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Atherosclerosis (AS) is a chronic inflammatory disease, which has a complex interplay between altered immune metabolism and
oxidative stress. Therefore, we aimed to determine the oxidative stress and immune-related biomarkers in AS. Differential gene
expression analyses are based on the GSE100927 dataset in the Gene Expression Omnibus (GEO), and 389 oxidative stress
(OS) genes are identified based on gene set enrichment analysis (GSEA). We identified 74 differentially expressed genes related
to oxidative stress (DEOSGs). “CIBERSORT” and “WGCNA” R Packages were used to compare the differences in immune
infiltration levels between AS and control samples. The DEOSGs (N = 74) were intersected with the key module’s genes of
WGCNA (N = 972), and 27 differentially expressed immune-related oxidative stress genes (DEIOSGs) were obtained. To
identify the pivotal genes, a protein-protein interaction (PPI) network was constructed using the STRING database and the
Cytoscape software. MMP9, ALOX5, NCF2, NCF, and NCF4 were identified as diagnostic markers of AS, and we validated
them in the GSE57691 dataset. The expression levels of the five diagnostic genes were significantly highly expressed in the AS
group. Correlation analysis and single-cell analysis revealed that five diagnostic genes were mainly correlated with macrophages
M1. We, respectively, intersected differentially expressed genes (DEGs) with ferroptosis gene set, necroptosis gene set, and
pyroptosis gene set. The findings suggested that ALOX5 and NCF2 were differentially expressed genes of ferroptosis. High
expression of five hub genes in RAW264.7 macrophages were confirmed by PCR. High ALOX5 and NCF2 expression levels in
plaque tissues were confirmed by immunohistochemistry (IHC) and western blotting. Our study identified that MMP9,
ALOX5, NCF2, NCF1, and NCF4 were diagnostic genes of AS and associated with oxidative stress. ALOX5 and NCF2 may be
involved in the formation of the necrotic core in AS by regulating macrophage ferroptosis.

1. Introduction

Multiple cardiovascular and cerebrovascular diseases,
including coronary heart disease, ischemic stroke, and
peripheral artery disease, dominate global mortality and dis-
ability statistics [1]. Atherosclerosis (AS) is a crucial patho-
logical mechanism of these diseases, characterized by the
accumulation of low-density lipoprotein (LDL) particles in
large- and medium-sized arteries, migration of mononuclear
cells and other immune cells through dysfunctional endo-
thelial cells, and lipid plaque formation. With the release of
inflammatory factors, a chronic inflammatory response in
the arterial wall occurs [2, 3]. Plaque rupture, thrombosis,

and lumen narrowing obstruct blood flow, leading to a series
of major adverse cardiovascular events (MACEs). For the
treatment of atherosclerosis, the most used drugs are cur-
rently statins, which lower LDL cholesterol levels. These
therapies, however, have not been effective in reducing levels
of MACESs [4]. Therefore, understanding the etiology and
pathogenesis of AS can guide the clinical diagnosis and ther-
apies and improve clinical outcomes.

In recent years, many researchers have attempted to
combine immunological and anti-inflammatory treatments
and reduce MACEs. For instance, canakinumab, which tar-
gets to the interleukin-1β (IL-1β) innate immunity pathway,
can significantly reduce MACEs [5]. Moreover, research has
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shown that immune checkpoint proteins and costimulatory
molecules play a substantial role in regulating atherosclerosis
[6, 7]. These studies provide novel insights into the signifi-
cance of immune modulation for AS. In addition, plaque
formation results from interactions between immune cells
and oxidative stress (OS). In the arterial wall, increased oxi-
dative stress can promote the accumulation of modified lipo-
proteins, alter macrophage metabolism, and lead to
proatherosclerotic immune cell infiltration [8]. An oxidative

stress state is marked by elevated levels of reactive oxygen
species (ROS). Cardiovascular risk factors, such as hyperten-
sion, hypercholesterolemia, and hyperlipidemia, can pro-
mote ROS production. But few studies have been
conducted to explore the combination of oxidative stress
and immune infiltration in AS.

Immune infiltration and oxidative stress play important
roles in AS. In this study, we conducted a systematic bioinfor-
matics analysis to outline the immune infiltration landscape
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Figure 1: Identification of DEGs. (a) Volcano plot of DEGs. (b) Heatmaps of DEGs.

2 Oxidative Medicine and Cellular Longevity



and combined oxidative stress to determine the diagnostic
genes of AS. Additionally, we deliberated the relationship
between ferroptosis and infiltrating immune cells to gain a bet-
ter understanding of the potential molecular process during
the development of AS.

2. Materials and Methods

2.1. Data Source. In this study, we obtained a gene expres-
sion microarray from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo). The
microarray data were obtained from the GPL17077 with

the accession number GSE100927 (AS = 69, control = 35),
GPL10558 platform with the accession number GSE57691
(AS = 9, control = 10), and GPL18573 platform with the
accession number GSE159677. GSE100927 and GSE57691
were used as training set and external validation sets, respec-
tively. GSE159677 was used as a single-cell set. We obtained
389 OS-related genes from the gene set enrichment analysis
(GSEA) [9].

2.2. Identification of DEGs. The differentially expressed genes
(DEGs) from GSE100927 were identified using the Limma R
package on normalized count data. The parameters |Log2fold
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Figure 2: Identification of DEOSGs. (a) Venn diagrams of the DEGs and OS-related genes. (a and b) GO and KEGG analysis of upregulated
DEGs. (c and d) GO and KEGG analyses of downregulated DEGs.
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change| >0.5 and adj. P < 0:05 were used as the screening cri-
teria for DEGs. Moreover, heatmap and volcano plot of DEGs
from the databases were constructed using pheatmap and
ggplot2 R packages.

2.3. KEGG and GO Enrichment Analyses. To reveal the
potential biological functions and underlying mechanisms
of genes, we used the R package “clusterProfiler” to analyze
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genes (KEGG) term enrichment of the target genes
[10]. GO terms, including biological processes (BPs), cellular
components (CCs), molecular functions (MFs), and KEGG
pathways with adjusted P < 0:05, were considered statisti-
cally significant.

2.4. Immune Infiltration Analysis. The proportions of the 22
types of immune cells in samples from GSE100927 were
obtained using the CIBERSORT algorithm [11]. The “vio-
plot” package was used to compare the levels of 22 types of
immune cells between AS and control samples.

2.5. Construction of Weighted Gene Coexpression Networks.
In this study, the R package “WGCNA” [12] was used to

construct the weighted gene coexpression network analysis
(WGCNA). First, hierarchical clustering was performed on
the study samples to detect the outliers and remove the
abnormal samples. Second, to build a scale-free network, soft
powers of β = 2 were selected using the function pickSoft
Threshold. Thereafter, the adjacency matrix was established
and converted to a topological overlap matrix (TOM), and
the gene dendrogram and module color were established
using the degree of dissimilarity. The correlations between
modules and differentially infiltrating immune cells were
then calculated using the WGCNA package. Modules with
high correlation coefficients were considered as candidates
related to differentially infiltrating immune cells and selected
for subsequent analyses. With the candidate module
selected, we defined |MM| (|Module membership|) >0.8
and |GS| (|gene significance|) >0.20 as the screening criteria
for filtering key genes in the candidate module. The intersec-
tion of differentially expressed genes related to oxidative
stress (DEOSGs) and genes in key modules were performed
using the “VennDiagram” R package and defined as differ-
entially expressed immune-related oxidative stress genes
(DEIOSGs), which were used for subsequent analysis.
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Figure 3: Immune infiltration analysis based on the CIBERSORT algorithm. The enrichment fraction of 22 types of immune infiltrating
cells in the AS and normal samples.
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2.6. Construction of Protein-Protein Interaction Network and
Screening of Hub Gene. The protein-protein interaction
(PPI) network was constructed using the Search Tools for
the Retrieval of Interacting Genes (STRING) database [13].
The Cytoscape software was then used to visualize the PPI
network. The molecular complex detection (MCODE)
plug-in in the Cytoscape was used to identify significant
gene clusters and obtain hub genes.

2.7. The ROC Curve Analysis and Expression Analysis. In the
GSE100927 dataset, we performed receiver operating char-
acteristic (ROC) curve analysis on each screened hub gene
to verify its accuracy. The “pROC” package was used for
ROC curve analysis. The hub genes with AUC> 0.7 were
deemed useful for disease diagnosis [14]. Expression levels
of hub genes between AS and control samples were dis-
played in the boxplots generated by the “ggplot2” in R pack-

age. We analyzed the functional similarity of genes using the
“GOSemSim” package in R. The corrplot package was used
to analyze the correlation of genes.

2.8. Correlation Analysis between Infiltrating Immune Cells
and Diagnostic Genes. Immune infiltration analysis was per-
formed using the CIBERSORT algorithm. The corrplot in R
was used to calculate the Spearman correlation analysis
between infiltrating immune cells and diagnostic genes. We
visualized the correlations between diagnostic genes and
immune cells with lollipop.

2.9. GSEA Analysis. The GSEA was used to identify the
potential function of the diagnostic genes. The chosen refer-
ence gene set was downloaded from the Molecular Signature
Database (MSigDB). A P < 0:05 was used as the criterion for
significant enrichment.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a 

ce
lls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
st

in
g

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

el
pe

r

T 
ce

lls
 re

gu
la

to
ry

 (t
re

gs
)

T 
ce

lls
 g

am
m

a 
de

lta

N
K

 c
el

ls 
re

st
in

g

N
K

 c
el

ls 
ac

tiv
at

ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c 
ce

lls
 re

st
in

g

M
as

t c
el

ls 
re

st
in

g

D
en

dr
iti

c 
ce

lls
 a

ct
iv

at
ed

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tr
op

hi
ls

Fr
ac

tio
n

p = 0.072

p < 0.001

p = 0.55

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p < 0.001

p = 0.002

p = 0.026

p = 0.597

p = 0.137

p = 0.463

p = 0.009

p = 0.515

p = 0.075

p = 0.39

AS
Control

Figure 4: Violin plot of 22 types of immune infiltrating cells in the AS and normal samples.

5Oxidative Medicine and Cellular Longevity



1.0
Scale independence

0.8
2

1

13 4 5 6 7 8 910 12 14 16 18 20 22 24 26 28 30

0.6

Sc
al

e 
fr

ee
 to

po
lo

gy
 m

od
el

 fi
t, 

sig
ne

d 
R2

0.4

0.2

0.0
0 5 10 15 20

Soft threshold (power)

25 30

4000

Mean connectivity

3000

2

3
4

5 6 7 8 910 12 14 16 18 20 22 24 26 28 30

2000

M
ea

n 
co

nn
ec

tiv
ity

1000

0

0 5 10 15 20

Soft threshold (power)

25 30

(a)

0.9

Cluster dendrogram

0.8

0.7H
ei

gh
t

0.6

0.5

Module colors

(b)

MEyellow

Module-trait relationships

MEpink

MEturquoise

MEblack

MEbrown

MEgreen

MEgreenyellow

MEmagenta

MEpurple

MEblue

MEred

MEgrey

B.
ce

lls
.m

em
or

y

B.
ce

lls
.n

ai
ve

D
en

dr
iti

c.
ce

lls
.a

ct
iv

at
ed

Eo
sin

op
hi

ls

M
ac

ro
ph

ag
es

.M
0

M
ac

ro
ph

ag
es

.M
1

M
as

t.c
el

ls.
ac

tiv
at

ed

M
as

t.c
el

ls.
re

st
in

g

M
on

oc
yt

es

Pl
as

m
a.

ce
lls

T.
ce

lls
.C

D
4.

m
em

or
y.a

ct
iv

at
ed

T.
ce

lls
.C

D
4.

m
em

or
y.r

es
tin

g

T.
ce

lls
.g

am
m

a.
de

lta

T.
ce

lls
 re

gu
la

to
ry

 (t
re

gs
)

0.18
(0.07)
–0.22
(0.03)

–0.12
(0.2)

0.056
(0.6)

0.22
(0.03)

0.24
(0.02)

–0.066
(0.5)

–0.024
(0.8)

–0.065
(0.5)

0.12
(0.2)

–0.24
(0.02)

–0.1
(0.3)

–0.01
(0.9)

0.25
(0.01)

–0.15
(0.1)

1

0.5

0

–0.5

–1

0.22
(0.02)

–0.46
(9e–07)

–0.22
(0.03)

–0.22
(0.03)

0.76
(1e–20)

–0.54
(5e–09)

0.24
(0.02)

–0.46
(1e–06)

–0.52
(2e–08)

–0.46
(9e–07)

0.32
(0.001)

–0.67
(1e–14)

0.52
(2e–08)

0.025
(0.8)

0.42
(1e–05)

–0.18
(0.07)

–0.19
(0.05)

–0.19
(0.06)

–0.061
(0.5)

0.031
(0.8)

–0.04
(0.7)

0.074
(0.5)

–0.2
(0.05)

0.014
(0.9)

0.059
(0.6)

–0.13
(0.2)

–0.14
(0.2)

0.054
(0.6)

0.42
(1e–05)

–0.21
(0.03)

–0.24
(0.02)

–0.5
(1e–07)

0.36
(2e–04)

–0.37
(2e–04)

0.21
(0.03)

–0.33
(7e–04)

–0.57
(3e–10)

–0.05
(0.6)

–0.2
(0.05)

–0.58
(1e–10)

0.16
(0.1)

0.17
(0.09)

0.11
(0.3)

0.096
(0.3)

0.18
(0.07)

–0.0066
(0.9)

–0.16
(0.1)

0.12
(0.2)

0.086
(0.4)

0.15
(0.1)

–0.095
(0.3)

–0.074
(0.5)

0.029
(0.8)

0.12
(0.2)

–0.062
(0.5)

0.21
(0.03)

0.12
(0.2)

0.0095
(0.9)

–0.17
(0.09)

0.099
(0.3)

–0.0011
(1)

0.0024
(1)

0.12
(0.2)

0.088
(0.4)

0.032
(0.8)

0.034
(0.7)

0.21
(0.03)

–0.077
(0.4)

–0.042
(0.7)

0.0076
(0.9)
0.039
(0.7)

0.075
(0.5)

0.23
(0.02)

0.21
(0.03)

–0.31
(0.002)

0.074
(0.5)

–0.015
(0.9)

0.14
(0.2)

0.24
(0.02)

0.1
(0.3)

–0.095
(0.3)

0.38
(7e–05)

–0.08
(0.4)

0.097
(0.3)

0.05
(0.6)

0.028
(0.8)

0.27
(0.006)

0.14
(0.2)

–0.12
(0.2)

–0.06
(0.6)

0.0014
(1)

0.098
(0.3)

0.078
(0.4)

–0.025
(0.8)

0.023
(0.8)

0.18
(0.07)

–0.05
(0.6)

0.038
(0.7)

–0.49
(2e–07)

0.43
(8e–06)

0.29
(0.003)

0.44
(3e–06)

–0.65
(1e–13)

0.53
(9e–09)

–0.28
(0.005)

0.46
(1e–06)

0.68
(7e–15)

0.28
(0.004)

0.31
(0.002)

0.76
(2e–20)

–0.36
(2e–04)

–0.14
(0.2)

–0.24
(0.02)

0.13
(0.2)

0.25
(0.01)

0.13
(0.2)

–0.32
(9e–04)

0.29
(0.003)

–0.16
(0.1)

0.39
(5e–05)

0.3
(0.002)

0.057
(0.6)

0.17
(0.09)

0.2
(0.04)

–0.27
(0.006)

–0.062
(0.5)

0.1
(0.3)

–0.087
(0.4)

–0.079
(0.4)

–0.11
(0.3)

–0.076
(0.4)

0.11
(0.3)

0.022
(0.8)

0.059
(0.6)

–0.02
(0.8)

–0.065
(0.5)

0.087
(0.4)

0.02
(0.8)

–0.0014
(1)

0.073
(0.5)

–0.053
(0.6)

–0.00042
(1)

–0.1
(0.3)

0.15
(0.1)

–0.098
(0.3)

0.097
(0.3)

–0.022
(0.8)

–0.11
(0.3)

–0.1
(0.3)

–0.025
(0.8)

–0.095
(0.3)

0.069
(0.5)

0.066
(0.5)

(c)

0.5

Module membership vs. gene significance
cor = 0.3, p = 3.7e–198

0.4

0.3

0.2

G
en

e 
sig

ni
fic

an
ce

0.1

0.0

0.3 0.4 0.5 0.6

Module membership in turquoise module

0.7 0.8 0.9

(d)

0.5

Module membership vs. gene significance
cor = 0.61, p < 1e–200

0.4

0.3

0.2

G
en

e 
sig

ni
fic

an
ce

0.1

0.0

0.3 0.4 0.5 0.6

Module membership in blue module

0.7 0.8 0.9

(e)
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2.10. Single-Cell Analysis. We incorporated atherosclerotic
core (AC) plaques and patient-matched proximal adjacent
(PA) portion transcriptome data from GSE159677. Subse-
quently we conducted the single-cell analysis using the “Seu-
rat,” “tidyverse,” and “Matrix” R packages.

2.11. Construction of Potential TF- and miRNA-Target Gene
Regulatory Networks and Small-Molecule Drug Prediction.

The miRNet (https://www.mirnet.ca/) online database was
accessed to identify possible miRNA targeting diagnostic
genes [15]. The upstream transcription factors (TF) were
predicted using the NetworkAnalyst (https://www
.networkanalyst.ca/) [16]. Subsequently, the results were
visualized using the Cytoscape software. Small-molecule
drugs were searched using the gene name on CTD website,
after which a serial of drug-gene interaction pairs was
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Figure 6: Identification of DEIOSGs. (a) Venn diagrams of the DEOSGs and genes in the blue and turquoise modules. (b) GO analysis of
DEIOSGs. (c) KEGG analysis of DEIOSGs.
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obtained. The gene–drug interaction networks were visual-
ized using the Cytoscape.

2.12. In Vitro and In Vivo Analyses. RAW264.7 macro-
phages were cultured. 5-lipoxygenase (ALOX5), P67phox
(NCF2), P47phox (NCF1), and P40phox (NCF4) gene expres-
sions were determined by quantitative real-time polymerase
chain reaction (qPCR) following the method described pre-
viously [17]. Total RNA was extracted from cells which
treated with ox-LDL (80 ng/mL) for 24 h (AS group) and
cells which treated with normal saline for 24 h (control
group) (extraction kit: Mei5bio, MF036-01). The extracted
total RNA was reversely transcribed into cDNA using the
PrimeScript RT Master Mix (RR036A, Takara). Amplifica-
tion was performed using SYBR Green Premix (RR420A,
Takara). β-Actin was used as the internal reference for
mRNA qPCR. Independent-sample t-test was used to vali-
date significant differences. P < 0:05 was considered statisti-
cally significant. The primer sequences of the studied genes
are as follows: (forward primer) 5′-GTGCTATGTTGCTC
TAGACTTCG-3′ and (reverse primer) 5′-ATGCCACAG
GATTCCATACC-3′ for β-actin; (forward primer) 5′-
ACTACATCTACCTCAGCCTCATT-3′ and (reverse
primer) 5′-GATGTGAATTTGGTCATCTCGG-3′ for
ALOX5; (forward primer) 5′-GAAGATACCTCTCCAG
AATCCG-3′ and (reverse primer) 5′-TTCTTAGACAC
CATGTTCCGAA-3′ for NCF2; (forward primer) 5′-ATTC
ACCGAGATCTACGAGTTC-3′ and (reverse primer) 5′-
TGAAGTATTCAGTGAGAGTGCC-3′ for NCF1; (forward

primer) 5′-ATTCACCGAGATCTACGAGTTC-3′ and
(reverse primer) 5′-TGAAGTATTCAGTGAGAGTGCC-3′
for NCF4.

Eight-week-old male C57BL/6 mice were fed with a nor-
mal diet (control group), and eight-week-old male APOE-/-
mice were fed with a high-fat diet (AS group) for 3 months.
Aortic valve histological changes were assessed between two
groups. The aortic valve specimens were embedded into par-
affin, then sectioned into slides, and processed for hematox-
ylin and eosin (HE) staining and immunohistochemical
(IHC) staining. Homogenized arterial tissues were separated
onto 10% SDS-PAGE gels, transferred to polyvinylidene
difluoride membranes and then probed using the ALOX5
antibodies (ab169755, Abcam) and NCF2 antibodies (Cat
No. 15551-1-AP, Proteintech), which were diluted with 3%
BSA. All animal experiments were conducted in a human
manner and according to the Institutional Animal Care
Instructions guidelines.

2.13. Statistical Analysis. Statistical analyses for data of our
experiments were performed with the Prism software
(GraphPad Software, La Jolla, CA). Independent-sample t
-test was used to validate significant differences; ∗∗∗ repre-
sents P < 0:001, ∗∗ represents P < 0:01, and ∗ represents P
< 0:05.

3. Results

3.1. Identification of DEGs. Differential gene expression anal-
ysis was performed using GSE100927. A total of 2417 DEGs
(|log2FC| >0.5 and adjusted P < 0:05) were obtained, of
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Figure 7: Construction of PPI network and identification of the top module. (a) The PPI network of DEIOSGs. (b) The top1 module in the
PPI network.
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which 934 DEGs were downregulated and 1483 were upreg-
ulated. Volcano and heatmaps of the DEGs are shown in
Figures 1(a) and 1(b); the DEGs exhibit significantly differ-
ent expression patterns between the AS and control samples.

3.2. Enrichment Function Analysis of DEOSGs. A total of 389
OS-related genes were identified by GSEA, and 74 differen-
tially DEOSGs were obtained by intersection with DEGs
(Figure 2(a)). The GO analysis results showed that the
upregulated DEOSGs were enriched in response to oxidative
stress, ficolin-1-rich granule, and antioxidant activity
(Figure 2(b)). The downregulated DEOSGs were enriched
in response to oxidative stress, focal adhesion, and actin
binding (Figure 2(d)). KEGG pathway analysis revealed that
the upregulated DEOSGs were mainly enriched in diabetic

cardiomyopathy, leishmaniasis, leukocyte transendothelial
migration, and atherosclerosis (Figure 2(c)), and the down-
regulated DEOSGs were mainly enriched in longevity regu-
lating pathway-multiple species, epidermal growth factor
receptor (EGFR) tyrosine kinase inhibitor resistance, hyper-
trophic cardiomyopathy, and MAPK signaling pathway
(Figure 2(e)).

3.3. Immune Infiltrating Cell Analysis. Figure 3 shows the
enrichment fraction of 22 types of immune infiltrating cells
in the AS and normal samples. According to Figure 4, 14
types of immune cells were significantly different between
the AS and control samples (P < 0:05). They included B cells
naive, B cells memory, plasma cells, T cells CD4 memory
resting, T cells CD4 memory activated, T cells regulatory
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(Tregs), T cells gamma delta, monocytes, macrophages M0,
macrophages M1, dendritic cells activated, mast cells resting,
mast cells activated, and eosinophils.

3.4. Construction of Coexpression Networks. The sample
cluster tree was shown in Supplement 2(a) and 2(b), and
the results indicated that two abnormal samples were
removed. Thereafter, the optimal soft-threshold power of 2
was selected based on the scale-free network construction
(Figure 5(a)). Finally, through WGCNA analysis, 12 mod-
ules were identified in this study (Figure 5(b)). Furthermore,
through correlation analysis of the modules and traits (infil-
trated immune cells), we found that the turquoise module
was highly positively correlated with macrophages M0
(Cor = 0:76, P = 1e − 20), and blue module was highly posi-
tively correlated with T cells CD4 memory resting
(Cor = 0:76, P = 2e − 20) (Figure 5(c)). Therefore, the tur-
quoise module and blue module were selected as important
modules relevant to immune infiltrating cells for further
analysis. In Figures 5(d) and 5(e), the significant correlations
between gene significance (GS) and module membership
(MM) were presented in the turquoise module and blue
modules; 857 and 115 key genes were, respectively, found
in the two modules by GS >0.20 and MM >0.80.

3.5. Identification of Differentially Expressed Immune-
Related Oxidative Stress Genes and Functional Enrichment
Analysis. The intersection between DEOSGs and genes in
the blue and turquoise modules was observed. We identified
27 differentially expressed immune-related oxidative stress
genes (DEIOSGs) (Figure 6(a)). To explore the function of
27 DEIOSGs in AS, the GO terms are shown in
Figure 6(b). In the BP analysis, DEIOSGs mainly partici-
pated in response to oxidative stress, cellular response to oxi-
dative stress, and cellular response to chemical stress. In CC
analysis, DEIOSGs significantly participated in the neuronal
cell body, endocytic vesicle, and secretory granule mem-
brane. MF analysis showed that DEIOSGs significantly par-
ticipated in antioxidant activity, heme binding, and
tetrapyrrole binding. KEGG analysis was performed to
explore the pathways of these 27 DEIOSGs. The KEGG
terms of DEIOSGs were mainly enriched in leukocyte trans-
endothelial migration, diabetic cardiomyopathy, osteoclast
differentiation, atherosclerosis, and leishmaniasis
(Figure 6(c)).

3.6. Identification of Hub Genes. The PPI network of
DEIOSGs was constructed using the STRING and visualized
using the Cytoscape (Figure 7(a)). The MCODE of the

ALOX5 MMP9 NCF1

NCF2 NCF4

p = 0.42

p = 0.42

p = 0.32 p = 0.51

p = 0.32
p = 0.43
p = 0.72

p = 0.99

p = 0.94

p = 0.63

p = 0.85
p = 0.69

p = 2e–08

p = 2.5e–08

p = 0.0018

p = 2.7e–05

p = 2.4e–13
p = 2e–19

p = 0.025
p = 3.3e–09
p = 0.0045

p = 1.4e–09
p = 1.1e–10

p = 7.8e–05
p = 1.8e–13

p = 2.7e–07
T cells regulatory (tregs)

T cells gamma delta
T cells follicular helper

Plasma cells

Neutrophils

Macrophages M2
Macrophages M1
Macrophages M0

Eosinophils
Dendritic cells resting

Dendritic cells activated
B cells naive

B cells memory

Mast cells activated
Mast cells resting

Monocytes

NK cells activated
NK cells resting

T cells CD4 memory activated
T cells CD4 memory resting

T cells CD4 naive
T cells CD8

T cells regulatory (tregs)
T cells gamma delta

T cells follicular helper

Plasma cells

Neutrophils

Macrophages M2
Macrophages M1
Macrophages M0

Eosinophils
Dendritic cells resting

Dendritic cells activated
B cells naive

B cells memory

Mast cells activated
Mast cells resting

Monocytes

NK cells activated
NK cells resting

T cells CD4 memory activated
T cells CD4 memory resting

T cells CD4 naive
T cells CD8

p = 1.7e–07
p = 0.75
p = 0.35
p = 0.62
p = 4e–16
p = 0.00016

p = 0.82

p = 0.17
p = 7.3e–22

p = 3e–08
p = 0.62
p = 1.6e–05
p = 0.021
p = 9.7e–16
p = 9.2e–11
p = 0.00028
p = 0.48
p = 3.9e–14
p = 4.1e–43
p = 0.044
p = 0.92
p = 0.0053
p = 2.5e–07
p = 9.8e–05

p = 0.00035

p = 0.18

p = 0.0031
p = 0.19
p = 7.4e–10
p = 2.1e–10
p = 0.0023
p = 0.66
p = 8.3e–11
p = 7.9e–22
p = 0.5

p = 0.012
p = 1.9e–08

p = 9.3e–07 p = 1.7e–06

p = 1.1e–15
p = 0.00067
p = 1.4e–08

p = 0.012

p = 6.5e–08
p = 1.4e–08
p = 0.00073

p = 2.5e–09
p = 8e–16

p = 0.041
p = 1.7e–08
p = 0.006

p = 2.9e–12
p = 0.00048
p = 4e–09

p = 0.00056

p = 6.8e–08
p = 3.5e–08
p = 0.0019

p = 8.1e–12
p = 1.2e–18

p = 0.037
p = 2e–08

p = 0.0087

p = 0.96

p = 0.54

p = 0.65 p = 0.48

p = 0.92
p = 0.43
p = 0.56

p = 0.79

p = 0.31

p = 0.51

p = 0.94
p = 0.74

p = 0.2
p = 0.6

p = 0.85

p = 0.88

p = 0.91

p = 0.94

p = 0.052

p = 0.55

p = 5.5e–08

–1 0 1

–1 0

Correlation coefficientCorrelation coefficient

1

–1 0

Correlation coefficient Correlation coefficient

1–1 0

Correlation coefficient

1

–1 0 1

0.10

0.30

0.50

0.90

0.70

p.value

0.05

0.10

0.30

0.50

0.90

0.70

p.value

0.05

Figure 9: Correlation between ALOX5, NCF2, NCF4, NCF1, and MMP9 with immune infiltrating cells.
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Cytoscape was used to determine the key genes in the PPI
network; six hub genes were obtained, namely NCF2,
MMP9, ALOX5, NCF1, NCF4, and CYBA (Figure 7(b)).

3.7. The Expression Analysis, ROC Curve Analysis, and Hub
Gene Validation for AS Diagnosis. We explored the expres-
sions of these genes between AS and control samples in the
GSE100927 dataset and found that those genes exhibited
higher expression levels in the AS group (Figure 8(a)). In
the GSE100927 dataset, to explore the accuracy of the six
hub genes as the diagnostic biomarkers for AS, the ROC
curves were plotted (Figure 8(b)). Six hub genes with an
AUC >0.7 were used as diagnostic markers. Notably, the
AUC for MMP9 was 0.9433, which was the highest among
the AUCs of the six hub genes. The other AUC values were

0.8770, 0.8890, 0.8961, 0.9133, and 0.9321 for ALOX5,
NCF2, CYBA, NCF4, and NCF1, respectively. These results
showed that the six hub genes had good diagnostic values.

In the external validation set GSE57691, the ROC curves
of six hub genes were analyzed. ROC analysis was used to
verify the specificity and sensitivity of the six hub genes for
AS diagnosis. As shown in Figure 8(c), except for CYBA,
the AUC areas of all other genes were> 0.7 in the
GSE57691 dataset. These results suggest that the five hub
genes may serve as diagnostic biomarkers for AS. In addi-
tion, the correlation among the five hub genes was analyzed.
The results demonstrated that the correlations among the
five diagnostic genes were all positive. NCF2 and NCF4
had the highest correlation coefficient of 0.95. The results
of functional similarity showed that three diagnostic genes,
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Figure 10: The function of ALOX5, NCF2, NCF4, NCF1, and MMP9 using GSEA analysis (a–e).
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including NCF2, NCF4, and NCF1 (similarity score> 0.5),
had higher functional similarity (Supplement 3(a) and 3
(b)).

3.8. Correlation Analysis between Diagnostic Genes and
Immune Cells. To further understand the role of these genes
in immune infiltration, we used Spearman correlation anal-
ysis to determine whether these diagnostic genes were
related to immune cell infiltration. Correlation analysis
showed that five diagnostic genes including ALOX5, NCF2,
MMP9, NCF4, and NCF1 had significantly positive relation-
ship with the infiltration of T cells gamma delta, mast cells

activated, and macrophages M0. Five diagnostic genes had
significantly negative relationship with the infiltration of T
cells CD4 memory resting, T cells CD4 memory activated,
plasma cells, NK cells activated, monocytes, mast cells rest-
ing, macrophages M1, dendritic cells activated, and B cells
naïve (Figure 9).

3.9. GSEA Analysis and Prediction of Key miRNAs, TF, and
Drug-Gene Networks. The functions of our diagnostic genes
were explored using GSEA. Genes in the high-expression
cohorts of ALOX5, NCF2, MMP9, NCF4, and NCF1 were
all highly enriched in allograft rejection and inflammatory
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response (Figures 10(a)–10(e)). After considering the results
of GSEA, we concluded that these five genes might be highly
correlated with inflammation.

Four online databases were accessed to predict potential
miRNA targeting diagnostic genes, and the miRNA-
diagnostic gene regulatory network is shown in Figure 11(a).

The interaction network consisted of four diagnostic
genes and 40 TFs (Figure 11(b)). Twenty-two TFs, including
KLF16, DRAP1, and TFAP4, could regulate MMP9. Eight
TFs, including EED, ZNF580, and EGR2, could regulate
ALOX5. Nine TFs, including ESR1, MAFK, and HDGF,
could regulate NCF2. Five TFs, including EBF1, CBFB, and
MLLT1, could regulate NCF4. Twenty-one potential drugs
for treating patients with AS were identified when the
drug-gene interactions were explored using CTD. Addition-
ally, drug-gene networks were constructed using the Cytos-
cape (Supplement 4).

3.10. Single-Cell Analysis. We respectively took the intersec-
tion of upregulated DEGs and downregulated DEGs with
ferroptosis gene set, pyroptosis gene set, and necroptosis
gene set. Thirteen upregulated ferroptosis-related DEGs,
ten upregulated necroptosis-related DEGs, and eight upreg-
ulated pyroptosis-related DEGs were identified
(Figure 12(a), Supplement Figures 5(a) and 5(b)). Among
them, ALOX5 and NCF2 genes were upregulated
ferroptosis-related DEGs. Additionally, the intersection
between upregulated ferroptosis-related DEGs and genes in
the blue and turquoise modules was assessed. Finally, we
identified four upregulated immune-related ferroptosis
genes: ALOX5, NCF2, AURKA, and SLC2A6 (Figure 12(b)).

Combined with single-cell analysis, we identified the dis-
tribution of ALOX5 and NCF2 genes in the nine integrated
cell populations. The results further confirmed that ALOX5
and NCF2 were significantly highly expressed in macro-
phages M1, macrophage M2, and monocytes
(Figure 13(a)–13(c)).

3.11. In Vitro and In Vivo Analyses. Compared with the con-
trol group (normal saline treated group), the AS group (OX-
LDL-treated group) had increased relative mRNA expres-
sion of ALOX5 (P = 0:0071), NCF1 (P = 0:0336), NCF2
(P < 0:0001), and NCF4 (P = 0:0002) (Figure 14(a)). HE
stains revealed larger aortic valve plaque formation areas in
APOE-/- mice fed with high fat than C57BL/6 mice fed with
normal diet. And there was necrotic core within the plaque
(Figure 14(b)). Furthermore, we used IHC to preliminarily
detect the expression of ALOX5 and NCF2 in aortic valve
plaque tissues of mice (Figure 14(c)). The positive areas of
ALOX5 and NCF2 were higher in the AS group than the
control group (Figure 14(d)). The western blot results fur-
ther confirmed that ALOX5 and NCF2 were more highly
expressed in the AS group than in the control group
(Figures 14(e)–14(h)).

4. Discussion

Inflammatory responses and the modification of lipopro-
teins that cause lipid accumulation in AS are associated with
imbalance of oxidative stress and immune processes [18].
However, few studies have focused on the aberrantly
expressed gene biomarkers associated with immune infiltra-
tion and oxidative stress between AS and normal tissues.
Herein, we identified 27 DEIOSGs. The enrichment analysis
revealed that DEIOSGs were primarily engaged in cellular
response to oxidative stress, NADPH oxidase activity, and
atherosclerosis. MMP9, ALOX5, NCF2, NCF1, and NCF4
were identified as diagnostic biomarkers of AS using two
GEO datasets. Additionally, we observed a dramatic differ-
ence in immune cell content between AS and normal sam-
ples. MMP9, ALOX5, NCF2, NCF1, and NCF4 were mainly
associated with macrophages. Previous studies have demon-
strated that macrophage-derived MMP9 promotes the infil-
tration of monocyte/macrophages into the lesions thereby
enhancing atherosclerosis [19] and NCF1 expression leads
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Figure 12: Identification of upregulated ferroptosis-related DEGs. (a) Venn diagrams of the upregulated DEGs, downregulated DEGs, and
ferroptosis gene set. (b) Venn diagrams of the upregulated ferroptosis-related DEGs and immune-related genes (the turquoise module genes
and the blue module genes.
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to priming of human macrophage oxidative burst [20].
However, fewer studies have focused on how these genes
regulate immune cells in atherosclerosis. Oxidative stress
promotes the upregulation and accumulation of ox-LDL in
macrophages and the formation of foam cells [21]. We con-
firmed that four pivotal OS-related genes (ALOX5, NCF2,
NCF1, and NCF4) were significantly high expression in ox-
LDL-treated macrophages.

Shen et al. [22] exhibited that the atheromatous plaques
in the ImmuneScoreH cluster (most plaques from the
carotid arteries) had higher proportions of M0 macrophages
than ImmuneScoreL cluster (most plaques from the infrapo-
pliteal and femoral arteries). It indicates that there existed
distinct heterogeneity of immune infiltration in different
atherosclerotic lesions. So, we explored immune infiltration
of 69 atheromatous plaques from different arterial beds in
GSE100927 by CIBERSORT algorithm. Our results indi-
cated that atheromatous plaques in GSE100927 (most pla-

ques from the carotid arteries) had higher proportions of
M0 macrophages than control samples, which was consis-
tent with previous study results [22]. In addition, we found
that the atheromatous plaques had less proportions of M1
macrophages than control samples in GSE100927. This find-
ing suggested that macrophage death might be at the stage of
macrophage polarization in atherosclerosis. Previous study
also showed that macrophage death is a major contributor
to necrotic core formation and plaque destabilization [23].

Recently, emerging evidence has implicated the critical
role of programmed cell death pathways in macrophage
foam cells loss, including necroptosis, pyroptosis, and fer-
roptosis [23]. As a result, we compared upregulated DEGs
that associated with necroptosis, pyroptosis, and ferroptosis.
There were thirteen upregulated ferroptosis-related DEGs.
Compared with the necroptosis and pyroptosis, ferroptosis
had the greatest number of upregulated DEGs, indicating
that ferroptosis may has a major role in cell death of
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atherosclerotic plaque. The correlation analysis showed that
ferroptosis-related ALOX5 and NCF2 were positively associ-
ated with macrophages M0 and negatively associated with
macrophages M1 in AS. The further single-cell analysis also
confirmed that ALOX5 and NCF2 were mainly expressed in
macrophage M1. These findings suggest that ALOX5 and
NCF2 may regulate macrophage ferroptosis by mediating
oxidative stress in the stage of polarization. NCF2
(p67phox) had been identified as potential diagnostic bio-
markers in patients with obstructive coronary artery [24]
and psoriasis complicated with atherosclerosis [25]. Our
study not only confirmed that NCF2 was significantly
overexpressed in atherosclerotic plaques, but also con-
firmed for the first time that NCF2 was mainly correlated
with macrophage of plaques. In previous studies, there was
no direct evidence indicated that NCF2 was related to fer-
roptosis, but ferroptosis could be triggered by reactive oxy-
gen species (ROS) under the activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase
(NOXs) [26]. NCF2 is a core subunit of NOXs, which is
needed to active the complex [24]. The NOXs inhibitor
diphenyleneiodonium and the NOX1/4-specific inhibitor
GKT137831 prevent erastin-induced ferroptosis in Calu-1
and HT1080 cells [27], suggesting that members of the
NOX family promote ferroptosis of cancer cells [28–30].
Besides, previous study confirmed that ALOX5 was a key
enzyme for evoking ferroptosis in cancer diseases [31] or
neuronal injury [32]. 5-lipoxygenase (ALOX5) can catalyze
arachidonic acid (AA) to generate proinflammatory cyto-
kine leukotrienes (LTs) and can also produce lipid perox-
ides and mediate lipid peroxidation; phospholipids, the
main component of cell membrane, are prone to lipid per-
oxidation, resulting in membrane rupture and ferroptosis
[33]. But there was no direct evidence indicated that
ALOX5 mediated ferroptosis in atherosclerotic plaques.
Mehrabian et al. [34] only exhibited that ALOX5 defi-
ciency (ALOX5 (-/-)) mice protects against atherosclerosis.
Consistent with that, this study found that atherosclerotic
plaques had higher expression of ALOX5. And we further
confirmed that macrophage-derived foam cells had higher
expression of ALOX5. In general, the innovation of this
study is the exploration of pivotal OS-related genes and
ferroptosis-related genes associated with macrophages in
atherosclerosis using multibioinformatic analyses and
experiments. Previous outstanding single-cell proteomic
and transcriptomic studies of correlation between OS and
macrophages ferroptosis were mainly studied in cancer
diseases [35, 36]. However, the study of plaques has only
analyzed OS or ferroptosis [37] separately. To the best of
our knowledge, this was the first bioinformatics report
describing the coexistence of immune cell ferroptosis and
oxidative stress in AS. This study also has several limita-
tions. Firstly, more experiments are required to provide
the direct evidence of macrophage ferroptosis. Secondly,
immune infiltration analysis was performed based on tran-
scriptomic data. Hence, we could not determine if ferrop-
tosis caused macrophages polarization, or whether
polarized macrophages happen ferroptosis. Further studies
are warranted to clarify the underlying mechanisms.

5. Conclusion

Our results provided novel targets for predicting atheroscle-
rotic plaque progression and confirmed that ALOX5 and
NCF2 have good diagnostic value for atherosclerosis. We
predicted that ferroptosis of macrophages may become the
potential target in atherosclerosis. However, additional fac-
tors also need to be combined to develop effective strategies
for preventing cardiovascular events.
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