (Figure 1). A wrong
choice of hyperparameters yielded very poor performance
(Figure 2). Depending on the hyperparameters, models such

https://github.com/lincshunter/TADBoundaryDectector


PAGE 5 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 13 e78

Figure 2. Deep learning model’s performance metrics versus hyperparam-
eters. The figure shows boxplots for six different performance metrics (auc:
area under the curve, acc: accuracy, mcc: Matthews correlation coefficient,
precision, recall, and f1 score) of 12 different deep learning architectures
for different permutations of hyperparameter set tested. The annotations
of the models are provided in Table 1. There are six sub-panels distributed
in two rows and three columns to accommodate all the metrics. The model
labels at the bottom are for both the rows.

as 2layerCNN, 3layerCNN, 4layerCNN and 8layerCNN
gave low accuracy and AUC (Figure 2). The more balanced
metric MCC also exhibited very low values close to zero for
some values of hyperparameters indicating no better per-
formance than a random model. The models consisting of
CNN layers only and ones with both CNN and dense layers
displayed large variance in their performance across the dif-
ferent permutations of hyperparameters (Figure 2). How-
ever, models that contained both CNN and LSTM (Figure
1) showed lower variance (Figure 2). These observations in-
dicate that different values of hyperparameters should be
tested when evaluating deep learning models. Focusing on
one single set of hyperparameters might lead to wrong con-
clusions.

Deep learning accurately predicts boundaries of TADs

Because of the dependence of model performance on hyper-
parameters, several permutations of hyperparameters were
tested and the best set was obtained for each of the 12 ar-
chitectures shown in Table 1. Among the models that con-
tained only CNN layers, we noted that performance in-
creased with an increase in the number of CNN layers from
1 (1layerCNN: AUC of 0.881, accuracy of 0.819) to 4 (4lay-
erCNN: AUC of 0.969, accuracy of 0.910) (Figure 3). How-
ever, increasing the number of layers to eight decreased the
performance (8layerCNN model: AUC of 0.900, accuracy
of 0.810) (Figure 3) indicating that adding more hidden
CNN layers does not necessarily improve model perfor-

Figure 3. Best performance by 12 different deep learning model architec-
tures. The figure shows the best performance achieved by each of the 12
different deep learning model architectures. Six different metrics were used
(auc: area under the curve, acc: accuracy, mcc: Matthews correlation coef-
ficient, precision, recall and f1 score) and the model annotations are pro-
vided in Table 1.

mance. The first CNN layer captures individual local pat-
terns or motifs in the sequences. An additional hidden CNN
layer captures higher-order interactions between patterns
learned by the previous CNN layers. Our results suggest
that individual local sequence patterns with some depen-
dencies between each other distinguish the TAD boundaries
and nonboundary sequences.

Unlike a CNN layer, which captures local patterns or mo-
tifs and local interactions between these patterns, LSTM
or dense layer can capture the long-range dependencies
or more complicated interactions between these patterns.
In our study, we found that adding a bidirectional LSTM
layer or dense layer improved the performance from the
corresponding model that contained only CNN layers.
For example, 1layerCNN LSTM and 1layerCNN Dense
achieved AUCs of 0.925 and 0.932, respectively, compared
with 1layerCNN with AUC of 0.881. In addition, 2lay-
erCNN LSTM and 2layerCNN Dense achieved AUCs of
0.960 and 0.941, respectively, compared with 2layerCNN
with AUC of 0.925. However, adding LSTM layers to
CNN models proved better than adding dense (Figure 3). It
should be noted that the number of dense layers (1, 2, 3 or 4)
to be added was a part of the hyperparameter optimization
process.

Among all the models explored, the 3layerCNN LSTM
model that contained three CNN layers (64 kernels in each
layer, each kernel of length 9) followed by a bidirectional
LSTM layer (40 LSTM units) performed the best (Figure
3). This model achieved AUC, accuracy, MCC, precision,



e78 Nucleic Acids Research, 2019, Vol. 47, No. 13 PAGE 6 OF 9

recall, and f1 score of 0.986, 0.955, 0.904, 0.952, 0.952 and
0.952, respectively (Figure 3). It is interesting to note that
adding an LSTM layer after three CNN layers performed
better than adding an LSTM layer after four CNN layers
(AUC = 0.96, accuracy = 0.906, MCC = 0.812, precision
= 0.906, recall = 0.906, f1 score = 0.906) (Figure 3). This
indicates that an appropriate number of CNN layers is nec-
essary for an LSTM layer to work. We also noted that the
top five best performing permutations of hyperparameters
for the 3layerCNN LSTM model indicate that the number
of kernels of at least 64 was used in each CNN layer (Table
2). This means multiple short sequence signals contribute
to the discrimination between the boundaries and the other
sequences.

To validate further the superior performance of 3lay-
erCNN LSTM and to estimate the effect of sampling on
the performance, we chose the top five permutation sets
of hyperparameters (Table 2) that yielded the best results
for 3layerCNN LSTM. Then, we separately performed a
10-fold cross-validation analysis of the 3layerCNN LSTM
model for these five sets of hyperparameters. The stan-
dard deviation in most of the performance metrics resulting
from using different ‘folds’ is <0.5% (Table 2). To compare
with the 3layerCNN model, which is the counterpart model
without the LSTM layer, similar 10-fold cross-validation
analysis was performed (Supplementary Table S2). The re-
sults showed a standard deviation of less than 0.6% in most
of the performance metrics (Supplementary Table S2). The
results showed that adding an LSTM layer improved the
performance. For example, the 3layerCNN LSTM had an
average performance accuracy of 95.03 ± 0.44% compared
with 90.50 ± 0.64% in 3layerCNN (Supplementary Table S2
and Table 2A). This shows that even after taking into ac-
count the effect of sampling variance, 3layerCNN LSTM
still performed better than its counterpart model without
the LSTM layer.

Overall, our results indicate that a deep learning model,
when appropriately optimized, can accurately differentiate
between TAD boundaries and internal regions of TADs.
Because of the best performance by a model with three
CNN layers and one LSTM layer, it can be qualitatively
concluded that there may exist both higher-order and long-
range dependencies between sequence motifs in the TAD
boundaries.

Deep Learning performs better than feature-based models

Next, we compared the ability of deep learning models
in predicting TAD boundaries to traditional feature-based
models. First, we used the frequencies of all possible k-
mers in the sequences as the features (Methods and Ma-
terials). The top 500 k-mers with the highest count in the
training sequences were retained and used for training pur-
poses. This was done for k = 6, 9 and 12. Using a 10-fold
cross-validation technique, we trained traditional feature-
based models: Random Forest, K-nearest neighbor, Deci-
sion Trees, elastic-net logistic regression, dense neural net-
work with two hidden layers, and Boosted Trees by varying
the appropriate model parameters (Supplementary Table
S1). We also trained the gkmSVM model (15) that has been
used as a benchmark feature-based method to compare

with deep learning models in genomics (9,11). This model
applies support vector machines to gapped k-mers. In our
case, we used k = 6, 9 and 12. Boosted Trees performed the
best in the AUC metric (0.974 when k = 6) (Supplemen-
tary Table S3). In the remaining five metrics, Random For-
est performed the best with k-mer length of 6 (accuracy =
0.912, MCC = 0.825, precision = 0.898, recall = 0.933, f1
score = 0.914). (Supplementary Table S3). GkmSVM’s per-
formance was a little lower than Random Forest with k =
9 (AUC = 0.945, accuracy = 0.906, MCC = 0.813, preci-
sion = 0.886, recall = 0.932, f1 score = 0.908) (Figure 2B).
However, the feature-based models did not outperform the
best deep learning model (Figure 3 and Table 2). These re-
sults show that deep learning models, when appropriately
tuned, outperform feature-based models in predicting TAD
boundaries.

Motifs enriched in TAD boundaries

There has been an indication that TAD boundaries are
enriched in binding sites of insulator proteins. Related to
this context, the deep learning model not only can accu-
rately predict the boundaries but can also be used to de-
cipher the sequence motifs that differentiate the boundaries
from the ‘nonboundary’ sequences. The 64 filters or kernels
from the first CNN layer in the best deep learning model
(3layerCNN-LSTM with the optimal hyperparameters) are
matrices of shape (9, 4) and recognize sequence motifs of
length 9 in similar ways to traditional position weight ma-
trices (PWMs). To generate the sequence logos, the subse-
quences that maximally matched the filter were collected
and aligned to generate sequence logos and their corre-
sponding PWMs. The PWMs were clustered using STAMP
with column comparison metric as the Pearson Correlation
Coefficient. The PWMs were compared with known fruit fly
motifs in the JASPAR database. To obtain the importance
score of each kernel, we used two approaches: ‘activation-
ratio’ and gradient based (Materials and Methods). In the
‘activation-ratio’ approach, the sums of the maximal activ-
ity score across positive testing sequences and negative test-
ing sequences were computed. The ratio of the former to
the latter was used as the importance score of the kernel. In
the second approach (Materials and Methods), we used a
gradient-based approach similar to a previous study (14).

We found that out of 64 kernels, 12 matched annotated
motifs in the JASPAR fly database (16). The Beaf-32 motif,
previously detected as highly enriched in the TAD bound-
ary motif (8), matched to two top kernels: 21 and 36, ranked
second and sixth, respectively, based on the ‘activation-
ratio’ approach (Figure 4), and ranked sixth and first by the
gradient-based approach (Figure 4). Another two motifs,
Pnr and Dref, which are very similar to the Beaf-32 motif,
matched to the same kernels (Figure 4). Trl (or GAF) ele-
ments which frequently co-occur with housekeeping tran-
scriptional regulatory elements or TREs at TAD bound-
aries (17) was also detected as a motif (Figure 4). Embry-
onic development factors such as Byn or brachyenteron
and Ovo, which is involved in development specification
in fruit flies (18) and expression of germline genes, respec-
tively, were also detected as the top scoring motifs (Figure
4). However, CTCF was not detected by the first CNN layer,



PAGE 7 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 13 e78

Table 2. Performance of 3layersCNN LSTM. Five different permutation sets of hyperparameters for the 3layersCNN LSTM model that yielded the top
five performances are shown. The first six columns indicate the value of six different performance metrics. The standard deviation in the metrics value from
10-fold cross validation are indicated within parentheses. The remaining columns indicate the hyperparameters

AUC Accuracy MCC Precision Recall F1 score
Learning
rate Kernel size

number of
kernels LSTM units

0.9829
(0.0026)

0.9503
(0.0044)

0.8916
(0.0091)

0.9515
(0.0046)

0.9502
(0.0045)

0.9502
(0.0045)

0.001 9 64 40

0.9795
(0.0034)

0.9358
(0.0122)

0.8643
(0.0235)

0.9385
(0.0113)

0.9358
(0.0122)

0.9357
(0.0122)

0.001 9 64 60

0.9768
(0.0114)

0.9352
(0.0145)

0.8609
(0.0291)

0.9358
(0.0146)

0.9352
(0.0145)

0.9352
(0.0145)

0.001 9 120 40

0.9892
(0.0061)

0.9360
(0.0061)

0.8641
(0.0130)

0.9381
(0.0070)

0.936
(0.0061)

0.9359
(0.0061)

0.001 9 64 20

0.9752
(0.0037)

0.9230
(0.0053)

0.8370
(0.0104)

0.9240
(0.0052)

0.9230
(0.0053)

0.9229
(0.0053)

0.001 9 96 20

Figure 4. Deep learning identifies motifs enriched in TAD boundaries. The
kernels along with their scores, sequence logos, and the matched motifs in
fruit flies are shown. The scores are indicated by ‘black colored’ bar graphs
(using ‘activation-ratio’) and ‘red colored’ bar graphs (using a gradient-
based approach). A longer bar graph indicates a higher score. The matched
motif in fruit flies is indicated next to the sequence logo.

most likely because of its weak enrichment in TAD bound-
aries of fruit flies (8). The motifs detected by the first CNN
layer resonate with previous studies reporting similar motifs
in TAD boundaries. However, our study shows several other
unannotated motifs that contribute to the discrimination
between TAD boundaries and nonboundary regions. This
means the biological rules that characterize TAD bound-
aries are complex and encompass not just a few factors.

DISCUSSION

In this paper, we explore several deep learning architec-
tures containing dense, CNN and LSTM layers to predict
boundaries of TADs from sub-kb high resolution chro-
matin capture experiments. One bottleneck that comes with
deep learning models is that the choice of hyperparameters
can drastically affect the weights and performance of the
models. To obtain the appropriate set of hyperparameters,
we performed hyperparameter tuning for a set of parame-
ters such as learning rate of the optimizer, batch size, ker-
nels’ length, and number of kernels. We found that a model
that contains three CNN layers followed by a bidirectional
LSTM layer performed the best with a high accuracy of
96%. This outperformed the best feature-based model with
91% accuracy and a previous study of 75% accuracy on the
same data set.

We did not create a background set by shuffling the
boundary sequences by maintaining the same dinucleotide
frequency because such method has been reported to over-
estimate the performance of predictive models (19). The
background set was chosen to represent actual DNA se-
quences from the genome but restricted to regions inside the
TADs. Our goal was to design a deep learning model that
can accurately predict TAD boundaries but also allow the
model to learn ‘features/motifs’ that can differentiate the
boundaries from internal sequences. That is why the back-
ground set was restricted to internal regions of TADs.

Besides accuracy, we used five other metrics to cap-
ture the performance of the models from different perspec-
tives. AUC captures how a model generally performs across
different thresholds applied to the probability of predic-
tion. The accuracy metric does not take into account a
model’s differential performance (if it exists) between the
two classes. Hence, other metrics such as precision, recall,
and f1 score provide supplemental information on whether



e78 Nucleic Acids Research, 2019, Vol. 47, No. 13 PAGE 8 OF 9

the model performance is biased toward a specific class.
Matthew’s correlation coefficient compares the model’s per-
formance with that of a random model. In our case, we
found that some of the metrics are almost identical to the ac-
curacy metric (Figures 2 and 3) indicating that the model’s
performance is not biased toward one specific class.

Deep learning models require a large training set and can
overfit easily. To address this issue, we added three main
techniques: ‘drop out,’ ‘data augmentation,’ and ‘early stop-
ping.’ Dropout is a technique that has been proven to pre-
vent overfitting in deep learning models. It randomly re-
moves a fraction of nodes during each epoch of the training
process allowing ‘learning’ from randomly chosen units. In
general, we added a ‘drop out’ layer after every hidden layer.
Data augmentation was also applied to increase the size of
the training set by creating additional ‘TAD boundaries.’
These artificial ‘TAD boundaries’ were created by shifting
the actual TAD boundary intervals to the left or right ran-
domly by some base pairs of length between 0 and 100. The
data augmentation was only applied to the training set and
not to the testing set. We also applied ‘early stopping’ crite-
ria by terminating the optimization process when the value
of the loss function on the validation set did not improve
after five consecutive epochs.

Our model focused on high resolution TAD boundary in-
tervals of 1 kb in length. For mammalian genomes, there
are other Hi-C data that have achieved TAD boundary res-
olution in a range of 10–40 kb. For example, for 10 kb
resolution Hi-C data, traditional analysis of Hi-C data di-
vides the genome into intervals or bins of 10 kb and gener-
ates contact counts between these bins. In such a case, each
TAD boundary will be 20 kb in length. First, the models ex-
plored in this study will be impractical on these large length
boundary sequences. Second, this kind of resolution intro-
duces some ‘uncertainty’ to that reported by these experi-
ments. In the future, we plan to develop deep learning mod-
els that are ‘time-distributed’ and/or contain k-mer embed-
ding features to address long TAD boundaries. In a ‘time-
distributed’ model, instead of analyzing the entire sequence,
it can be divided into several nonoverlapping intervals. A
deep learning layer can be applied to these intervals inde-
pendently and can be integrated subsequently. In a k-mer
embedding technique, the DNA sequence can be treated as
a sequence of k-mers instead of a sequence of single letter
bases. The k-mers can be translated to numerical vectors in
a higher dimension using techniques such as GloVe. Never-
theless, we have demonstrated that deep learning, when op-
timized to the right architecture and hyperparameters, can
accurately predict TAD boundaries and can extract motifs
that differentiate the boundaries from other nonboundary
sequences.

We also found that out of 64 kernels represented in the
first CNN layer, only 11 matched annotated motifs in the
JASPAR fly database. The Beaf-32 motif, previously de-
tected as highly enriched in the TAD boundaries, was one
of the top scoring motifs detected by our method. Because
elimination of Beaf-32 binding sequences has been shown
not to alter Hi-C interaction data in fruit flies (8) and our
study reveals motifs Dref and Pnr matched the same kernels
representing Beaf-32, it is possible that Dref and Pnr have
more important roles in TAD boundary formation. Inter-

estingly, CTCF was not detected by the first CNN layer in
the model, most likely because of its weak enrichment in
TAD boundaries of fruit flies. Besides, other TAD bound-
ary associated motifs such as Trl (or GAF) were detected.
Some of the motifs detected by the first CNN layer res-
onate with previous studies reporting similar motifs in TAD
boundaries. This validates the methodology used in this
study to predict TAD boundaries and identification of mo-
tifs. Our study also revealed embryonic development factors
such as Byn or brachyenteron and Ovo, which are involved
in development specification in fruit flies and expression of
germline genes, respectively, as high scoring motifs in TAD
boundaries. We also detected Pho as a motif in the TADs
(not previously detected). Pho is known to play a role in
DNA binding and stabilization of Polycomb complexes in
fruit flies (20). It is possible that these factors are required
for TAD formation or that their binding is just a product of
formation of TADs. Overall, there were more than 50 unan-
notated motifs that contributed to the differentiation be-
tween TAD boundaries and nonboundary sequences. One
should note that each of these motifs collectively or combi-
natorically contributes to the prediction power of the deep
learning model. To decipher fully the nature of the interac-
tions between these motifs is beyond the scope of this paper
and will be addressed in future studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Ian McNaught (Cambridge Proofreading)
and Dr David Stewart (University of Houston) for proof-
reading the manuscript.

FUNDING

American Heart Association [181PA34170360 to Y.L.] (in
part); Organized Research and Creative Activities (ORCA)
awards [University of Houston-Downtown to B.S.]. Fund-
ing for open access charge: University of Houston-
Downtown University of Houston.
Conflict of interest statement. None declared.

REFERENCES
1. Dixon,J.R., Gorkin,D.U. and Ren,B. (2016) Chromatin domains: the

unit of chromosome organization. Mol. Cell, 62, 668–680.
2. Peifer,M., Hertwig,F., Roels,F., Dreidax,D., Gartlgruber,M.,

Menon,R., Krämer,A., Roncaioli,J.L., Sand,F., Heuckmann,J.M.
et al. (2015) Telomerase activation by genomic rearrangements in
high-risk neuroblastoma. Nature, 526, 700–704.

3. Valentijn,L.J., Koster,J., Zwijnenburg,D.A., Hasselt,N.E., Van
Sluis,P., Volckmann,R., Van Noesel,M.M., George,R.E.,
Tytgat,G.A.M., Molenaar,J.J. et al. (2015) TERT rearrangements are
frequent in neuroblastoma and identify aggressive tumors. Nat.
Genet., 47, 1411–1414.

4. Northcott,P.A., Lee,C., Zichner,T., Stütz,A.M., Erkek,S.,
Kawauchi,D., Shih,D.J.H., Hovestadt,V., Zapatka,M., Sturm,D. et al.
(2014) Enhancer hijacking activates GFI1 family oncogenes in
medulloblastoma. Nature, 511, 428–434.

5. Hnisz,D., Weintrau,A.S., Day,D.S., Valton,A.L., Bak,R.O., Li,C.H.,
Goldmann,J., Lajoie,B.R., Fan,Z.P., Sigova,A.A. et al. (2016)

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkz315#supplementary-data


PAGE 9 OF 9 Nucleic Acids Research, 2019, Vol. 47, No. 13 e78

Activation of proto-oncogenes by disruption of chromosome
neighborhoods. Science, 351, 1454–1458.

6. Gröschel,S., Sanders,M.A., Hoogenboezem,R., De Wit,E.,
Bouwman,B.A.M., Erpelinck,C., Van Der Velden,V.H.J.,
Havermans,M., Avellino,R., Van Lom,K. et al. (2014) A single
oncogenic enhancer rearrangement causes concomitant EVI1 and
GATA2 deregulation in Leukemia. Cell, 157, 369–381.

7. Dixon,J.R., Selvaraj,S., Yue,F., Kim,A., Li,Y., Shen,Y., Hu,M.,
Liu,J.S. and Ren,B. (2012) Topological domains in mammalian
genomes identified by analysis of chromatin interactions. Nature, 485,
376–380.

8. Ramı́rez,F., Bhardwaj,V., Arrigoni,L., Lam,K.C., Grüning,B.A.,
Villaveces,J., Habermann,B., Akhtar,A. and Manke,T. (2018)
High-resolution TADs reveal DNA sequences underlying genome
organization in flies. Nat. Commun., 9, 189.

9. Alipanahi,B., Delong,A., Weirauch,M.T. and Frey,B.J. (2015)
Predicting the sequence specificities of DNA- and RNA-binding
proteins by deep learning. Nat. Biotechnol., 33, 831–838.

10. Zhou,J. and Troyanskaya,O.G. (2015) Predicting effects of noncoding
variants with deep learning-based sequence model. Nat. Methods, 12,
931–934.

11. Zeng,H., Edwards,M.D., Liu,G. and Gifford,D.K. (2016)
Convolutional neural network architectures for predicting
DNA-protein binding. Bioinformatics, 32, i121–i127.

12. Hochreiter,S. and Schmidhuber,J. (1997) Long short-term memory.
Neural Comput., 9, 1735–1780.

13. Liu,Q., Xia,F., Yin,Q. and Jiang,R. (2018) Chromatin accessibility
prediction via a hybrid deep convolutional neural network.
Bioinformatics, 34, 732–738.

14. Kelley,D.R., Reshef,Y.A., Bileschi,M., Belanger,D., McLean,C.Y.
and Snoek,J. (2018) Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome Res., 28,
739–750.

15. Ghandi,M., Lee,D., Mohammad-Noori,M. and Beer,M.A. (2014)
Enhanced regulatory sequence prediction using gapped k-mer
features. PLoS Comput. Biol., 10, e1003711.

16. Mathelier,A., Zhao,X., Zhang,A.W., Parcy,F., Worsley-Hunt,R.,
Arenillas,D.J., Buchman,S., Chen,C.Y., Chou,A., Ienasescu,H. et al.
(2014) JASPAR 2014: An extensively expanded and updated
open-access database of transcription factor binding profiles. Nucleic
Acids Res., 42, 1–6.

17. Cubenãs-Potts,C., Rowley,M.J., Lyu,X., Li,G., Lei,E.P. and
Corces,V.G. (2017) Different enhancer classes in Drosophilabind
distinct architectural proteins and mediate unique chromatin
interactions and 3D architecture. Nucleic Acids Res., 45, 1714–1730.

18. Hayashi,M., Shinozuka,Y., Shigenobu,S., Sato,M., Sugimoto,M.,
Ito,S., Abe,K. and Kobayashi,S. (2017) Conserved role of Ovo in
germline development in mouse and Drosophila. Sci. Rep., 7, 40056.

19. Pan,X. and Shen,H.-B. (2018) Predicting RNA–protein binding sites
and motifs through combining local and global deep convolutional
neural networks. Bioinformatics, 34, 3427–3436.

20. Schuettengruber,B., Oded Elkayam,N., Sexton,T., Entrevan,M.,
Stern,S., Thomas,A., Yaffe,E., Parrinello,H., Tanay,A. and Cavalli,G.
(2014) Cooperativity, specificity, and evolutionary stability of
polycomb targeting in Drosophila. Cell Rep., 9, 219–233.


