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Abstract
In this paper, we present a numerical technique for solving 1-D interface problems of frac-
tional order. This technique relies on the reproducing kernel functions and the shooting
method. The biggest advantage over the existing standard analytical techniques is overcom-
ing the difficulty arising in calculating complicated terms. Numerical examples are inspected
to feature the significant highlights of this technique. Moreover, the solution procedure is
simple, more effective and clearer.

Keywords Reproducing kernel method · Shooting method · 1-D interface problems ·
Caputo fractional derivative operator

Introduction

In the past few decades, many mathematicians and physicists have been concerned with
interface problems. It is interesting to explore the ways to solve them. So many numerical
methods have been presented to solve these problems.

Interface problems occur in several applications such as dynamical systems [1], fluid
mechanics [2], electromagnetic wave propagation [3, 4]. Recently, many researchers have
studied numerical methods for solving interface problems such as immersed finite element
method [5–7], RKHSmethods for 1-D interface problems [8, 9], high-order difference poten-
tials methods [10].

Fractional differential equations (FDEs) occupy a very important area because the impor-
tant of their applications in many fields of science and engineering [11]. Riemann–Liouville
and Caputo were the first to investigate the generalization of ordinary integral and differ-
ential operators into fractional derivatives. The fractional-order differential equations offer
a logical framework for studying real-world problems such as Rubella disease modal [12],
waste water modal [13], economic growth model [14], diffusion processes [15], coronavirus
disease and Covid-19 models sense [16, 17], in [18] the authors solve the system of nonlinear
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fractional order PDEs involving of power law kernel using hybrid analytical technique. On
the other hand there is some work on a new method for solving fractional PDEs in [19]. In
[20–22] some fractional differential equations with decay kernel are disscused. Since it is
difficult to find exact solutions in closed forms for most differential equations of fractional
order, so approximations and numerical techniques will be used, for more see [23–25].

The hypothesis of the reproducing kernel Hilbert space (RKHS) and its reproducing kernel
function (RKF) have important applications in numerical analysis. The researchers applied
the RKHS to develop several numerical techniques for solving different types of differential
and integral equations, in [26] the authors introduce the solution the ABC- fractional Ric-
cati and Bernoulli equations by using RKHS method. To explain the important of (RKF),
(RKHS) you can read more details from Reproducing kernel for solving mixed type singu-
lar time-fractional partial integrodifferential equations [27], singularly perturbed boundary
value problems with a delay [28], strongly nonlinear Duffing oscillators [29], integrodif-
ferential systems with two-points periodic boundary conditions [30], Bagley–Torvik and
Painlevé equations of fractional order [31], fuzzy fractional differential equations in pres-
ence of the Atangana–Baleanu–Caputo differential operators [32], time-fractional Tricomi
and Keldysh equations [33], ABC–Fractional Volterra integro-differential equations [34], the
Atangana–Baleanu fractional Van der Pol damping model [35], time-fractional partial dif-
ferential equations subject to Neumann boundary conditions [36], singular integral equation
with cosecant kernel [37]. In this paper, a new numerical method is proposed for solving 1-D
interface problems of fractional order. The method is based on the reproducing kernel func-
tions and the shooting method. In the first step, the boundary value problems are converted
to the initial value problem with interface conditions by the shooting method, thereafter the
reproducing kernel method is applied for solving the new initial value problems. In addition,
we carefully study the effectiveness of this method by solving some numerical examples.

By using a modification of the RKHS method, we try to find an approximate solution
to our problem, but we cannot use the RKF-based techniques to solve fractional interface
problems directly because of the interface point conditions. Therefore, the main challenge
here is to construct an effective and accurate numerical method to solve the 1-D fractional
interface problem.

In our work, we consider the following 1-D fractional interface problem
⎧
⎨

⎩

Dαϑ(ξ) + y1ϑ(ξ) � f1(ξ), 0 < ξ < z,
Dαϑ(ξ) + y2ϑ(ξ) � f2(ξ), z < ξ < 1

ϑ(0) � β0, ϑ(1) � β1.

, 1 < α ≤ 2, (1)

and with the interface conditions on z:
{

ϑ
(
z+

) � x1ϑ
(
z−

)
+ γ0,

ϑ ′(z+
) � x2ϑ ′(z−

)
+ γ1.

(2)

where y1, y2 are sufficiently smooth functions defined in (0, z), (z, 1) respectively and ϑ is
an unknown function that will be determined. The operator Dα has the following formula:

Dαϑ(ξ) � 1

�(n − α)

ξ∫

0

(ξ − τ)(n−1−α)ϑ (n)(τ )dτ , 0 < τ < ξ , 1 < α ≤ 2. (3)

is called the Caputo fractional derivative operator of order α of a function ϑ(ξ).
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Let and f (ξ) �
{

f 1(ξ), 0 < ξ < z
f2(ξ), z < ξ < 1.

Then (1) can be written as

(4)

Preliminaries

In this section, we present some basic definitions, results and observations of the shooting
method and the reproducing kernel Hilbert spaces that will be required in the sequel to
understand the necessary literature and develop our main results.

ShootingMethod

In numerical analysis, the shooting method is a technique for converting the boundary value
problem to an equivalent initial value problem. Then, an initial value problem is solved via
a trial-and-error approach. This technique is called a "shooting" method, by analogizing it
to the procedure of shooting an object at a stationary target. Roughly speaking, we shoot
out trajectories in different directions until we find a trajectory that has the desired boundary
value.

For the utilization of the shooting method: Firstly, we need to reduce the boundary value
problem to a system of initial value problems, and we need to assume a guess value at the
lower bound of the interval. After these, the solution goes on like the solution of a system of
differential equations.

Let us consider a second-order boundary value problem:
{

ϑ ′′(ξ) � f
(
ξ , ϑ , ϑ ′), α ≤ ξ ≤ β

ϑ(α) � γ , ϑ(β) � η.
(5)

At first, we reduce the second-order (BVP) of the equation to a system of a first-order
(IVP). The second-order ODE is transformed into a system of two first-order ODEs as:

{
dϑ
dξ

� ϑ ′ � x � f1(ξ , ϑ , x), ϑ(α) � γ ,
dx
dξ

� ϑ ′′ � f2(ξ , ϑ , x), ϑ(β) � ω.
(6)

In the wake of choosing the � step size, we use one of the known methods like Euler,
Runge–Kutta, etc. to solve these equations. The first numerical result of the BVP is then
obtained, which is subject to the first guess value ω. If the solution is close enough to the
other bound η, it is valid; otherwise, the method will resume with another guess. Instead of
making the third guess arbitrary after the first two, we can utilize interpolation to get the third
and if necessary, the subsequent guesses [38]. Note that the interpolation is given by

ϑ(0) � G1 +
(G2 − G1)

(B2 − B1)
(D − B1). (7)

where: G1: First guess at the initial slope; G2: Second guess at the initial slope; B1: Final
result at endpoint (using G1); B2: Second result at endpoint (using G2); D: The desired value
at the endpoint.
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Reproducing Kernel Hilbert Spaces

We present some fundamental definitions and theorems, which account for a significant part
of the study of RKHSs.

Definition 2.2.1 Let M be a nonempty set, the function ψ : M × M → C is called a
reproducing kernel function to Hilbert space H iff
(a)

ψ(., ξ) ∈ H , ∀ξ ∈ M ,

(b) 〈ϕ(.), ψ(., ξ)〉H � ϕ(ξ) for all ϕ ∈ H and for all ξ ∈ M .

The second condition is called the reproducing property (the value of the function ϕ at
the point ξ is reproduced by the inner product of ϕ with ψ(., ξ)), where the function ψ is
called the reproducing kernel function of H that has some important properties such as being
unique, symmetric, and positive definite.

Definition 2.2.2 The function space W 1
2 [a, b] is defined by:

W 1
2 [a, b] � {

ϑ |ϑ is absolutely continuous f unction and ϑ ′ ∈ L2[a, b]
}
, with the

inner product:

〈ϑ , v〉W 1
2

� ϑ(a)v(a) +

b∫

a

ϑ ′(ξ)v′(ξ)dξ (8)

and the norm:

‖ϑ‖W1
2

�
√

〈ϑ , ϑ〉W1
2
, whereϑ , v ∈ W1

2[a, b]. (9)

Definition 2.2.3 The function space W 2
2 [a, b] is defined by:

W 2
2 [a, b] � {ϑ |ϑ , ϑ ′are absolutely continuous f unctions and ϑ ′′ ∈ L2[a, b], ϑ(a)

� 0}, with the inner product:

〈ϑ , v〉W 2
2

� ϑ(a)v(a) + ϑ(b)v(b) +

b∫

a

ϑ ′′(ξ)v′′(ξ)dξ (10)

and the norm:

‖ϑ‖W2
2

�
√

〈ϑ , ϑ〉W2
2
, where ϑ , v ∈ W2

2[a, b]. (11)

Definition 2.2.4 The function space W 3
2 [a, b] is defined by:

W 3
2 [a, b] � {

ϑ |ϑ , ϑ ′, ϑ ′′ are absolutely continuous f unctions and ϑ ′′′ ∈ L2[a, b] ϑ(a) � ϑ ′(a) � 0
}
,

with the inner product:

〈ϑ , v〉W 3
2

� ϑ(a)v(a) + ϑ ′(a)v′(a) + ϑ ′′(a)v′′(a) +

b∫

a

ϑ ′′′(ξ)v′′′(ξ)dξ (12)

and the norm:

‖ϑ‖W3
2

�
√

〈ϑ , ϑ〉W3
2
, whereϑ , v ∈ W3

2[a, b]. (13)
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Theorem 2.2.1 The space W 3
2 [a, b] is a complete reproducing kernel space and its repro-

ducing kernel function Òξ is given by.

Qξ (η) � Q(ξ , η) �
{
q1(ξ , η), a ≤ η ≤ ξ ≤ b,
q1(η, ξ), a ≤ ξ < η ≤ b.

(14)

where:

q1(ξ , η) � −1

120
(a − η)2

(
6a3 − 3a2(5ξ + η + 10) + 2a

(
5ξ2 + 5ξ(η + 6) − η2

) − 10ξ2(η + 3) + 5ξη2 − η3
)
.

Definition 2.2.5 The function space W 3
2 [a, b] is defined by:

W̄ 3
2 [a, b] � {

ϑ |ϑ , ϑ ′, ϑ ′′ are absolutely continuous f unctions and ϑ ′′′ ∈
L2[a, b], ϑ(a) � ϑ(b) � 0

}
with the inner product:

〈ϑ , v〉W̄ 3
2

� ϑ(a)v(a) + ϑ ′(a)v′(a) + ϑ(b)v(b) +

b∫

a

ϑ ′′′(ξ)v′′′(ξ)dξ (15)

and the norm:

‖ϑ‖
W

3
2

�
√

〈ϑ , ϑ〉
W

3
2
, whereϑ , v ∈ W

3
2[a, b]. (16)

Theorem 2.2.2 The space W
3
2[a, b] is a complete reproducing kernel space and its repro-

ducing kernel function Òξ is given by.

Òξ (η) � Ò̄(ξ , η) �
{
q2(ξ , η), a ≤ η ≤ ξ ≤ b,
q2(η, ξ), a ≤ ξ < η ≤ b.

(17)

where

q2(ξ , η) � 1

120(a − b)2
(a − η)(−4a4(b − ξ)(b − η) − 6b3ξ2η + a3(b − ξ)(b − η)(6b + 7ξ + 3η)

+ ξ2η
(−120 + ξ3 + η3

) − 3a2(b − η)(ξη(−3ξ + η) + 2b2(2ξ + η) − b(4ξ2 − ξη + η2))

− 5bξ
(−24η + ξ3η + ξ

(−24 + η3
))

+ b2
(
10ξ3η − η4 + 5ξ

(−24 + η3
))

+ a(6b3ξ (ξ + 2η)

− b2
(−120 + 10ξ3 + 12ξ2η + 15ξη2 + η3

)
+ ξ

(−ξ4 + ξη3 − 2η
(−60 + η3

))

+ b
(−120ξ + 5ξ4 + 15ξ2η2 + 2η

(−60 + η3
))
) (18)

Proof By definition 2.2.5, we have

ϑ̄1(ξ) −
1∑

k�0

ϑ̄
(k)
1 (0)

k!
(ξ − 0)k + y1

1

�(α)

ξ∫

0

(ξ − t)α−1ϑ̄1(t)dt

� 1

�(α)

ξ∫

0

(ξ − t)α−1 f̄1(t)dt .

then by applying the integration by parts three times for the third scheme of the right-hand,
we obtain

〈
ϑ , Òξ

〉

W 3
2

�ϑ(a)Òξ (a) + ϑ ′(a)Ò
′
ξ (a) + ϑ(b)Òξ (b)
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+ ϑ ′′(b)Ò ′′′
ξ (b) − ϑ ′′(a)Ò ′′′

ξ (a) − ϑ ′(b)Ò(4)
ξ (b) + ϑ ′(a)Ò(4)

ξ (a)

+ ϑ(b)Ò(5)
ξ (b) − ϑ(a)Ò(5)

ξ (a) −
b∫

a

ϑ(η)Ò(6)
ξ (η)dη.

Note that the reproducing property is
〈
ϑ(η), Òξ (η)

〉

W
3
2

� ϑ(ξ),

Since ϑ(η), Òξ (η) ∈ W
3
2[a, b], we have.

(1) Òξ (a) − Ò(5)
ξ (a) � 0,

(2) Ò
′
ξ (a) + Ò(4)

ξ (a) � 0,

(3) Òξ (b) + O@(5)
ξ (b) � 0,

(4) Ò ′′′
ξ (b) � 0,

(5) Ò ′′′
ξ (a) � 0,

(6) Ò(4)
ξ (b) � 0.

Thus, we need to solve the BVP −Ò(6)
ξ (η) � δ(ξ − η) subject to the conditions (1–6).

When ξ �� η, we know Ò(6)
ξ (η) � 0.

Consequently, we attain

Òξ (η) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

5∑

j�0
c j (ξ)η j , a ≤ η ≤ ξ ≤ b,

5∑

j�0
d j (ξ)η j , a ≤ ξ < η ≤ b.

Since Ò(6)
ξ (η) � δ(ξ − η), we have Ò(k)

ξ+ (ξ) � Ò(k)
ξ− (ξ), k � 0, 1, 2, 3, 4, Ò(5)

ξ+ (ξ) −
Ò(5)

ξ− (ξ) � −1.
The unknown coefficients c j (ξ) and d j (ξ)( j � 0, 1, 2, 3, 4, 5) can be found by using

Mathematica 12, hence (18) is obtained.

Solution of Problem (1)

In this section, we consider the 1-D fractional interface problem (1) with the interface con-
ditions (2). We solve the problem (1) on intervals (0, z) and (z, 1) by using the shooting
method and RKHSs, respectively.

Now we apply the shooting method to (1) then we have

(19)

On (0, z), we get

Dαϑ1(ξ) + y1ϑ1(ξ) � f1(ξ), ϑ1(0) � β0, ϑ ′
1(0) � σ1. (20)

We discuss Eq. (20) with homogeneous conditions, that is,

Dαϑ1(ξ) + y1ϑ1(ξ) � f 1(ξ), ϑ1(0) � 0, ϑ
′
1(0) � 0. (21)
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where
ϑ1(ξ) � ϑ1(ξ) + δ1(ξ), f 1(ξ) � f1(ξ) − Lδ1(ξ) and δ1(ξ) � β0 + σ1ξ .

By applying the Riemann–Liouville fractional integral operator of the order α of both
sides of Eq. (21), we have

ϑ1(ξ) −
1∑

k�0

ϑ
(k)
1 (0)

k!
(ξ − 0)k + y1

1

�(α)

ξ∫

0

(ξ − t)α−1ϑ1(t)dt � 1

�(α)

ξ∫

0

(ξ − t)α−1 f 1(t)dt .

(22)

But since ϑ
( j)
1 (0) � 0, j � 0, 1 then we have

ϑ1(ξ) � F1
(
ξ , ϑ1(ξ)

)
(23)

where F1
(
ξ , ϑ1(ξ)

) � 1
�(α)

ξ∫

0
(ξ − t)α−1 f 1(t)dt − y1

1
�(α)

ξ∫

0
(ξ − t)α−1ϑ1(t)dt.

Choose a countable dense subset {ξ1, ξ2, . . . , ξN } in (0, z), we define

ψ j (ξ) � Ò(ξ , η)

∣
∣
∣
η�ξ j

, j � 1, 2, . . . , N . (24)

The solution of (21) can be written as

ϑ1, N (ξ) �
N∑

j�1

d jψ j (ξ), (25)

where
{
d j

}N
j�1 are constants to be determined. Therefore, the solution of (21) is given by

ϑ1, N (ξ) � ϑ1, N (ξ) + δ1(ξ). (26)

Because of the uniformed convergence of ϑ1, N (ξ) and its derivative, utilizing those states
in the interface point, ϑ1, N (ξ) could provide an exact close estimation of the values of ϑ

(
z+

)
,

ϑ ′(z+
)
.

Now the problem (19) on (z, 1) can be written as
{
Dαϑ2(ξ) + y2ϑ2(ξ) � f2(ξ) ,
ϑ2(z) � x1ϑ1, N

(
z−

)
+ γ0, ϑ ′

2(z) � x2ϑ ′
1, N

(
z−

)
+ γ1 .

(27)

Toward utilizing the manner for solving the problem (20), we get ϑ2, N (ξ) to the problem
(19) on (z, 1). So we have an approximate solution to the problem (19), which is given by

ϑN (ξ) �
{

ϑ1, N (ξ)ξ ∈ (0, z),
ϑ2, N (ξ)ξ ∈ (z, 1).

(28)

Applications

In this part, we introduce some applications to solve 1-D interface problems of fractional
order.

123



214 Page 8 of 17 Int. J. Appl. Comput. Math (2022) 8 :214

Example 1 Consider the following problem [8]:

γ Dαϑ(ξ) � 12ξ2, γ �
{
1, ξ ∈ (

0, 1
2

)
, α ∈ (1, 2].

2, ξ ∈ ( 1
2 , 1

)
,

subject to the boundary and interface conditions:

ϑ(0) � 0, ϑ(1) � 17

32
, ϑ

(
1

2

+)

� ϑ

(
1

2

−)

, ϑ ′
(
1

2

+)

� ϑ ′
(
1

2

−)

.

As α � 2, the exact solution is

ϑ(ξ) �
{

ξ4, ξ ∈ (
0, 1

2

)
.

1
2

(
ξ4 + 1

16

)
, ξ ∈ ( 1

2 , 1
)
.

After the initial conditions have been homogenized, choose.

ξ j �
{

j
2N , ξ ∈ (

0, 1
2

)
,

1
2 + j−1

2(N−1) , ξ ∈ ( 1
2 , 1

)
,
f or j � 1, 2, . . . , N .

Then we apply the RKHS method with N � 50, Table 1 which describes the exact and
approximate solutions of ϑ(ξ) for α � 2 and approximate solutions for different values of
α.

The graph in Fig. 1a represents the exact and approximate solution ϑ(ξ) when α � 2. In
Fig. 1b, graphs of the approximate solutions of ϑ(ξ) are plotted for different values of α. It is
clear from Fig. 1b that the approximate solutions are insensible arrangements with the exact
solution when α � 2, and the solutions are continuously based on a fractional derivative.
The graph in Fig. 1c represents the absolute errors of ϑ(ξ) when α � 2.

Example 2 Consider the following problem [8]:

γ Dαϑ(ξ) � 56ξ6, γ �
{
1, ξ ∈ (

0, 1
2

)
, α ∈ (1, 2].

2, ξ ∈ ( 1
2 , 1

)
,

Table 1 Numerical results for ϑ(ξ ) in Example 1

ξ Exact solutions
α � 2

Approximate solutions Absolute error
α � 2

α � 2 α � 1.9 α � 1.8 α � 1.7

0.1 0.0001 0.0001 0.00017 0.00023 0.00033 5.33167 × 10−7

0.2 0.0016 0.00160 0.00224 0.00301 0.00406 1.85062 × 10−6

0.3 0.0081 0.00810 0.01071 0.01393 0.01813 3.94932 × 10−6

0.4 0.0256 0.02561 0.03273 0.04147 0.05248 6.82927 × 10−6

0.5 0.0625 0.06251 0.07801 0.09674 0.11977 1.04000 × 10−5

0.6 0.09605 0.09606 0.10644 0.12009 0.13889 7.61874 × 10−6

0.7 0.1513 0.15131 0.15429 0.15911 0.16732 5.12922 × 10−6

0.8 0.23605 0.23605 0.23431 0.23340 0.23450 3.02654 × 10−6

0.9 0.3593 0.35930 0.35632 0.35359 0.35176 1.31528 × 10−6

1 0 0 0 0 0 0
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Fig. 1 Solution and graphical results of Example 1

subject to the boundary and interface conditions:

ϑ(0) � −1, ϑ(1) � 769

512
, ϑ

(
1

2

+)

� ϑ

(
1

2

−)

+ 2, ϑ ′
(
1

2

+)

� 1

2
ϑ ′

(
1

2

−)

.

As α � 2, the exact solution is.

ϑ(ξ) �
{

ξ8 − 1, ξ ∈ (
0, 1

2

)
.

1
2

(
ξ8 + 1

256

)
, ξ ∈ ( 1

2 , 1
)
.

After the initial conditions have been homogenized, choose

ξ j �
{

j
2N , ξ ∈ (

0, 1
2

)
,

1
2 + j−1

2(N−1) , ξ ∈ ( 1
2 , 1

)
,
for j � 1, 2, . . . , N .

Then we apply the RKHS method with N � 50, Table 2 which describes the exact and
approximate solutions of ϑ(ξ) for α � 2 and approximate solutions for different values of
α.

The graph in Fig. 2a represents the exact and approximate solution ϑ(ξ) when α � 2. In
Fig. 2b, graphs of the approximate solutions of ϑ(ξ) are plotted for different values of α. It is
clear from Fig. 2b that the approximate solutions are insensible arrangements with the exact
solution when α � 2, and the solutions are continuously based on a fractional derivative.
The graph in Fig. 2c represents the absolute errors of ϑ(ξ) when α � 2.

Example 3 Consider the following problem:

γ Dαϑ(ξ) �
{

eξ , ξ ∈ (
0, 1

2

)

sec2
(
ξ − 1

2

)
tan

(
ξ − 1

2

)
, ξ ∈ ( 1

2 , 1
) , γ �

{
1, ξ ∈ (

0, 1
2

)
, α ∈ (1, 2].

2, ξ ∈ ( 1
2 , 1

)
,
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Table 2 Numerical results for ϑ(ξ ) in Example 2

ξ Exact solutions
α � 2

Approximate solutions Absolute error
α � 2

α � 2 α � 1.9 α � 1.8 α � 1.7

0.1 −1 −1 −1 −1 −1 1.29807 × 10−10

0.2 −0.99999 −0.99999 −0.99999 −0.99999 −0.99999 8.28191 × 10−9

0.3 −0.99993 −0.99993 −0.99991 −0.99988 −0.99983 9.42817 × 10−8

0.4 −0.99934 −0.99934 −0.99910 −0.99879 −0.99837 5.29630 × 10−7

0.5 −0.99609 −0.99609 −0.99477 −0.99310 −0.99088 2.02019 × 10−6

0.6 0.01035 0.01034 0.00665 0.00458 0.00367 9.30563 × 10−6

0.7 0.03078 0.03076 0.00680 −0.02005 −0.05157 1.80000 × 10−5

0.8 0.08584 0.08582 0.04844 0.00508 −0.04677 2.18000 × 10−5

0.9 0.21719 0.21717 0.18246 0.14182 0.09309 1.75000 × 10−5

1 0 0 0 0 0 0

Fig. 2 Solution and graphical results of Example 2

subject to the boundary and interface conditions:

ϑ(0) � 1, ϑ(1) � e
1
2 + tan

(
1

2

)

, ϑ

(
1

2

+)

� ϑ

(
1

2

−)

, ϑ ′
(
1

2

+)

� e− 1
2 ϑ ′

(
1

2

−)

.

As α � 2, the exact solution is ϑ(ξ) �
{
eξ , ξ ∈ (

0, 1
2

)
.

e
1
2 + tan

(
ξ − 1

2

)
, ξ ∈ ( 1

2 , 1
)
.
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After the initial conditions have been homogenized, choose

ξ j �
{

j
2N , ξ ∈ (

0, 1
2

)
,

1
2 + j−1

2(N−1) , ξ ∈ ( 1
2 , 1

)
,
for j � 1, 2, . . . , N .

Then we apply the RKHS method with N � 50, Table 3 which describes the exact and
approximate solutions of ϑ(ξ) for α � 2 and approximate solutions for different values of
α.

The graph in Fig. 3a represents the exact and approximate solution ϑ(ξ) when α � 2. In
Fig. 3b, graphs of the approximate solutions of ϑ(ξ) are plotted for different values of α. It is
clear from Fig. 3b that the approximate solutions are insensible arrangements with the exact
solution when α � 2, and the solutions are continuously based on a fractional derivative.
The graph in Fig. 3c represents the absolute errors of ϑ(ξ) when α � 2.

Example 4 Consider the following problem:

γ Dαϑ(ξ) �
{
sin(πξ), ξ ∈ (

0, 1
2

)

(
ξ − 1

2

)
, ξ ∈ ( 1

2 , 1
) , γ �

{−π2, ξ ∈ (
0, 1

2

)
, α ∈ (1, 2].

6, ξ ∈ ( 1
2 , 1

)
,

subject to the boundary and interface conditions:

ϑ(0) � 1, ϑ(1) � 9

8
, ϑ

(
1

2

+)

� ϑ

(
1

2

−)

, ϑ ′
(
1

2

+)

� ϑ ′
(
1

2

−)

.

As α � 2, the exact solution is.

ϑ(ξ) �
{
sin(πξ), ξ ∈ (

0, 1
2

)
.

(
ξ − 1

2

)3
+ 1, ξ ∈ ( 1

2 , 1
)
.

After the initial conditions have been homogenized, choose

ξ j �
{

j
2N , ξ ∈ (

0, 1
2

)
,

1
2 + j−1

2(N−1) , ξ ∈ ( 1
2 , 1

)
,
for j � 1, 2, ..., N .

Table 3 Numerical results for ϑ(ξ ) in Example 3

ξ Exact solutions
α � 2

Approximate solutions Absolute error
α � 2

α � 2 α � 1.9 α � 1.8 α � 1.7

0.1 1.10517 1.10517 1.10688 1.10920 1.11236 1.38358 × 10−8

0.2 1.22140 1.22140 1.22709 1.23434 1.24352 5.07672 × 10−8

0.3 1.34986 1.34986 1.36106 1.37476 1.39140 1.13166 × 10−7

0.4 1.49182 1.49183 1.50976 1.53103 1.55611 2.03710 × 10−7

0.5 1.64872 1.64872 1.67439 1.70415 1.73841 3.25359 × 10−7

0.6 1.74906 1.74906 1.76891 1.79239 1.82031 9.03652 × 10−8

0.7 1.85143 1.85143 1.86473 1.88056 1.89956 1.10708 × 10−7

0.8 1.95806 1.95806 1.96564 1.97479 1.98595 2.35579 × 10−7

0.9 2.07151 2.07151 2.07455 2.07829 2.08299 2.27158 × 10−7

1 0 0 0 0 0 0
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Fig. 3 Solution and graphical results of Example 3

Then we apply the RKHS method with N � 50, Table 4 which describes the exact and
approximate solutions of ϑ(ξ) for α � 2 and approximate solutions for different values of
α.

The graph in Fig. 4a represents the exact and approximate solution ϑ(ξ) when α � 2. In
Fig. 4b, graphs of the approximate solutions of ϑ(ξ) are plotted for different values of α. It is
clear from Fig. 4b that the approximate solutions are insensible arrangements with the exact

Table 4 Numerical results for ϑ(ξ ) in Example 4

ξ Exact solutions
α � 2

Approximate solutions Absolute error
α � 2

α � 2 α � 1.9 α � 1.8 α � 1.7

0.1 0.30902 0.30898 0.30544 0.30241 0.29811 3.78149 × 10−5

0.2 0.58779 0.58771 0.57177 0.55457 0.53193 7.56505 × 10−5

0.3 0.80902 0.80890 0.76850 0.72305 0.66592 1.12303 × 10−4

0.4 0.95106 0.95091 0.87385 0.78694 0.68136 1.47327 × 10−4

0.5 1. 0.99982 0.87615 0.73797 0.57483 1.80438 × 10−4

0.6 1.00100 1.00086 0.89998 0.78850 0.65951 1.44344 × 10−4

0.7 1.00800 1.00789 0.92826 0.84032 0.73906 1.08254 × 10−4

0.8 1.02700 1.02693 0.97092 0.90920 0.83856 7.21676 × 10−5

0.9 1.06400 1.06396 1.03442 1.00196 0.96509 3.60833 × 10−5

1 0 0 0 0 0 0
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Fig. 4 Solution and graphical results of Example 4

solution when α � 2, and the solutions are continuously based on a fractional derivative.
The graph in Fig. 4c represents the absolute errors of ϑ(ξ) when α � 2.

Example 5 Consider the following problem [8]:

ρ(ξ)Dαϑ(ξ) + ρ′(ξ)ϑ
′(ξ) − σ(ξ)ϑ(ξ) � F(ξ), ξ ∈

(

0,
1

2

)

∪
(
1

2
, 1

)

α ∈ (1, 2].

where:

ρ(ξ) �
{

3e
−10ξ4

(
ξ− 1

2

)4

, ξ ∈ (
0, 1

2

)

3, ξ ∈ ( 1
2 , 1

) , σ(ξ) �
{
2, ξ ∈ (

0, 1
2

)
.

1, ξ ∈ ( 1
2 , 1

)
.

subject to the boundary and interface conditions:

ϑ(0) � 0, ϑ(1) � 1.0156, ϑ

(
1

2

+)

� ϑ

(
1

2

−)

, ϑ ′
(
1

2

+)

� ϑ ′
(
1

2

−)

.

As α � 2 and F(ξ) is selected such that its exact solution is.

ϑ(ξ) �
{
sin(πξ), ξ ∈ (

0, 1
2

)
.

2
(
ξ − 1

2

)7
+ 1, ξ ∈ ( 1

2 , 1
)
.

After the initial conditions have been homogenized, choose

ξ j �
{

j
2N , ξ ∈ (

0, 1
2

)
,

1
2 + j

2N , ξ ∈ ( 1
2 , 1

)
,
for j � 1, 2, . . . , N .

Then we apply the RKHS method with N � 50, Table 5 which describes the exact and
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Table 5 Numerical results for ϑ(ξ ) in Example 5

ξ Exact solutions
α � 2

Approximate solutions Absolute error
α � 2

α � 2 α � 1.9 α � 1.8 α � 1.7

0.1 0.30902 0.30902 0.30544 0.30240 0.29809 1.80263 × 10−6

0.2 0.58779 0.58776 0.57169 0.55441 0.53161 2.51361 × 10−5

0.3 0.80902 0.80895 0.76818 0.72232 0.66441 6.88451 × 10−5

0.4 0.95106 0.95097 0.87298 0.78478 0.67688 8.99297 × 10−5

0.5 1. 0.99991 0.87412 0.73278 0.56422 8.75012 × 10−5

0.6 1. 1. 0.90608 0.79344 0.65916 1.78911 × 10−9

0.7 1.00003 1.00003 0.93331 0.84733 0.74470 5.71650 × 10−8

0.8 1.00044 1.00044 0.95775 0.89856 0.82775 4.34177 × 10−7

0.9 1.00328 1.00328 0.98214 0.95076 0.91308 1.83051 × 10−6

1 0 0 0 0 0 0

approximate solutions of ϑ(ξ) for α � 2 and approximate solutions for different values of
α.

The graph in Fig. 5a represents the exact and approximate solution ϑ(ξ) when α � 2. In
Fig. 5b, graphs of the approximate solutions of ϑ(ξ) are plotted for different values of α. It is
clear from Fig. 5b that the approximate solutions are insensible arrangements with the exact

Fig. 5 Solution and graphical results of Example 5
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solution when α � 2, and the solutions are continuously based on a fractional derivative.
The graph in Fig. 5c represents the absolute errors of ϑ(ξ) when α � 2.

Conclusion

In this paper, a numerical method has been employed for solving 1-D interface problems of
fractional order in the Caputo sense. The key to the solution procedure is the combination
of the reproducing kernel functions and the shooting method. The main advantage of the
method is its fast convergence to the solution. In practice, the utilization of the method
is straightforward if some symbolic software such as Mathematica is used to implement
the calculations. The results of examples illustrate the reliability and consistency of the
method. Moreover, the solutions obtained are easily programmable approximants to the
analytic solutions of the original problems with the accuracy required.
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