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Liver organogenesis and development are composed of a series of complex, well-orchestrated events. Identifying key factors

and pathways governing liver development will help elucidate the physiological and pathological processes including those

of cancer. We conducted multidimensional omics measurements including protein, mRNA, and transcription factor (TF)

DNA-binding activity for mouse liver tissues collected from embryonic day 12.5 (E12.5) to postnatal week 8 (W8), encom-

passing major developmental stages. These data sets reveal dynamic changes of core liver functions and canonical signaling

pathways governing development at both mRNA and protein levels. The TF DNA-binding activity data set highlights the

importance of TF activity in early embryonic development. A comparison between mouse liver development and human

hepatocellular carcinoma (HCC) proteomic profiles reveal that more aggressive tumors are characterized with the activation

of early embryonic development pathways, whereas less aggressive ones maintain liver function–related pathways that are

elevated in the mature liver. This work offers a panoramic view of mouse liver development and provides a rich resource to

explore in-depth functional characterization.

[Supplemental material is available for this article.]

The liver is a metabolic hub that produces, stores, and recycles
many life-essential molecules (Rui 2011). Liver cancer is the third
most common cause of cancer death worldwide. Previous studies
of animal models have shed light on the mechanisms of liver or-
ganogenesis and development (Zhao and Duncan 2005; Si-Tayeb
et al. 2010; Gordillo et al. 2015; Gruppuso and Sanders 2016).
One of themost significant findings is the identification of key sig-
naling events in orchestrating liver development, includingHippo
(Yimlamai et al. 2014; Lee et al. 2016; Patel et al. 2017; Lu et al.
2018), Wnt/CTNNB1 (Thompson and Monga 2007; Nejak-
Bowen and Monga 2008; Yang et al. 2014; Russell and Monga
2018), transforming growth factor beta (TGFB) (Bissell et al.
2001; Clotman et al. 2005), fibroblast growth factor (FGF) (Jung
et al. 1999; Zhang et al. 2004; Calmont et al. 2006; Shin et al.
2007), hepatocyte growth factor (HGF) (Huh et al. 2004; Shin
and Monga 2013; Ye et al. 2015), Notch (Zong et al. 2009;
Morell and Strazzabosco 2014; Geisler and Strazzabosco 2015),
and bone morphogenetic protein (BMP) signaling pathways
(Zhang et al. 2004; Shin et al. 2007; Wang et al. 2014; Choi et al.
2017). Additionally, critical transcription factors and epigenetic
regulators such as FOXA and GATA families, Homeobox genes,
Hepatocyte nuclear factors (HNFs), and NR5A2 (Zhao and
Duncan 2005; Si-Tayeb et al. 2010; Sheaffer and Kaestner 2012;
Gordillo et al. 2015) have been discovered as key regulators.

Deregulation of these pathways is also linked to liver diseases.
For example, activation ofWnt/CTNNB1pathway has been shown
to contribute to liver disease (Monga 2015), Hippo signaling can
restrain liver overgrowth and tumorigenesis (Wu et al. 2015), de-
fective Notch signaling leads to the impaired ability to repair liver
damage, and excessive Notch activation could contribute to liver
cancer (Morell et al. 2013).

RNA-seq has been used to monitor dynamic changes in liver
transcriptome in development (Gunewardena et al. 2015), to
quantify mRNA abundance of transporter genes and their alterna-
tive transcript isoforms (Cui et al. 2012), and to determine the ex-
pressions of the cytochromes P450 family of genes and their
isoforms (Peng et al. 2012). Temporal transcriptomic and proteo-
mic studies have been performed in flies and mice (Casas-Vila
et al. 2017; Gao et al. 2017). More recently, single-cell RNA-seq
(scRNA-seq) has been used tomeasure the differentiation andmat-
uration trajectories of stem/progenitor cells in fetal livers (Su et al.
2017) and outline the characteristics of resident cells of the human
liver and its immune microenvironment. Studies on expression
quantitative trait loci and protein quantitative trait loci show the
distinct transcriptional and post-transcriptional regulations in hu-
man cells andmouse liver, highlighting the unique value of prote-
omes in annotating complex trait analysis together with
transcriptomics, genomics, and metabolomics (Battle et al. 2015;
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Chick et al. 2016; Williams et al. 2016). The RNA results still need
to be verified at the protein level. Moreover, the information on
the activity of the drivers of development transcription factors
(TFs) is still lacking.

Here, we conducted an integrative proteomic and transcrip-
tomic characterization of developing mouse liver from embryonic
day 12.5 (E12.5) to postnatal week 8 (W8), and the analysis of TF
DNA binding activities during the developmental period. Our
data present amultidimensional omics overviewof themouse liver
covering major stages of liver development.

Results

A dynamic mouse liver proteome during development

We conducted a temporal, in-depth multi-omics analysis on
mouse liver tissues collected at 15 time points from embryonic
day 12.5 (E12.5, the earliest date that fetal liver is visible when
the resection is possible) to postnatal week 8 (W8) (Fig. 1A). The
sampling time window covers the embryonic period (E12.5,
E13.5, E14.5, E15.5, E16.5, E17.5, and E18.5) when liver forms,
the postnatal days (D1, D3, D5) when liver undergoes early devel-
opmental stages, and the postnatal weeks (W1, W2, W3, W6, W8)
when liver development is complete and the liver is fully function-
al (Fig. 1B).

We performed the whole proteome profiling using a prefrac-
tionation strategy with a small-scale reversed phase (sRP) chroma-
tography (Fig. 1B), a workflow that has proven to achieve high

sensitivity and reproducibility (r > 0.8) in the quality control runs
(Supplemental Fig. S1A). We quantified 7261±392 gene products
(GPs) (Mean± SD) on a single time point and 11,984GPs in total at
1% peptide-level false discovery rate (FDR) (Supplemental Fig. S1B;
Supplemental Table S1). The 2242GPs that were present in all stag-
es were designated as the core mouse liver proteome (Supplemen-
tal Fig. S1C). The main functional categories of the core proteome
included cell–cell adhesion, translation, oxidation–reduction pro-
cess, protein transport, and the metabolic process (Supplemental
Fig. S1D). The relative abundance of the GPs (normalized as
iFOT) spanned nearly six orders of magnitude (Supplemental Fig.
S1E). The abundance of the housekeeping proteins such as
TUBB4B and HSP90B1 remained largely unchanged, whereas the
hepatic cell markers (e.g., albumin [ALB]; alpha fetoprotein
[AFP]) showed highly dynamic behavior during liver development
(Supplemental Fig. S1F). For comparison, we also performed RNA
sequencing on samples collected during the same developmental
period. The transcriptome achieved a deeper coverage with a total
of 15,061 expressed genes (FPKM>1) (Supplemental Table S2).

Key phases of the liver development and functions

To achieve higher confidence, 6458 GPs identified in at least two
of the three replicates in at least one time point were used for fur-
ther statistical analyses (Supplemental Fig. S1G; Supplemental
Table S1). Hierarchical clustering (Fig. 2A) partitioned samples
into three clusters: Phase 1 (E12.5–E16.5), the early embryo phase,
when the liver rapidly gained weight; Phase 2 (E17.5–W2), the
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Figure 1. Temporal, multi-omics profiling of the developing mouse liver. (A) Liver sampling time window and the coverage of developmental stages.
(B) Experimental procedure and data analysis workflow of the mouse liver proteome, transcription factor binding activities, and transcriptome.
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Figure 2. Threemajor developmental phases and five temporal expression modules revealed by the proteomics analysis. (A) Hierarchical clustering anal-
yses of temporal proteomics data separated the liver development into three phases. (B) Principal component analysis of the temporal proteomics data.
Each dot represents an independent biological replicate. (C) Five temporal expression modules revealed by k-means clustering and the major biological
processes they govern.

Mouse embryonic liver development

Genome Research 265
www.genome.org



perinatal phase, when the weight gain was slower but constant;
and Phase 3 (W3–W8), the matured phase, when the weight
gain again became pronounced. Principal component analysis
(PCA) showed the partition of data points in a time-dependent
manner (Fig. 2B). One-way ANOVA analysis identified 3100 GPs
that were differentially expressed (FDR<0.01), and 2341 proteins
whose expressions were at least twofold higher in one phase
than in any other phase were defined as phase-specific proteins
(Supplemental Table S1).

To gain insights into the temporal behavior of the differen-
tially expressed proteins, we performed an unsupervised k-means
clustering analysis (SupplementalMethods), resulting in fivemod-
ules enriched with distinct Gene Ontology (GO) terms (Fig. 2C;
Supplemental Fig. S2A,B; Supplemental Table S1). Proteins in
Module 1 aremainly involved in cell-cycle and RNA transcription,
including DNA replication and repair, cell division, rRNA process-
ing, ribosome biogenesis, and RNA transport. Module 2 proteins
participate in inflammatory response, phagocytosis, and immune
response. Although proteins in Modules 3–5 differ in timing for
peak intensity, they are enriched in similar biological processes in-
cluding oxidation–reduction, metabolism, and transport, which
are all essential for adult liver function. It appears that cell prolifer-
ation is the predominant pathway during early development,
whereas the metabolism-related functions emerge when the liver
becomes mature.

Hierarchical clustering and PCAwere also used to separate the
RNA-seq data into three phases with minor difference from the
proteome-based classification (Supplemental Fig. S3A,B). Likewise,
k-means clustering of the differentially expressed RNA transcripts
revealed five gene modules with similar expression profiles and
functional annotations as those obtained from the proteomic
data (Supplemental Fig. S3C; Supplemental Table S2).

Dynamic changes in core liver functions and hepatic cell types

Fetal liver is amajor organ for hematopoiesis, whereas the adult liv-
er plays a key role in metabolism (Gebhardt 1992; Morrison et al.
1995). These functions are carried out by specialized hepatic cell
types either individually or cooperatively. A question is when
the specialization takes place.

We retrieved key cell-type markers from a previous publica-
tion (Azimifar et al. 2014) and proteins involved in the eight
core liver functions from the common knowledge databases
(KEGG, Reactome, and Gene Ontology) and mapped their tempo-
ral patterns along the developmental time scale (Fig. 3A–C;
Supplemental Table S3). As expected, hematopoiesis occurs exclu-
sively in Phase 1 with the highest activity observed during E12.5 to
E14.5; cholesterol synthesis, glycogenolysis, drug metabolism,
Valine/Leucine/Isoleucine metabolism, fatty acid metabolic pro-
cess, coagulation and complement are predominantly enriched
in Phase 3 when the liver growth plateaus (Fig. 3A,C).

Temporal expression patterns of the cell-type-specific protein
markers indicate that the five cell types are formed in a regulated
manner during liver development (Fig. 3B). Markers for Kupffer
Cells (KCs) appeared the earliest and spanned all three phases.
For instance, S100A8 and S100A9, two calcium-binding proteins
known to promote inflammation and autoimmune response via
toll-like receptor 4 signaling, show high levels in Phase 2 (Loser
et al. 2010). Hepatic stellate cells (HSCs), which are activated in re-
sponse to liver damage, are highly enriched with intracellular traf-
ficking proteins such as ANXA2/3, SNX2/3/5, and RAB7/11, and
are expressed at high levels during Phase 2 and early Phase

3. Markers for HSCs and Liver sinusoidal endothelial cells
(LSECs) are more abundantly expressed in Phase 1 and Phase
2. Several LSEC-specific markers, including ACTA1, TAGLN,
DSTN, FLNA, TPM1, andMYOare the components of the cytoskel-
eton and actomyosin machinery. The high expression of these
proteins in Phases 2 and 3 reinforces the notion that LSECs func-
tion in lining the blood vessels. Hepatocytes (HCs) are the predom-
inant cell type that constitutes nearly 80% of the cells in the adult
liver. HC markers start to express at high levels in late Phase 2 and
Phase 3. Liver-specific fatty acid binding proteins (FABPs, GSTP1,
and CPS1) are the three most abundant proteins in HC. These pro-
teins gradually increased starting from Phase 1 and peaked in
Phases 2 and 3 (Fig. 3B). This temporal pattern coincides with
the enrichment of GO terms formetabolic process, lipidmetabolic
process, and urea cycle in the mature liver (Fig. 3C). Intrahepatic
cholangiocytes (CHCs) cell markers ANXA4, ANXA5, ANXA6,
and KRT19 appeared in late Phase 2 and Phase 3, during the
time when the bile duct formed (Gordillo et al. 2015).

The transcriptome revealed similar temporal expression pat-
terns of cell type and core liver functions (Supplemental Fig.
S4A,B). In general, the fetal liver is enriched in genes that function
in hematopoiesis, but themature liver is enriched in genes formet-
abolic functions, with the exception of glycogenolysis. Although
the mRNA transcripts for glycogenolysis were mostly seen in the
early phases of the development, the proteins were not observed
until a later phase, demonstrating a greater discordance between
mRNA and proteins (Fig. 3A; Supplemental Fig. S4A). Although
the time frames that outlined the formation of HC, CHC, and
KC showed nearly identical expression patterns inmRNA and pro-
tein, they appeared to be different for HSCs and LSECs (Fig. 3B;
Supplemental Fig. S4B).

Global profiling of transcription factor DNA-binding activities

Transcription factors (TFs) control their target gene expressions
upon development. Because the transcriptional activity is often
regulated by post-translational modifications and protein–protein
interactions, the abundance of a TF does not always reflect its activ-
ity.Here,we used a concatenated tandemarrayof the consensus TF
response elements (catTFRE) (Ding et al. 2013a) to pull down TFs
frommouse liver nuclear extract, which could better reflect TF ac-
tivities. The TFRE pulldowns captured 818 transcription factors
that covered themajority of the TF families (Fig. 4A; Supplemental
Table S4) with Zf-C2H2, Homeobox, and bHLH as the top three
transcription factor families (Supplemental Fig. S5A; Hu et al.
2019). Based on the expression patterns of the 352 high-confi-
dence TFs, hierarchical clustering (Fig. 4B) and PCA (Supplemental
Fig. S5B) separated the developing liver into four phases: TF Phase
1 (E12.5 and E13.5), TF Phase 2 (E14.5 to D1), TF Phase 3 (D1 to
D5), and TF Phase 4 (W2–W8). Thus, although the four phases
generally corresponded with those derived from the whole prote-
ome and transcriptome profiling, the TF-based classification pro-
vided a higher resolution of early development (Fig. 4C). Next,
we identified phase-specific TFs, the TFs whose mean values in
one phase are at least twofold higher than the means in the other
three phases, resulting in 102, 17, 10, and 84 TFs for TF Phases 1–4,
respectively (Fig. 4D; Supplemental Table S4).

To find correlations between TF activities and the expression
of their downstream transcriptional targets (TGs), we used CellNet
(Cahan et al. 2014), a database of gene regulatory networks, to pre-
dict the groups of transcripts that are potentially regulated by the
phase-specific TFs. This resulted in four TG groups (TG1–TG4) that
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correspond to protein (TG-Protein1-4) and mRNA (TG-RNA1-4)
(Supplemental Table S5). Temporal expression patterns of the ma-
jority of TG1s and TG2s as measured by mRNA and protein profil-
ing show that they are expressed at higher levels mainly in R1 and
P1 (Fig. 4D; Supplemental Fig. S5C), with GO terms enriched in
mitotic nuclear division, embryonic hemopoiesis, and cell divi-
sion (Fig. 4E). Similarly, the expression of the predicted TG3 and
TG4 transcripts as well as proteins is at higher levels mainly during
R3 and P3, respectively, with GO terms enriched in metabolic and
immune system processes (cf. Fig. 4E with profiling Fig. 2C and
transcriptome GO figures Supplemental Fig. S3C). These results
suggest that TF activities can correctly predict target gene expres-

sions and functions during early and late development periods.
However, few predicted TGs were found to be enriched in R2
and P2. The reason for the discrepancy is not clear.

Cytochrome P450s, a superfamily of proteins for drugmetab-
olism, is highly expressed during Phase 3. Previous studies (Jover
et al. 2001; Akiyama andGonzalez 2003) show that the expression
of the hundreds of CYP isoforms is regulated by a number of TFs,
including HNF1A, HNF4A, CEBPB, CEBPG, and NR1H4 (Fig. 4F).
Consistently, the expressions of several HNF1A-regulated CYPs
are highly correlated (Supplemental Fig. S5D). This cluster also in-
cludes CYP7B1, CYP39A1, and CYP2C65, whose upstream TFs are
not known. The close correlation between these CYPs and the
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HNF1A target genes raised the possibility that they may also be
HNF1A target genes.

Integrative analysis of the transcriptome, proteome,

and DNA-bound TFs

The temporal expression patterns obtained by RNA sequencing
and proteomic profiling revealed not only resemblances but also
distinct features. In total, 6326 GPs were identified in both RNA
and protein data sets with a median Spearman’s correlation coeffi-
cient of 0.46, similar to previous studies (Fig. 5A; Schwänhausser
et al. 2011). Genes with positive correlation are significantly en-
riched in organic acidmetabolism, RNAprocessing, andRNA splic-
ing; genes with negative correlation are enriched in transport,
secretion, and cellular macromolecule metabolism (Fig. 5B,C).

There are 8544 genes that were detected by the RNA-seq only;
among them, 6146 (71.9%) are protein-coding RNAs as annotated
in the Ensembl andNCBI database (Fig. 5A; Supplemental Fig. S6A;
Supplemental Table S6). Pseudogenes, lncRNAs, snoRNAs, and
miRNAs constitute 92.3% of all noncoding genes (Supplemental
Fig. S6B). For the 6146 protein-coding genes, RNA transcripts of se-
creted proteins including chemokines/cytokines, growth factors,
and membrane proteins that may be difficult to solubilize (trans-
membrane, ion channel, and GPCRs) are significantly enriched
in this data set, suggesting a possibility that these proteins may
have expressed but escaped detection (Fig. 5D). Transcription fac-
tors and transcription coregulators are significantly overrepresent-
ed in the RNA-only data set, constituting ∼55% of all 893 TFs
detected in this study (Fig. 5D).

Protein stability could account for the inability to detect pro-
teins in RNA-only transcripts (Supplemental Table S6). For exam-
ple, Trp53, which encodes the tumor suppressor TRP53 that is
degraded by MDM2 in nonstress conditions, was detected with a
maximal FPKMof 97 at early embryonic days.Cdt1, which encodes
a component of the prereplication complex, was detected with a
maximal FPKM of 101 in E13.5. CDT1 is regulated in part through
ubiquitin-dependent proteolysis at the onset of the S-phase to en-
sure that replication occurs only once per cell cycle.

The AP-1 family of transcription factors Atf4 and Atf5 are
among the highest expressing transcripts in the RNA-only data
set (Supplemental Table S6). The AP-1 transcription factor family
regulates a variety of cellular processes; their activities are regulated
at multiple levels, including protein translation. In fact, ATF4/5 is
mainly under translational regulation (Vesely et al. 2009).

The TFRE pulldown data set provides an added value in
investigating the correlation between protein expression and tran-
scription activities. Overall, the correlation of TFRE-mRNA (medi-
an =0.25) is higher than that of TFRE-Protein (median=0.19) and
both are markedly lower than that of Protein-RNA (Supplemental
Fig. S6C,D). For the 149 TFs found in all three data sets, the corre-
lation is the highest betweenmRNA-Protein (median 0.54), slight-
ly higher than that of all gene products (0.46), and the lowest
between mRNA-TFRE (median 0.07) (Supplemental Table S7).

TFs whose activities are positively correlated with their pro-
tein abundance include PURA, PURB, and CTF domain TFs NFIA,
B, and C (Supplemental Table S6). Protein abundance of
CTNNB1 (also known as beta-catenin), a key transcription coregu-
lator of the Wnt pathway, is positively correlated with its DNA-
binding activity, but is negatively correlated with its RNA abun-
dance (Fig. 5E). Since CTNNB1 is phosphorylated and degraded
through proteolysis in the absence of WNT ligands, the negative
RNA-Protein correlation implies that protein stability plays a

major regulatory role during early embryonic days. Conversely,
the strong positive correlation between DNA binding and protein
abundance suggests that the stabilized CTNNB1 is mostly active
upon WNT activation, as the timing of the first CTNNB1 activa-
tion peak (E16.5–D1) coincides with that of TCF7 and LEF1, key
partner TFs of CTNNB1 in transcription, and of Wnt4 RNA.

Estrogen-related receptor gamma (ESRRG) was detected only
by the TFRE pulldown. ESRRG is an orphan nuclear receptor and
regulates cell growth and tumorigenesis in various cancers, but
its function in liver homeostasis is poorly understood. It has
been reported that O-GlcNAcylation of ESRRG promotes hepatic
gluconeogenesis (Misra et al. 2016). The increased DNA binding
of ESRRG in TF Phase 4 is consistent with its role in regulating glu-
cose metabolism in adult liver.

Essential pathways for liver development and their

connections to HCC

It has been observed that embryogenesis and tumorigenesis share
common and distinct characteristics; although both are governed
by few key signaling pathways, the former responds to develop-
mental cues and is spatially and temporally regulated, whereas
the latter is misregulated, which could result in the reactivation
of some embryonic developmental processes that need to be re-
pressed in adult tissues (Aiello and Stanger 2016). We surveyed
the three data sets for key factors involved in the signaling
pathways implicated in liver development (Fig. 6A). Of the 115
proteins shown,∼61% (69 proteins) showed significant alterations
(ANOVA, Q<0.01) during the developmental period examined
and the majority of these factors are expressed at higher levels in
Phase 1 or Phase 2. Changes in mRNA are largely reflected in the
changes of their protein counterparts (Fig. 6A).

SMAD proteins are key players in the TGFB- and BMP-mediat-
ed pathways in cell growth, differentiation, and development (Wu
and Hill 2009). Seven SMAD proteins were detected at earlier
phases by MS and RNA-seq; highest expressions of the SMADs’
downstream effectors were also found in earlier phases. Three
NOTCH proteins (NOTCH1-3) and their downstream transcrip-
tion factor RBPJ showed higher expression levels in Phase 1 and
Phase 2, implying that the biliary differentiation is an early event.
RAS, RAF, MAPK, and MAP2K are common effectors in several
RTK-mediated pathways, including HGF, EGF, and FGFs. The ex-
pression patterns of these proteins in Phase 1 is in line with the
time frame of hepatic specification (Gordillo et al. 2015). A subset
ofWNT target genes are highly expression in Phase 1, whereas oth-
er WNT target genes that are required for liver function are highly
expressed in Phase 3.

Recent transcriptomic and proteomic analyses of HCC pro-
vide new insights into the association of molecular subtypes and
clinical relevance. An integrative molecular HCC subtyping
incorporating five data sets by The Cancer Genome Atlas (TCGA)
identifies three molecular subtypes (iCluster 1–3) (The Cancer
Genome Atlas Research Network 2017). iCluster 1 is characterized
with overexpression of proliferation marker genes that is associat-
ed with poor prognosis and higher tumor grade. In contrast,
iCluster 2 and 3, which are associated with low-grade tumors,
showed a high frequency in mutations of liver-function genes in-
cluding CTNNB1 and HNF1A. Most recently, a study reported the
subtyping of early-stage hepatocellular carcinoma into three sub-
types (named as S-I, S-II, and S-III) that are associatedwith different
clinical outcomes (Jiang et al. 2019). The S-III subtype, which has a
significantly lower overall rate of survival, is characterizedwith the
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activation of tumor-promoting pathways and the silencing of
tumor-suppressor pathways; in contrast, the less aggressive S-I
subtype is characterized with the up-regulation of liver-function-
related proteins and pathways, suggesting hepatocyte-like charac-
teristics in these tumors.

We examined the expression patterns of the 19 prognosis sig-
nature proteins listed in Jiang et al. (2019) during liver develop-
ment (Supplemental Fig. S7A). As shown in Figure 6B, CYP1A2
and OTC, two proteins that are enriched in S-I with negative
Hazard Ratios (HRs) are highly expressed in Phase 3. Similar trends

A

C

E

D

B

Figure 5. Integrative analysis of the transcriptome, proteome, and DNA-bound TFs. (A) Venn diagram of total number of transcripts, proteins, and the
number of overlapping TFs detected in the TFRE pulldown data set. (B) Protein-mRNA correlation calculated by Spearman’s correlation coefficient.
Pathways in red are positively correlated (r>0.3); pathways in blue are negatively correlated (r<0). (C) Protein-mRNA levels of the transport proteins
and proteasomal proteins are negatively correlated (r<0). P-values were calculated by hypergeometric distribution. (D) P-values of GPCRs, cell membrane
protein, secreted protein, and TFs in the RNA-only data set calculated by the hypergeometric distribution. (E) Temporal expression levels of CTNNB1 by the
mRNA, transcription factor, and protein measurements.
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A

B C

Figure 6. Analyses of key signaling pathways related to liver development. (A) Changes in effectors of key signaling pathways based on KEGG and other
studies (Yimlamai et al. 2014) (TFs, proteins, or RNAs). An ANOVA test was performed to identify statistically significantly changed proteins or genes.
(B) Temporal expression levels of selected prognosis signature proteins across 15 time points during liver development. Proteins in blue boxes are correlated
with better prognosis; proteins in red boxes are correlated with poor prognosis. iCluster 1–3 subtypes were obtained from the TCGA paper (The Cancer
Genome Atlas Research Network 2017); S-I, -II, -III subtypes were obtained from the HCC paper (Jiang et al. 2019). (C) Heatmaps showing temporal ex-
pression patterns of S-I-, S-II-, or S-III-enriched proteins across 15 time points during liver development.
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are also observed for iCluster 2 and 3, (two subtypes with better
prognosis in the TCGA paper) (The Cancer Genome Atlas
Research Network 2017) enriched proteins CTNNB1 and HNF1A
(Supplemental Fig. S7B). In contrast, the six proteins (CDK1,
HDAC2, PCNA, PRPF4, SLC3A2, and TGFB1) (Supplemental Fig.
S7A) with positive HRs that are enriched in S-II or S-III display
the highest expressions on E12.5 or E14.5. This expression pattern
is also evident for proliferation markers such as PLK1, MKI67, and
MYBL2 found in iCluster 1 (Supplemental Fig. S7B), the subtype
that has the lowest survival rate.

To obtain additional evidence of association between liver de-
velopment and the proteomic HCC subtypes, we identified pro-
teins that are differentially expressed in each HCC subtype. For
the 1269 proteins that show the most variations among HCC sub-
types, 1033 are differentially expressed in each subtype (One-way
ANOVA, FDR<0.01) (Supplemental Table S8), and 472 proteins
whose mean expressions in the highest expressing subtype are
two times higher than those in the second highest subtype are de-
fined as subtype signature proteins (Supplemental Table S8). Of
the 472 signature proteins, 345 mouse counterparts are identified
in the liver development data set (Fig. 6C; Supplemental Table S8).
The 37 S-I signature proteins are differentially expressed almost ex-
clusively in late Phase 2 or Phase 3, particularly fromW3–W8. This
feature is consistent with the hepatic characteristics of the S-I tu-
mors and indicates that tumors that retain their hepatic function
have a good prognosis. In contrast, the majority of the S-III signa-
ture proteins are differentially expressed in either early embryo
days (E12.5–E13.5) or during D1–W2 with functional enrichment
in organ development, immune system process, defense response,
and signal transduction. The S-II has the least number of signature
proteins. It appears thatmanyproteins that are highly expressed in
S-II are also highly expressed in either S-I or S-III. Together these
analyses suggest that tumors with aberrant expression of prolifer-
ation proteins or activated in pathways that need to be silenced
in adult liver are correlated with poorer clinical outcomes, whereas
tumors that overexpress liver-function-related proteins are associ-
ated with better clinical outcomes.

Discussion

The transcriptomic, proteomic, and DNA-binding activity profil-
ing during liver development in this study revealed a multidimen-
sional, high-resolution atlas that can be further characterized in
detail. The streamlined proteomic workflow allowed the accurate
measurement of protein abundance of 11,984 GPs across the 15
sampling time points. The TFRE data set contains 818 TFs com-
pared with 370 TFs from protein profiling, allowing not only for
more accurate quantification of low abundant TFs, but inferring
their regulatory roles during development. Moreover, the TFRE-
based clustering separated the earliest development phase
obtained by RNA and protein profiling further into two phases,
highlighting the high TF activity during E12.5 and E13.5.

Although the RNA-seq-based transcriptome and the prote-
ome have moderate correlation, they do share many common fea-
tures, including the six functionally similar gene modules, similar
temporal expression profiles of genes that govern core liver func-
tions, and features of the five hepatic cell types. An exception is
the discordance between RNA and protein markers of HSCs and
LSECs (Fig. 3B; Supplemental Fig. S4B). This discordance is not
likely caused by technical issues because both the data quality
and the abundance are high. Because the peaks of mRNA in both
cells precede those of protein, it could be rationalized that protein

synthesis takes time. One possible explanation is that the HSC and
LSEC markers are inaccurate, which is exacerbated by the low
abundance of HSC and LSEC cells.

Our integrative analysis of mRNA transcripts, proteins, and
DNA-bound TFs links transcription factor activities to mouse liver
development. Although the low correlation between mRNA and
TF DNA-binding activity may be understandable as post-transcrip-
tional and translational regulation are in play, themuch lower cor-
relation between protein abundance and DNA-bound TF activity
suggests that additional regulatory mechanisms, such as post-
translational modification and nuclear translocation, play an im-
portant part for TF activation. The combined analyses of the three
data sets will facilitate the investigation of underlying regulatory
mechanism and select candidate TFs that are post-transcriptional-
ly and/or post-translationally regulated. For example, our data
showed that the protein abundance of CTNNB1 is negatively cor-
relatedwith itsmRNA, but positively correlatedwith itsDNA-bind-
ing activity. Because CTNNB1 is regulated through proteolysis,
these data imply that the majority of CTNNB1 is post-transcrip-
tionally regulated, but the stabilized CTNNB1 is transcriptionally
active during early embryonic days.

ConnectingTFswith their target genes is oneof themost chal-
lenging issues in the field. Several databases are available but the
overlap among them is low (Keenan et al. 2019). Additionally,
few TGs are regulated by a single TF, making the one-to-one corre-
lation even more difficult. In our TF-TG analysis, we predicted de-
velopment cluster–specific TFs with their TGs using a database
fromCellNet and showed that the RNAs and proteins that were ac-
tually detected were enriched in the same GO terms. This avoided
the one-to-one match but examined TGs belonging to the same
functional categories that are likely regulated by a group of TFs
with either physical or functional interactions. Although the ma-
jority of TGs predicted by TF Phases 1 and 4 were indeed detected
andenriched in these time framesby theRNAandproteinmeasure-
ment, predicted TF-TG relationship in the other twophases didnot
agree with themeasurements. The reason for such a discordance is
not clear.We speculate that because the R2/P2 phase spans the pe-
riod during which the embryos arematured and the pups are born,
the drastic changes in their living environment require complex
signaling cross-talks withmultiple TFs.Moreover, other factors, in-
cluding post-translational modifications, protein–protein interac-
tion between TFs and their coregulators, also contribute to the
transcriptional regulation.

Our data sets also reveal an intriguing relationship between
liver development and HCC subtypes that are associated with clin-
ical outcomes.More aggressive tumors are associatedwith aberrant
overexpression of proliferation markers or activation of early em-
bryonic development pathways, whereas less aggressive tumors
are associated with overexpression of liver function–related pro-
teins that are also elevated in mature livers. This correlation raises
the possibility that different HCC subtypesmayoriginate fromdif-
ferent oncogenic events.

In summary, themulti-omics data in the present study offer a
valuable resource to study the mechanisms of liver organogenesis,
development, and tools to understand liver tumorigenesis, from
the origins of cancer cells to metastasis.

Methods

Animals and tissue collection

Eight-week-old C57BL/6mice weremated at night, and pregnancy
was determined by the appearance of a viscous vaginal plug in the
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female mice the following morning, which was designated as ges-
tational day 0.5. Livers were collected at 15 time points spanning
themajor developmental stages as indicated. Three livers were col-
lected from three mice at each time point. Multiple livers were
combined for each sample before E16.5.

Sample preparation and LC-MS/MS analysis

Liver tissues were subjected to protein extraction in lysis buffer (8
M Urea, 100 mM Tris-HCl at pH 8.0) supplemented with protease
and phosphatase inhibitors (Thermo Fisher Scientific). Lysates
were centrifuged at 16,000g for 10 min at 4°C. The supernatant
was digested with sequencing-grade trypsin and the resulting pep-
tides were fractionated with a small-scale C18 reversed phase (sRP)
chromatography (Ding et al. 2013b; Jung et al. 2017) to nine frac-
tions at pH=10.

Nuclear extracts were incubated with biotinylated DNA pre-
immobilized on Dynabeads (M-280 streptavidin) for 2 h at 4°C.
Proteins bound to Dynabeads were washed with NETN (100 mM
NaCl, 20 mM Tris-HCl, 0.5 mM EDTA, and 0.5% [vol/vol] NP-40)
buffer twice and water once; they were then digested with trypsin
in 50 mM ammonium bicarbonate for 6 h at 37°C.

The digested peptides were vacuum dried and then redis-
solved in 0.1% formic acid and resolved on an UltiMate 3000
RSLCnano System (Thermo Fisher Scientific) operating on a 75-
min linear gradient (5%–35% acetonitrile in 0.1% formic acid) at
a flow rate of 600 nL/min. Tandem mass spectra were acquired
on a QExactive HF mass spectrometer (Thermo Fisher Scientific)
in the data-dependent mode.

Protein identification and quantification

MS data were processed on the Firmiana platform (Feng et al.
2017). Proteins were identified against the RefSeq mouse protein
database (version 04/07/2013, derived from the protein-coding
GENCODE.vM2) using the MASCOT search engine (Matrix
Science, version 2.3.01). Mass tolerances were 20 ppm for precur-
sor ions and 0.05 Da for product ions, respectively. Up to one
missed cleavage was allowed for trypsin digestion. Cysteine carba-
midomethylationwas considered as a fixedmodification, N-termi-
nal acetylation and methionine oxidation were considered as
dynamic modifications. One percent FDR on both the peptide
and protein levels estimated by searching a decoy databasewere al-
lowed. Gene symbols were updated to GENCODE.vM23 (09/19/
2019). The list of converted genes is provided in Supplemental
Table S1. Proteins were quantified by a label-free, intensity-based
absolute quantification (iBAQ) approach (Schwänhausser et al.
2011) and further normalized into iFOT (intensity-based the frac-
tion of total multiplied by 105).

High-throughput RNA sequencing and data analysis

RNA sequencing (RNA-seq) was performed on Illumina HiSeq
4000. The quality control and data filtering were processed by
the FastQC software (Version 0.11.5). The processed reads
were mapped onto the mouse reference genome (GRCm38.p2.
genome, 12/10/2013) using the HISAT2 software (Version 2.1.0)
(Kim et al. 2015). Transcripts were assembled and quantified using
the StringTie software (Version 1.3.1) with a reference genome an-
notation file (Pertea et al. 2015). Relative quantification of tran-
scripts was measured as fragments per kilobase of transcript per
million mapped reads (FPKM).

Bioinformatics and statistical analysis

Principal component analysis (PCA) and unsupervised hierarchi-
cal clustering analysis were carried out. Gene Ontology (GO)
term enrichment analysis was performed by using DAVID
Bioinformatics Resources 6.8, an online bioinformatics tool for
gene functional annotation (Huang da et al. 2009). One-way
ANOVA test was performed to identify differentially expressed
proteins.

Genes linked to specific liver functions were selected by
KEGG, Gene Ontology, and Reactome. Hepatic cell-type markers
were selected from the studies (Kinoshita et al. 2010; Azimifar
et al. 2014; Gordillo et al. 2015). Genes with similar functions
were grouped by k-means clustering analysis of differentially ex-
pressed proteins. Proteins or genes that were highly correlated in
the same cluster (r>0.8) were used for GO-term enrichment anal-
ysis. Potential transcriptional targets were identified from CellNet
(Cahan et al. 2014).

Data access

All RNA-seq data generated in this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) under accession number GSE132034. The MS
raw data generated in this study have been submitted to
ProteomeXchange database (www.proteomexchange.org) via the
iProX partner repository (Ma et al. 2019) under accession number
PXD014144.
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