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Abstract

This paper models the prisoner’s dilemma game based on pairwise comparison in finite populations on a complete oriented
star (COS). First, we derive a linear system on a COS for calculating the corresponding fixation probabilities that imply
dependence of the selection temperature and mutation. Then we observe and analyze the effects of two parameters on
fixation probability under different population sizes. In particular, it is found through the experimental results that (1) high
mutation is more sensitive to the fixation probability than the low one when population size is increasing, while the
opposite is the case when the number of cooperators is increasing, and (2) selection temperature demotes the fixation
probability.
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Introduction

As a standard approach to describing the evolutionary dynamics

of population, evolutionary game theory has drawn considerable

attentions ([1], [2], [3], [4], [5], [6], [7], [8], [9]). In this context,

an ideal assumption is that individuals interact randomly with each

other in large, well-mixed population. In real world, however, the

organization of population is usually highly structured rather than

uniform, where the dynamics between individuals depend on both

the strategy and the population configuration ([10], [11], [12],

[13], [14], [15], [16], [17], [18]). The population configuration

can be modeled by a weighted digraph. A complete oriented star
(COS) is a complete bipartite digraph, where one partition consists

of a single vertex known as the central vertex, and the other is a

collection of vertices known as the peripheral vertices. COSs are a

popular class of network topologies ([19], [20]) and have a wide-

ranging applied background, such as computer network topology

and a social organization, where the leader and employees can be

seen as the central vertex and the peripheral vertices, respectively.

The communications between them can be represented by the

weight. To our knowledge, the evolutionary game with mutation

based on the pairwise comparison process with COS structure has

yet to be investigated.

Taking the prisoner’s dilemma ([21], [22], [23], [24]) as an

example, this paper addresses the evolutionary game of population

with COS structure, where the mutation is based on pairwise

comparison ([25], [26], [27]). First, we derive a linear system for

calculating the fixation probabilities. Then we observe and analyze

such phenomena appeared in the game as the effects of selection

temperature and mutation rates and population size on fixation

probability.

The organization of this paper is as follows. In the next section,

we present preliminary knowledge to support our study. In section

3, we derive analytic solutions of fixation probabilities by

converting our task into a linear system on a COS. In Section 4,

we give some simulations. Finally, we end the paper in Section 5.

Preliminary Knowledge

A complete oriented star (COS) of size N, denoted SN , is a

digraph with vertex set V~f1,2,:::,Ng and edge set E~fS1,iT,
Si,1Tj2ƒiƒNg. We call vertex 1 as the central vertex, and

vertices 2 through N as peripheral vertices. The intrinsic weights
for SN are defined as w(1,i)~1=(N{1) and w(i,1)~1 for

2ƒiƒN. Figure 1 (S4) and Figure 2 (S5) depict two COSs with

intrinsic weights. In the sequel, the term ‘‘COS’’ means ‘‘COS

with intrinsic weights’’.

In a Prisoner’s Dilemma game, individuals can choose one of

two strategies: cooperation (C) and defection (D), and the

corresponding individuals are called cooperator and defector,

respectively. The payoff matrix is given below.

C D

C
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T P

 !
D
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where T, R, P and S stand for temptation to defect, reward for
mutual cooperation, punishment and sucker payoff, respectively. It

is always assumed that T . R .P. S. In this paper, we adopt the

following payoff matrix suggested by Nowak and May [28]. This

model preserves the essentials of the Prisoner’s Dilemma game and

1ƒbƒ2 is the only tunable parameter.

C D

C

D

1 0

b 0

 !
ð2Þ

We should emphasize that our observations are not restricted to

the present weak dilemma strength as the model, but remain fully

valid also for the strong strength (strictly satisfying T.R.P.S).

Consider a homogeneous population with SN structure, whose

individuals play a Prisoner’s Dilemma game with the payoff matrix

(2). Suppose that, initially, there are m randomly chosen coop-

erators and N – m defectors. A central cooperator (respectively,

defector) is a cooperator (respectively, defector) occupying the

central vertex. A peripheral cooperator (respectively, defector) is a

cooperator (respectively, defector) occupying a peripheral vertex.

The sketches with central cooperator and central defector are

given in Figure 3 and Figure 4, respectively.

Let pCC and pCD denote the mean payoffs of the central

cooperator and central defector, respectively, and let pPC and pPD

denote the payoffs of a peripheral cooperator and a peripheral

defector provided the central vertex is a cooperator and defector,

respectively. A straightforward calculation will give us

pCC~
(m{1)|1

N{1
, pPD~

(N{m)|b

N{1
,

pCD~
m|b

N{1
, pPC~0:

ð3Þ

Accordingly, the payoff differences are given by

DpCC,PD~pCC{pPD~
(m{1)|1z(N{m)|b

N{1
,

DpCD,PC~pCD{pPC~
m|b

N{1
:

ð4Þ

In this paper, we adopt a process based on pairwise comparison

between individuals. In each step of the process, an random (focal)

individual i is selected for reproducing an offspring, which means

an ancestor reproduces an offspring rather than one individual

breaks down into two individuals, then the offspring compares its

payoff pi to the payoff pj of a randomly chosen neighborj, and

Figure 1. A complete oriented star S4 with intrinsic weights.
doi:10.1371/journal.pone.0107417.g001

Figure 2. A complete oriented star S5 with intrinsic weights.
doi:10.1371/journal.pone.0107417.g002

Figure 3. A complete oriented star with central cooperator.
doi:10.1371/journal.pone.0107417.g003
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adopts the strategy of that neighbor with probability
1

1zeb(pi{pj )

([25], [26], [27]), where i,j[ CC,CD,PC,PDf gand the parameter

b§0, which corresponds to an inverse temperature in statistical

physics, controls the intensity of selection. Small b (high temper-

ature) means that selection is almost neutral, whereas for large b
(low temperature) selection can become arbitrarily strong. This

process occurs with probability 1{m; with probability m a muta-

tion occurs, which means that the focal individual produces an

offspring with random strategy, C or D.

The mth-order fixation probability on SN, denoted rm, is defined

as the possibility of the event that m cooperators could eventually

take over the entire population.

Formulas for Fixation Probabilities

In this section, we derive the formulas for the fixation proba-

bilities on SN .

At time t, the configuration of a population on SN is described

by a vector M(t)~ m1(t),m2(t)ð Þ, where m1(t) = 1 or 0 according

as a cooperator occupies vertex 1or not, and m2(t) denotes the

number of cooperators staying at vertices 2 through N. Let m(t)
denote the total number of cooperators at time t, then m(t)~
m1(t)zm2(t). Let rm1,m2

denote the probability that, starting with

M(0)~(m1,m2), the cooperation finally fixates. For brevity, let

Pi,j,k,l~P M(1)~(k,l)jM(0)~(i,j)ð Þ denote the conditional prob-

ability, where i,k[ 0,1f g and j,l[ 0,1,:::,N{1f g. The probability of

an offspring of central cooperator adopting strategy D
(P1,m{1,0,m{1) can be derived from the two sources: (1) the

offspring compares its payoff to the payoff of a peripheral defector

and adopts its strategy with probability
N{m

N
|

1{m

1zezb(DpCC,PD)
;

(2) the offspring mutates into defector with probability
m

2
.

Analogously, The probability of an offspring of a selected

peripheral defector adopting strategy C (P1,m{1,1,m) can be derived

from the two sources: (1) the offspring compares its payoff to the

payoff of a central cooperator and adopts its strategy with

probability
N{m

N
|

1{m

1ze{b(DpCC,PD)
; (2) the offspring mutates into

cooperator with probability
N{m

N
|

m

2
. It is easy to calculate the

following transition probabilities:

P1,m{1,0,m{1~
N{m

N
|

1{m

1zezb(DpCC,PD)
z

m

2
1ƒmƒN ð5aÞ

P1,m{1,1,m~
N{m

N
|(

1{m

1ze{b(DpCC,PD)
z

m

2
)

1ƒmƒN{1

ð5bÞ

P1,m{1,1,m{1~

1{
N{m

N
(

1{m

1zeb(DpCC,PD)
z

1{m

1ze{b(DpCC,PD)
z

m

2
){

m

2

1ƒmƒN,

ð5cÞ

By a similar arguments, the transition probabilities P0,m,1,m and

P0,m,0,m{1 are given by the following

P0,m,1,m~
m

N{1
|

1{m

1zeb(DpCD,PC )
z

m

2
0ƒmƒN{1, ð5dÞ

P0,m,0,m{1~
m

N{1
(

1{m

1ze{b(DpCD,PC )
z

m

2
) 1ƒmƒN{1, ð5eÞ

P0,m,0,m~

1{
m

N{1
(

1{m

1zezb(DpCD,PC )
z

1{m

1ze{b(DpCD,PC )
z

m

2
){

m

2

0ƒmƒN{1,

ð5fÞ

By the total probability formula we have

r1,m{1~P1,m{1,0,m{1r0,m{1zP1,m{1,1,mr1,m

zP1,m{1,1,m{1r1,m{1,

1ƒmƒN{1,

ð6aÞ

r0,m~P0,m,1,mr1,mzP0,m,0,m{1r0,m{1

zP0,m,0,mr0,m:

1ƒmƒN{1,

ð6bÞ

Substituting equations (5a)-(5f) into (6a) and (6b) and simplifying,

we get

Figure 4. A complete oriented star with central defector.
doi:10.1371/journal.pone.0107417.g004
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r1,m{1~amr0,m{1zbmr1,m, 1ƒmƒN{1, ð6cÞ

r0,m~cmr1,mzdmr0,m{1, 1ƒmƒN{1, ð6dÞ

where

am~
2(N{m)(1{m)zNm(1zeb(DpCC,PD))

(N{m)½2(1{m)eb(DpCC,PD)zm(1zeb(DpCC,PD))�
,

bm~
½2(N{m)zmm�(1zeb(DpCC,PD))

(N{m)½2(1{m)eb(DpCC,PD)zm(1zeb(DpCC,PD))�
,

cm~
2m(1{m)zm(N{1)½1zeb(DpCD,PC )�

½2m(1{m)zm(N{1zm)�½1zeb(DpCD,PC )�
,

dm~
2m(1{m)eb(DpCD,PC )zmm½1zeb(DpCD,PC )�
½2m(1{m)zm(N{1zm)�½1zeb(DpCD,PC )�

:

We transform equations (6c) and (6d) into linear equations:

d1 1 0 ::::::::::0 0 c1 :::::::::::::0

1 d2 1:::::::::::0 0 0 c2 0:::0

::::::::::::::::::::::::::: :::::::::::::::::::::::::

0::::::::: dN{1 1 0 0 ::::::::::cN{1

a1 0 ::::::::: 0 0 1 b1 :::::::::::::0

0 a2 0 ::: 0 0 0 1 b2 ::::::::0

:::::::::::::::::::::::::: ::::::::::::::::::::::::

0 0 ::: aN{1 0 0:::::::::: 1 bN{1

2
66666666666664

3
77777777777775

r0,1

r0,2

..

.

r0,N{1

r1,0

r1,1

..

.

r1,N{2

2
66666666666666664

3
77777777777777775

~

0

..

.

..

.

..

.

..

.

..

.

0

1

2
666666666666666664

3
777777777777777775

ð7Þ

According to Cramer rule, we can obtain

r0,m~
Dm

D
, m~1,2,:::N{1,

r1,m{1~
DmzN

D
, m~1,2,::N{1,

r0,0~0, r1,N{1~1:

where D is the determinant for the first term left hand side of

linear equations (7), Dm and DmzN are the determinants by

replacing the mth-column, (m+N)th-column in D by the term on

the right hand side of liner equations (7).

rm~
m

N
r1,m{1z(1{

m

N
)r0,m~

mDmzNz(N{m)Dm

DN
ð8Þ

Figure 5. r1 vs N with m = 1/4000, b = 1.2 and different b values.
doi:10.1371/journal.pone.0107417.g005
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Numerical Examples

When N§3, it is more difficult to investigate the properties of

r1(m,b,b) (see appendix S1). In this section, through numerical

examples we investigate how the parameters affect the evolution of

the Prisoner’s Dilemma game on a complete oriented star.

First, we will focus our attention on how fixation probability is

affected by population size N and selection temperature b and
initial number of cooperators m in given population size (let

N = 20) under the low mutation rates (mvvN{2) and high
mutation rates (m?1) ([29], [30], [31], [32], [33]). The simulations

are as follows:

Figure 7. rm vs N with m = 1/4000, b = 1.2 and different b values.
doi:10.1371/journal.pone.0107417.g007

Figure 6. r1 vs N with m = 0.95, b = 1.2 and different b values.
doi:10.1371/journal.pone.0107417.g006
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Figure 5–8 shows fixation probabilities in the pairwise compar-

ison process under the low mutation rates and high mutation rates
and different selection temperatures b. Figure 5–6 describes the

first-order fixation probability r1 as a function of population size N
under the different selection temperatures b. Obviously, in

Figure 6, there is a slight turning of r1 with the increment of N

under small b but circumstances turn out to be different in

Figure 5, in which r1 is decreasing with N, which accords with a

fact: the larger the population size, the more difficultly to taken

over it for a single cooperator with given strategy. Figure 7–8

depicts mth-order fixation probability rm(1vmƒ20) as a function

of initial number of cooperators m under the different selection

Figure 9. m, m vs rm with b = 0.01, b = 1.2.
doi:10.1371/journal.pone.0107417.g009

Figure 8. rm vs N with m = 0.95, b = 1.2 and different b values.
doi:10.1371/journal.pone.0107417.g008
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temperatures b. b = 0 (red circle) means neutral selection and rm is

given by the fraction of cooperators in Figure 7, which is similar as

done in the evolutionary game in well-mixed populations ([26]).

However, that is not the case in Figure 8 because of high mutation

rates. One can see that with the increment of m, rm increases in

Figure 7, but in Figure 8, only for a high initial number of

cooperators, they have reasonable changes. rm(1ƒmƒ20)
decreases with the increment of b if fix N in Figure 7–8.

Since Figure 5–8 shows that mutation rates m plays a key role on

the fixation probabilities, to further demonstrate the effects of

mutation rates m, next we will investigate the relationship of m, and

(i) mth-order probability rm(1vmƒ20) and initial number of

Figure 11. m, m vs r1 with b = 0.01, b = 1.2.
doi:10.1371/journal.pone.0107417.g011

Figure 10. m, m vs rm with b = 0.5, b = 1.2.
doi:10.1371/journal.pone.0107417.g010
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cooperators in Figure 9 (b = 0.01, b = 1.2) and Figure10 (b = 0.5,

b = 1.2) (ii) the first-order fixation probability r1 and population

size in Figure 11 (b = 0.01, b = 1.2) and Figure 12 (b = 0.5, b = 1.2)

under the different selection temperatures b. In Figure 9–10, one

can see roughly that rm can be mainly divided into parts obviously

and the corresponding parameters space are given following the

order of from little to great. When m is relatively large, rm has a

remarkable increment. In particular, In Figure 10, but only for a

high initial number of cooperators and no matter under what

values of m, rm can change obviously and it is not without that, rm

can maintain a more distinct increment. A clear description in

which r1 increases with the increment of m is displayed in

Figure 11–12, but the degree of increment is smaller in Figure 12

than that in Figure 11.

Concluding Remarks

In this paper, we have chosen a complete oriented star (COS) to

study how the mutation rates and selection temperature and

population size affects the prisoner’s dilemma game based on

pairwise comparison in finite populations. A method has been

derived to calculate the fixation probabilities. Then we observe

and analyze effects of selection temperature and mutation rates

and population size on fixation probability. We will also

attempting to modify the model under study to adapt the

evolution of the trustworthiness of large-scale distributed systems.

It is also worth extending this work to, say, the cooperation on a

pair of graphs, or on hyper graph ([34]).

Supporting Information
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probability for S_3.

(DOCX)
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