
Inhibition of Bax protects neuronal cells from
oligomeric Ab neurotoxicity
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Although oligomeric b-amyloid (Ab) has been suggested to have an important role in Alzheimer disease (AD), the mechanism(s)
of how Ab induces neuronal cell death has not been fully identified. The balance of pro- and anti-apoptotic Bcl-2 family proteins
(e.g., Bcl-2 and Bcl-w versus Bad, Bim and Bax) has been known to have a role in neuronal cell death and, importantly,
expression levels of these proteins are reportedly altered in the vulnerable neurons in AD. However, the roles of apoptotic
proteins in oligomeric Ab-induced cell death remain unclear in vivo or in more physiologically relevant models. In addition, no
study to date has examined whether Bax is required for the toxicity of oligomeric Ab. Here, we found that treatment with
oligomeric Ab increased Bim levels but decreased Bcl-2 levels, leading to the activation of Bax and neuronal cell death in
hippocampal slice culture and in vivo. Furthermore, the inhibition of Bax activity either by Bax-inhibiting peptide or bax gene
knockout significantly prevented oligomeric Ab-induced neuronal cell death. These findings are first to demonstrate that
Bax has an essential role in oligomeric Ab-induced neuronal cell death, and that the targeting of Bax may be a therapeutic
approach for AD.
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Alzheimer disease (AD) is the most common neurodegen-
erative disorder, and b-amyloid (Ab) has been suggested to
have a critical role in the pathogenesis of AD. It has been
shown that oligomeric Ab is a main Ab species inducing
neurodegeneration in AD, yet the molecular mechanism(s) of
its neurotoxicity remains elusive.1 At present, it is reported
that oligomeric Ab induces apoptotic neuronal death in the rat
and mouse neurons in vitro and in vivo.2,3

Previous studies found that expression levels of Bcl-2
family proteins, such as Bax, Bak, Bad, Bcl-2, Bim, Bcl-w and
Bcl-x are altered in the vulnerable neurons in AD.4 Bcl-2 family
is structurally defined by the presence of up to four conserved
‘BCL-2 homology’ (BH) domains. The family proteins are the
key regulators of evolutionally conserved pathway of apopto-
sis.5,6 Bax and Bak belong to the multi-BH domains
pro-apoptotic subfamily, which promotes apoptosis by trans-
locating into the mitochondrial membrane and facilitating
cytochrome c release whereas Bcl-2 and Bcl-XL belong to the
prosurvival subfamily, which prevents apoptotic death in
multiple cell types including neuron.7 It is hypothesized that
the BH3-only proteins, such as Bim, Bid, Puma, Noxa and Bad
induce the activation of Bax and Bak, either directly or
indirectly by inactivating the prosurvival Bcl-2 proteins. In the
presence of apoptotic stimuli, Bax is known to change its
conformation. Specifically, as an early step of Bax activation,
the N-terminus exposure is considered a prerequisite
for membrane insertion of Bax at mitochondria and multi-
merization of Bax.8,9 Ku70, a DNA repair factor, can prevent

the conformational change by binding with Bax in the cytosol,
which leads to the inhibition of Bax-mediated cell death.10

Previously, a cell permeable Bax-inhibiting peptide (BIP),
designed to induce the Bax-binding domain of Ku70, was
found to rescue cells from Bax-mediated cell death.10–12

Notably, overexpression of anti-apoptotic proteins, Bcl-w,
or genetic ablation of a proapoptotic effecter, Bim, significantly
protected neurons against fibrillar Ab-induced apoptosis in
neuroblastoma cell lines and primary neuron culture.13,14

Giovanni et al.15 also reported that fibrillar Ab-induced
cell death is dependent on Bax in primary neuron culture.
However, these results have never been confirmed in vivo or
in a more physiologically relevant model, and all the previous
studies examined the toxicity of fibrillar Ab, not oligomeric Ab.
Therefore, to advance our understanding of the involvement
of Bcl-2 protein family as the major mechanism of oligomeric
Ab-induced neuronal cell death, in this study, we examined
the effect of oligomeric Ab on the regulation of Bcl-2/Bim/Bax
and its functional importance in neuronal cell death in the
organotypic hippocampal culture and mouse model for Ab
toxicity.

Results

Oligomeric Ab induces Bim upregulation and Bcl-2
downregulation in hippocampal slice culture. To char-
acterize oligomeric Ab in this study, we synthesized Ab
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peptide, and then denatured the peptide and allowed
oligomers to form, as described for Ab-derived diffusible
ligands.1 Consistent with previous findings for oligomeric
Ab,1,16 our oligomeric Ab preparations contain spherical
particles visible by negative staining with transmission
electron microscopy, and western blots show that the
preparations contain various size of oligomeric proteins
(Figure 1).

Time-dependent changes of the levels of Bax, Bcl-2 and
Bim were examined in oligomeric Ab-treated brain slices.
Oligomeric Ab increased the expression of Bim but decreased
the level of Bcl-2 (Figure 2a). However, the level of Bax was
not affected by oligomeric Ab (Figure 2a). As the N-terminus
exposure is an early step of Bax activation that occurs in the
cytosol, we analyzed this conformational change of Bax with a
monoclonal antibody (6A7) recognizing the epitope in the
N-terminus of Bax.9 Although the level of Bax expression was
not affected by oligomeric Ab, the number of 6A7-positive
cells were significantly increased in oligomeric Ab treated slice
cultures (Figure 2b), suggesting that oligomeric Ab induces
Bax activation.

Ablation of Bax reduces oligomeric Ab-induced
neuronal cell death in hippocampal slice culture. To
further determine the functional role of Bax in oligomeric Ab-
induced neuronal cell death, hippocampal slice culture
prepared from wild-type and bax� /� mice (Figures 3a and
b) were used. Slices were treated with oligomeric Ab in the
presence of propidium iodide (PI), which penetrates cell
membranes of dead or dying cells, and is widely used for
evaluation of cell death. Although Ab42–1 peptide, a reverse
sequence of Ab1–42, had no effect on PI uptake, the number
of PI-positive cells was significantly increased in oligomeric
Ab-treated slices after 48 h of the treatment, indicating that

oligomeric Ab induces neuronal cell death in the hippocampal
slice culture. However, the neuronal cell death induced by
oligomeric Ab was dramatically reduced in the slice culture
from bax� /� mice (Figure 3c). Nissl staining analysis further
confirmed neuronal cell death by oligomeric Ab in wild–type
(WT) mouse slice culture but not in bax� /� mouse slice
culture (Figure 3d). These results indicate that Bax is a
critical mediator for the neurotoxicity induced by oligomeric
Ab.

Intrahippocampal injection of oligomeric Ab increases
Bim expression and active forms of Bax. To further
examine the involvement of pro-apoptotic proteins in
oligomeric Ab-induced cell death, we determined the change
of the levels of Bim and the active form of Bax in vivo. We
injected oligomeric Ab into the hippocampus and assessed
its neurotoxicity. Ab42–1 was used as a control. Oligomeric Ab
injection into the WT mouse hippocampus induced neuronal
cell death in 20 days after injection (Figure 4a). The number
of terminal dUTP nick-end labeling (TUNEL)-positive neu-
rons was significantly increased by Ab injection (Figure 4b).
To see the involvement of Bim and Bax, we measured the
level of Bim and active form of Bax, and found that the level
of Bim was dramatically increased as early as 10 days after
oligomeric Ab injection (Figure 4c). The number of neurons
containing the active form of Bax recognized by 6A7 antibody
was also dramatically increased by Ab injection (Figure 4d).
These data further support that both Bim and Bax have roles
in oligomeric Ab-induced neuronal cell death.

BIP suppresses neuronal cell death and Bax activation
induced by oligomeric Ab in hippocampal slice culture.
In this study, in addition to utilizing Bax knockout (KO) mice,
we utilized BIP to examine the role of Bax in oligomeric
Ab-induced neurotoxicity. BIP used in this study consists of
five amino acids, VPTLK, a sequence that is known to inhibit
Bax activation.10,11,17 A mutated (scrambled) peptide,
KLVPT, which does not bind Bax but has the same cell
permeability, was used as a negative control. Both peptides
were tagged with fluorescein isothiocyanate (FITC) so that
intracellular delivery can be tracked by FITC signal. We first
treated hippocampal slices with each peptide and analyzed
green fluorescence to confirm their cell permeability, and
confirmed that BIP and the control peptide equally pene-
trated neuronal cells after 24-h treatment (Figure 5a). To
determine whether BIP is able to suppress oligomeric Ab-
induced neuronal cell death in slice culture, either BIP or
control peptide were co-applied with oligomeric Ab. After 24-
h treatment of oligomeric Ab and the peptide, the treatment
of BIP significantly prevented PI uptake, whereas the control
peptide did not affect the level of PI uptake (Figure 5b),
suggesting BIP specifically blocks neuronal cell death
induced by oligomeric Ab. Consistent with the PI uptake
results, both Nissl staining and caspase-3 immunoblot
analyses also showed that BIP significantly suppressed
oligomeric Ab-induced neuronal loss and caspase-3 activa-
tion, but control peptide failed to prevent neuronal cell death
(Figures 5c and d). We also found that the treatment of BIP
suppresses oligomeric Ab-induced conformational change of
Bax (Figure 6). These results further support the hypothesis
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Figure 1 Physicochemical and morphological features of the synthetic Ab1–42.
(a) Electron micrograph shows the typical pattern of oligomer formation of Ab. The
arrows indicate oligomers in the lower panel. Scale bar, 100 nm. (b) Synthetic
Ab1–42 was subjected to SDS-polyacrylamide gel and detected by western blotting
with 6E10 antibody. Molecular weight markers in kDa are at left
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that the activation of Bax by oligomeric Ab is an essential
mechanism of oligomeric Ab-induced neuronal cell death.

Discussion

In this study, we demonstrate that oligomeric Ab altered the
expression levels of Bcl-2, Bim and Bax, and that the genetic
or pharmacological ablation of Bax activity suppresses
oligomeric Ab-mediated neurotoxicity in both ex vivo and
in vivo. These results clearly indicate that Bax has an essential
role in the induction of neuronal cell death caused by
oligomeric Ab.

In healthy cells, Bax is located in the cytosol or loosely
associated to mitochondria and endoplasmic reticulum.18 Bax
translocation to the mitochondria, which occurs in cells with
apoptotic stresses, is thought to lead to mitochondrial

dysfunction and release of cytochrome c and subsequent
apoptosis.19 Before its translocation to mitochondria, Bax
changes its conformation that exposes the N-terminal
residues.20 This conformational change is believed to be
necessary for membrane insertion of Bax at mitochondria and
multimerization of Bax.21 The present study demonstrates
that oligomeric Ab induced the N-terminal exposure of Bax in
neurons and that the inhibition of this event by BIP rescues
neurons from oligomeric Ab’s neurotoxicity, suggesting the
activation of Bax by its conformational change is a key
element of oligomeric Ab-induced neurotoxicity.

Although the molecular mechanism(s) of Bax activation has
not been clearly defined, multiple pro-apoptotic proteins (e.g.,
Bim) and anti-apoptotic proteins (e.g., Bcl-2) are known to
regulate the activation of Bax thorough heterodimerization.22

In fact, consistent with the previous findings, our current data

Bcl-2

Actin

Bim

Incubation time (hr)
6 12 24 480

Bax

0

100

200

300

400

B
im

 (
%

 c
on

tr
ol

)

*

Incubation time (hr)

0

50

100

150

200

0 6 12 24 48

B
cl

-2
 (

%
 c

on
tr

ol
)

*

Incubation time (hr)

0

100

200

B
ax

 (
%

 c
on

tr
ol

)

Incubation time (hr)

a

b

0 6 12 24 48 0 6 12 24 48

25

25

20

50

kDa

Control
(Aβ42-1)

Aβ1-42

6A7 6A7+DAPIDAPI

Figure 2 Oligomeric Ab differentially regulates Bim, Bcl-2 and Bax in the hippocampal slice culture. (a) Representative western blots showed oligomeric Ab induced
upregulation of Bim and downregulation of Bcl-2 in a time-dependent manner. Bax levels were not changed by oligomeric Ab treatment. Actin was used as internal loading
control. The values of each band were normalized to that of actin and shown as a relative value of each group compared with the non-treatment slices. The indicated
comparisons are significant at *Po0.05, n¼ 4. (b) Immunocytochemistry analysis demonstrated the increased number of positive cells stained with 6A7 antibody, which
specifically detect the active form of Bax, 24 h after oligomeric Ab treatment in hippocampal slice cultures. Conversely, control peptide (Ab42–1) did not induce the active form of
Bax (green: 6A7, blue: DAPI). Scale bar, 100mm
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demonstrate that the level of Bim is significantly upregulated
after oligomeric Ab treatment, whereas anti-apoptotic protein
Bcl-2 is downregulated, suggesting that oligomeric Ab
induces neuronal cell death through the alteration of the
balance of Bcl-2 family proteins and consequent activation of
Bax. Unlike most ‘BH3-only’ proteins, Bim can interact with all
pro-survival Bcl-2 proteins with high affinity, and is one of the
few BH3-only proteins that can directly activate Bax.23 For
instance, several in vitro data suggested that the direct

physical interaction between Bim and Bax can drive Bax
activation.24,25 Importantly, the ablation of Bim suppresses
Ab-induced cell death in primary neurons,13 and overexpres-
sion of anti-apoptotic proteins (Bcl-w) significantly protected
neurons against Ab-induced apoptosis.14 Previous reports
suggested that overexpression of Bim in cultured neurons
induces a rapid apoptotic death26 and Bim is highly expressed
in AD neurons.13 Bim is also known to induce Bax activation
directly or indirectly.27 Collectively, these data strongly
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Figure 5 Bax-inhibiting peptide (BIP) suppresses neuronal cell death induced by oligomeric Ab. Either BIP (VPTLK) or control peptide (KLPVT) was added to
hippocampal slice cultures at the same time with oligomeric Ab to examine its neuroprotective effect. (a) Cell permeability of both peptides was confirmed by green
fluorescence in hippocampal slice cultures. Strong green fluorescence of both BIP- and negative-control peptide was found at 24 h after the peptide treatment, indicating both
peptides are penetrated to neurons. (b) The intensity of PI in slices treated with oligomeric Ab for 48 h was quantified as a marker of cell death. BIP significantly prevented
oligomeric Ab-induced PI uptake (n¼ 5). Scale bar, 500mm. *Po0.01 versus control #Po0.05 versus Ab only (� ). Ab42–1 peptide was used as a control.
(c) Nissl staining demonstrated that the treatment of BIP significantly prevented neuronal cell loss induced by oligomeric Ab. Arrows indicate the region of neuronal cell loss.
(d) BIP suppressed the activation of caspase-3 (cleaved caspase-3) induced by oligomeric Ab (n¼ 4). *Po0.01 versus control, #Po0.05 versus Ab only (� )
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suggest that Bim might be an upstream regulator of Bax
activation in oligomeric Ab-induced neurotoxicity and the
pathological role of Bim and Bax in neuronal cell loss in AD.

However, it remains unknown how oligomeric Ab activates
Bim and consequent neuronal cell death. Although future
study will be required to determine the mechanism, one
potential pathway might be c-Jun N-terminal kinase (JNK)-
dependent phosphorylation, as JNK-mediated phosphoryla-
tion promotes Bax-dependent apoptosis.28 As the activation
of JNK by Ab has been shown29 and the active form of JNK
has been reported to be increased in vulnerable neurons in
AD,30 it is plausible that the activation of JNK and subsequent
activation of Bim/Bax-mediated apoptosis pathway might be
the mechanism causing neuronal cell death in oligomeric Ab-
treated neurons and AD. Alternately, cyclin-dependent kinase 4
(Cdk4) has been suggested as an activator of Bim. Induction
of Bim in nerve growth factor-deprived neuronal cells requires
active Cdk4 and consequent reactivation of a series of genes
suppressed by E2F.31 Among the reactivated genes, mem-
bers of the myb transcription factor family, especially c-myb,
seem to have a role in the activation of Bim. In previous
studies, the inhibition of Cdk by various experimental
approaches (i.e., chemical inhibitors, dominant-negative
constructs, small interfering RNA) provide further evidence
for the role of Cdk4 in the induction of Bim and neuronal cell
death evoked by Ab.13,15,32 Given that the elevated expres-
sion of cell cycle-related proteins including Cdk4 is evident in
the vulnerable neurons in AD33–35 and Ab-treated neuronal
cells,32,36 an abortive reentry into the cell cycle might induce
neuronal cell death by upregulating Bim/Bax apoptotic path-
way. Supporting the causal role of cell cycle reentry in
neuronal cell death, we previously found that dysregulation of
cell cycle reentry results in neurodegeneration in vivo.37

Although we did not examine mRNA level of Bim and its
posttranslational change, a previous report demonstrated that
fibrillar Ab increases the level of Bim mRNA and protein.13

Thus, the increase of Bim expression by Ab is likely mediated

by transcriptional regulation. However, the increased transla-
tional modification such as phosphorylation of Bim might also
be the reason for the increase of band intensity in our western
blot data (Figure 2a). In fact, the western blot bands for
upregulated Bim have a slightly higher molecular weight and
this change may come from the phosphorylation of Bim, as
Bim is known to be phosphorylated by several kinases. Cdk1/
Cyclin B1 is one of the kinases to phosphorylate Bim.38

Interestingly, in our recent study (manuscript in preparation),
we found that Ab induced abnormal cell cycle upregulation as
well as Cdk’s activation and these events may have a role in
posttranslational modification of Bim as seen in this study.
Furthermore, the phosphorylation of Bim has been suggested
to regulate Bax-dependent cell death.28 Therefore, the
modification may regulate the apoptotic activity in our model.
In future study, we will pursue the link between Cdk and Bim in
Ab neurotoxicity.

The present study showing Bax activation by oligomeric Ab
and the resistance of bax� /�neurons to oligomeric Ab cell
death suggest that Bax is a key mediator of oligomeric Ab
toxicity, and therefore BIP’s protective effects against
oligomeric Ab can be translated as the result of Bax inhibition.
BIP was developed as a Bax-inhibiting peptide, however, as
usual in any type of drug, we cannot entirely exclude the
possibility that BIP has unexpected target(s) in the cell, which
can regulate cellular response to oligomeric Ab. The future
study developing therapeutics based on BIP will need further
careful examination of the possibilities of the existence of
the target(s) of BIP in addition to Bax.

In conclusion, in this study, we found that bax� /� mice are
resistant to oligomeric Ab-induced neuronal cell death,
suggesting the essential role of Bax in neurotoxicity of
oligomeric Ab. Furthermore, we show for the first time that
BIP application prevents oligomeric Ab-induced neuronal cell
death, suggesting that BIP and its mimetics may be utilized to
mitigate the progress of AD by rescuing neurons from Bax-
induced cell death. Our study also suggests that oligomeric Ab
regulates the activity of Bim, Bcl-2 and Bax in neurons. Taken
all together, it is highly likely that the activation of Bax by the
regulation of Bim and Bcl-2 family is crucial for oligomeric
Ab-induced neuronal cell death.

Materials and Methods
Materials. Anti-b-actin antibody was obtained from Millipore (Billerica, MA,
USA) and anti-cleaved-caspase-3 antibody was obtained from Cell Signaling
Technology (Danvers, MA, USA). Ab peptide (Ab1–42) and reverse control peptide
(Ab42–1) were purchased from AnaSpec (Fremont, CA, USA). PI and other
chemicals were obtained from Sigma (St. Louis, MO, USA).

Preparation of oligomeric Ab. Soluble oligomeric Ab was prepared from
synthetic peptide according to a previous paper.39 Briefly, 1 mg of Ab1–42 peptide was
dissolved in 120ml of hexafluoroisopropanol for 60 min at room temperature, and
placed back on ice for 5–10 min. After evaporation of hexafluoroisopropanol overnight
in the hood at room temperature, the peptide was dissolved in 40ml of fresh
anhydrous DMSO, and further diluted to 5 mM stock solution. The stock peptide
solution was then incubated for 24 h at 4 1C, and centrifuged at 14 000� g for 10 min
at 4 1C. Supernatant was used as oligomeric Ab. Before we treated slice culture with
oligomeric Ab, the oligomers were incubated at room temperature for 20 h.

Mouse strains. Bax KO mice (strain name: B6.129� 1-Bax tm1Sjk/J.) were
purchased from The Jackson Laboratories (Bar Harbor, ME, USA). This Bax KO
mouse has C57BL/6 genetic background. Bax KO mice were crossed with wild-
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Aβ/VPTLK

6A7 DAPI Merge

Control
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Figure 6 BIP prevents the conformational change of Bax induced by oligomeric
Ab. BIP (VPTLK) was treated to hippocampal slice cultures with oligomeric Ab for
48 h. Ab42–1 was used as a control. The slices were stained with 6A7 antibody for
detecting active conformational change of Bax. In the BIP-treated slices, the number
and intensity of 6A7-positive signal (green) was significantly decreased compared
with the slices treated with Ab only. Scale bar, 100mm
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type C57BL/6 mice, and baxþ /� mouse colony was generated. Bax KO as well
as WT mice used for this study were generated by crossing baxþ /� mice in our
mouse colony. Each experiment used a set of Bax KO and WT mice obtained from
the same parent to minimize variations caused by genetical differences among
mice. bax� /� mice were genotyped by PCR, as described previously. The
primers for the wild-type and KO Bax alleles were 50-GAGCTGATCAGAACCAT
CATG-30 (sense) and 50-CCGCTTCCATTGCTCAGCGG-30 (antisense). Condi-
tions were set as follows: 941C, 3 min (1 cycle); 941C, 30 s, 631C, 1 min, 721C,
1 min (35 cycles); 721C, 2 min (1 cycle). All protocols involving the use of mice
were approved by the Institutional Animal Care and Use Committee of Case
Western Reserve University.

Electron microscopy. Ab1–42 was adsorbed onto carbon films supported on
Formvar (EMS, Hatfield, PA, USA) membrane-coated nickel grids. The excess
buffered-protein solution was removed, and negatively stained with 2% uranyl
acetate. Grids were then washed by touching the buffer and the excess buffer was
immediately blotted using Whatman (Picataway, NJ, USA) filter paper. Grids were
then air-dried and kept at room temperature. Negatively stained specimens were
observed by a JEOL 1200EX electron microscope (JEOL, Tokyo, Japan) with
80 kV of electron acceleration voltage.

Preparation of organotypic hippocampal slice cultures. Organo-
typic hippocampal slice cultures were prepared as described previously.40 Briefly,
hippocampal slice cultures were prepared using 7–10-day-old mouse pups. Slices
were cut at 400mm on a Mcllwain tissue chopper, transferred to Millicell
membrane inserts (0.4mm; Millipore), and placed in 6-well culture plates. The
culture medium consisted of basal Eagle’s medium with Earle’s balanced salt
solution, 20% heat-inactivated horse serum, enriched with 5.6 mM glucose.
The medium was changed every other day. The effect of oligomeric Ab (500 nM)
was tested in the slices that had been maintained for 11–14 days in vitro. Ab
oligomer or reversed sequence of Ab1–42 control peptide (Ab42–1) was added to
cultures in serum-free medium and, after the treatment, the hippocampal slices
were rinsed twice in ice-cold phosphate-buffered saline (PBS), and then harvested
by removing the Millicell membrane insert.

Assessment of neuronal cell death in organotypic hippocampal
slice cultures. To determine neuronal cell death in the hippocampal slices, PI
(5mg/ml) was added to the slice culture medium. Images were acquired through
an AxioCam camera on an Axiovert 200M microscope (Zeiss, Oberkochen,
Germany). Fluorescent intensity was measured using Image J (NIH, Bethesda,
MD, USA). Hematoxylin and eosin (H&E) and Nissl staining was also performed
for routine histochemical and morphological analyses.

Protein extraction and western blot analysis. After oligomeric Ab
treatment, the slices were rinsed twice with ice-cold PBS and then lysed in ice-cold
cell lysis buffer (Cell Signaling Technology) with protease and phosphatase
inhibitor cocktail (Roche, Indianapolis, IN, USA). The protein concentration was
determined by BCA assay (Pierce, Rockford, IL, USA). The extracted proteins
were separated on 10 or 12% SDS-polyacrylamide gel and transferred onto
polyvinylidene difluoride membranes. The blots were blocked with 10% non-fat
milk in TBS-T for 1 h at room temperature, and then treated with primary
antibodies diluted with 1% non-fat milk and incubated overnight at 4 1C. The
following antibodies were used for western blot analysis: anti-caspase-3 (1 : 1000;
Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-Bim (1 : 1000; Stressgen,
Farmingdale, NY, USA), anti-Bcl-2 (1 : 1000; Stressgen) and 6A7 (conformational
specific Bax antibody) (1 : 1000; BD Pharmingen, San Diego, CA, USA).

Intrahippocampal injection of oligomeric Ab. C57BL6/J mice (The
Jackson Laboratories; 2–3-month-old) were anesthetized with pentobarbital and
placed in a stereotaxic frame. Injection was made using a 10-ml microsyringe
(Hamilton, Reno, NV, USA). A volume of 1 ml of oligomeric Ab dissolved at 50mM
in PBS was injected into the left hippocampus. Control animals were prepared
identically and injected with the same volume and concentration of Ab42–1 in PBS.
Injections were made at stereotaxic coordinates from bregma; antereoposterior
(AP)¼ 2.3 mm, mediolateral (ML)¼ 2.5 mm and doroventral (DV)¼ � 2.5 mm
according to a previous report.41 This corresponds to a site in the dorsal
hippocampus in the apical dendritic zones of the CA1 region near the hippocampal
fissure. Mice were killed 10 or 20 days after injection, brains dissected out, fixed
in 10% buffered-formalin and paraffin-embedded. For brain tissue sections,

6-mm-thick serial sections were cut, mounted onto slides and rehydrated according
to standard protocols.

Immunocytochemistry. Cultured hippocampal slices were rinsed with ice-
cold PBS once and fixed for 2 h with 4% paraformaldehayde in 0.1 M PBS.42 After
washing with PBS, sections were permeabilized overnight with PBS containing
0.2% Triton X-100. At the end of the permeabilization blocking solution, 10%
normal goat serum in PBS was applied for 4 h at room temperature. After washing
with PBS, primary antibody was added and incubated for 24–48 h at 4 1C. After
thorough washing of the sections in PBS, a secondary antibody labeled with either
Alexa Fluor (Life Technologies, Grand Island, NY, USA) 488 or 568 (1 : 300) was
added and incubated for 4 h at room temperature. All of the experiments contained
at least one sample incubated without a primary antibody to exclude non-specific
signal. Nuclei were visualized with DAPI. Images were acquired through an
AxioCam camera on an Axiovert 200M microscope (Zeiss). Images were then
analyzed with the Axiovision software (Zeiss).

TUNEL analysis. Detection of 30-OH termini of DNA strand breaks was
performed using in situ cell death detection kit (Roche). Briefly, the tissue sections
were treated with proteinase K (20 mg/ml in 10 mmol/l Tris-HCl, pH 7.4) for 30 min
at 37 1C after rehydration. After rinsing with PBS, TUNEL reaction mixture
containing terminal deoxynucleotidyl transferase and fluorescence-labeled
nucleotide was applied for 1 h 37 1C. The samples were then washed and
mounted using Aquamount (Southern Biotech, Birmingham, AL, USA).

Statistical analysis. Data were expressed as the means±S.E.; the number
of independent experiments is indicated in the corresponding figure legend.
Differences between groups were examined for statistical significance using
one-way analysis of variance with an unpaired Student’s t-test. A P value of
o0.05 indicated a statistically significant difference.
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