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Angiotensin-converting enzyme-2 (ACE2) receptor has been identified as the key
adhesion molecule for the transmission of the SARS-CoV-2. However, there is no
evidence that human genetic variation in ACE2 is singularly responsible for COVID-
19 susceptibility. Therefore, we performed an integrative multi-level characterization
of genes that interact with ACE2 (ACE2-gene network) for their statistically enriched
biological properties in the context of COVID-19. The phenome-wide association
of 51 genes including ACE2 with 4,756 traits categorized into 26 phenotype
categories, showed enrichment of immunological, respiratory, environmental, skeletal,
dermatological, and metabolic domains (p < 4e-4). Transcriptomic regulation of ACE2-
gene network was enriched for tissue-specificity in kidney, small intestine, and colon
(p < 4.7e-4). Leveraging the drug-gene interaction database we identified 47 drugs,
including dexamethasone and spironolactone, among others. Considering genetic
variants within ± 10 kb of ACE2-network genes we identified miRNAs whose binding
sites may be altered as a consequence of genetic variation. The identified miRNAs
revealed statistical over-representation of inflammation, aging, diabetes, and heart
conditions. The genetic variant associations in RORA, SLC12A6, and SLC6A19 genes
were observed in genome-wide association study (GWAS) of COVID-19 susceptibility.
We also report the GWAS-identified variant in 3p21.31 locus, serves as trans-QTL for
RORA and RORC genes. Overall, functional characterization of ACE2-gene network
highlights several potential mechanisms in COVID-19 susceptibility. The data can also
be accessed at https://gpwhiz.github.io/ACE2Netlas/.
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INTRODUCTION

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)
is the causative agent responsible for recent global spread of
COVID-19 (coronavirus disease 2019) (Wu et al., 2020; Zhou
et al., 2020). Millions of people have been infected with the
virus, which caused global lockdowns and heavily restricted
interpersonal contact. These measures were taken to reduce viral
spread through respiratory droplet exchange between persons.

SARS-CoV-2 is capable of entering the host cells via ACE2
(angiotensin converting enzyme 2) (Walls et al., 2020; Mercurio
et al., 2021). ACE2 is found on many different cell types,
which normally helps regulate blood pressure and inflammation
through cleavage of angiotensin II (ANG II) (Hamming et al.,
2007). The virus occupies cell-surface of ACE2 leading to
accumulation of angiotensin (ANGII), inflammation, and cell
death (Walls et al., 2020). The interactions between the
spike protein and ACE2 trigger pre-/post-fusion conformational
changes at the spike protein, following spike cleavage in two
main domains. The spike N-terminal domain forms a stable
protein-protein complex with ACE2, whereas the C-terminal
domain, namely the spike post-fusion protein, favors virus/host-
cells membrane fusion (Mercurio et al., 2021). In the lungs,
SARS-CoV-2 mediated ANGII accumulation leads to alveolar cell
death and a reduction in oxygen uptake (Wang et al., 2020).

Although ACE2 is the cellular entry point, there is little
evidence that genetic variation in ACE2 is singularly responsible
for COVID-19 susceptibility (Ellinghaus et al., 2020; Pairo-
Castineira et al., 2020; Shelton et al., 2020). Due to the functional
role of ACE2 in SARS-CoV-2 infection, we hypothesize that
genes interacting with ACE2 activity are enriched for molecular
pathways relevant for COVID-19 susceptibility. Accordingly,
we employed a top-down approach to analyze tissue-specific
transcriptomic regulation, drug-gene interactions, and variant
prioritization using genetic variants within the ACE2 gene-gene
connectome and protein-protein interaction networks. With this
approach we identified several biological processes and functional
effects of ACE2-gene network relevant for the vast symptoms
observed following SARS-CoV-2 infection.

RESULTS

A study overview is presented in Supplementary Figure 1.

The ACE2 Gene Connectome
A total of 60 genes were identified from six network databases
that interact with ACE2 (Supplementary Table 1).

Tissue-Specific Transcriptomic
Regulation
The differential expression data of 54 tissues (GTEx-v8) was used
to identify the tissue specificity of the ACE2 network genes. The
ACE2 network genes were enriched for upregulated expression
in small intestine (p = 1.07 × 10−16), colon (p = 7.60 × 10−13),
kidney (p = 1.93 × 10−8), and liver (p = 4.63 × 10−4) (Figure 1
and Supplementary Table 2). No tissue-specific enrichment was
observed for down-regulated expression.

Gene Expression of ACE2-Interacting
genes in Upper Respiratory Tissue for
SARS-CoV-2 and Other Viruses
Using transcriptomic data related to acute respiratory illnesses for
COVID-19 patients (N = 93), other viral (N = 41), or non-viral
(N = 100) in the upper respiratory tract tissue (Mick et al., 2020),
we found 35 of the 61 ACE2-interacting genes. Of the 35 genes,
we found 19 genes that were reported as significant (Benjamini–
Hochberg adjusted p-value < 0.05) for any of three comparisons,
SARS-CoV-2 vs. no-virus, SARS-CoV-2 vs. other-virus, other-
virus vs. no-virus (Supplementary Table 3). For the SARS-CoV-2
vs. no-virus, four of the ACE2-interacting genes were significant
(ACE2 logFC = 1.25; CALM2 logFC = 0.36; PRCP logFC = –0.33;
RORB logFC = 0.83). For differential gene expression between
SARS-CoV-2 vs. other-virus and other-virus vs. no-virus, there
were 16 and 11 genes, respectively, that were significant.

Gene-Drug Interaction and
Over-Represented Biological Functions
To identify known drugs that interact with the ACE2-gene
set, we investigated the drug-gene interaction database (DGIdb)
(Griffith et al., 2013). Out of 61 genes, 29 had information about
their drug-gene interaction in DGIdb, resulting in 238 unique
drug-gene observations (Supplementary Table 4). Some of the
notable drugs observed via this approach were spironolactone,
dexamethasone, metformin, and hydrocortisone. To understand
the role of these drugs in affecting biological processes, we
performed drug-set enrichment analysis. DSEA (Napolitano
et al., 2016) found gene-ontology mapping for 47 drugs and
tested against REACTOME gene ontology database. Although
the results did not survive Bonferroni correction, nominally
significant enrichments were observed for platelet sensitization
by low-density lipoprotein cholesterol (p = 0.003), IL-7 signaling
(p = 0.004), glycerophospholipid biosynthesis (p = 0.005), and
viral messenger RNA synthesis (p = 0.011) (Figure 2 and
Supplementary Table 5).

Over-Representation of Phenotypic
Domains Within ACE2 Gene Network
To identify the phenotypes/traits associated with the ACE2-
genes, we performed a phenome-wide association study
(PheWAS). The GWASAtlas (Watanabe et al., 2019) contains
4756 traits categorized into 26 phenotype domains. We found
3983 phenotype associations for 51/61 genes, of which 43
genes with 476/3983 phenotypes were significant (p < 1e-5)
(Supplementary Figures 2–52 and Supplementary Table 6).
Most significant phenotypes were observed for SLC44A4 with
rheumatoid arthritis (p = 1.51 × 10−105) and white blood
cell (p = 6.16 × 10−105). Significant phenotypes observed
across several genes included body mass index, anthropometric
traits, kidney function phenotypes—glomerular filtration rate,
renin-angiotensin system, and lung capacity indices, i.e., FEV
and FVC. The phenotype domains were tested for enrichment
of significant traits vs. non-significant traits (Supplementary
Table 7). Six domains were significant: “Immunological”
(p = 7.62 × 10−25), “Respiratory” (p = 1.30 × 10−8),
“Skeletal” (2.94 × 10−8), “Dermatological” (p = 7.91 × 10−8),
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FIGURE 1 | (A) Tissues enriched based on ACE2-network gene expression from GTEx database. The genes from the ACE2-network show over-representation of
tissues (x-axis) and –log10 p-value (y-axis). The red bars are significant enrichments. (DEG—Differentially expressed genes). (B) The network of genes with tissue
specific expression of overrepresented tissues, pink edges represent upregulation and blue edges represent downregulation. The weight of the edges corresponds
to expression values (average transcript per million; TPM).

“Environmental” (p = 2.21 × 10−7), and “Metabolic”
(4.33 × 10−4) (Supplementary Table 8). SLC44A4 had the
highest number of associated traits across the significant

domains (ntotal = 173) followed by APOA1 had highest number
of traits associations, mostly metabolic traits such as triglycerides,
cholesterol, lipid measurements and blood cell measurements,
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FIGURE 2 | Drug-set enrichment analysis. LEFT: The similarity of drugs based on pathways identified. RIGHT: Biological Processes identified based on drugs that
interact with genes from the ACE2-network.

i.e., platelet count and mean corpuscle volume (ntotal = 100;
metabolic = 71 traits) (Figure 3). SLC44A4, APOA1, and RORA
showed associations across all six enriched domains.

Characterization of SNPs
To identify the regulatory role of genetic variations for the
ACE2-genes, we report their global allele frequency, functional
consequence using pathogenic regulatory score, and disrupting
miRNA sites. We extracted all 957,222 SNPs in the ACE2-
network and annotated for allele frequency (Supplementary
File 3), nearby genes and coordinates (Supplementary File 4),
Combined Annotation Dependent Depletion (CADD) (Rentzsch
et al., 2019) and DeepSEA (Zhou and Troyanskaya, 2015)
scores. There were 98,529 SNPs with CADD score > 10,
which corresponds to the top 10% pathogenic variants across
the human genome (Supplementary File 5). To identify their
regulatory consequences, variants were annotated with DeepSEA
which provides functional probability of the SNPs in serving
as gene expression, disease and chromatin regulating variants.
There were 12,095 SNPs within the ACE2-gene network
which had > 50% functional probability (DeepSEA functional
score > 0.5) (Supplementary File 6). The miRNAs altered

by the SNPs were analyzed for over-represented miRNA-
family, biological functions, and diseases considering false
discovery rate multiple testing correction (FDR p < 0.05).
There were 4 miRNA clusters that were enriched, miR-302b,
miR-181d (p = 0.0079), miR-17, and 106a (p = 0.00298).
We found 65 biological functions that were significant and
the top five significant biological processes were cell death
(p = 1.5 × 10−20), inflammation (p = 2.57 × 10−20), cell cycle
(p = 2.09 × 10−18), apoptosis (p = 4.15 × 10−18), and immune
response (p = 3.17 × 10−17) (Figure 4). We observed a total
of 152 significant diseases of which the most significant were
diabetes mellitus type 2 (p = 1.55 × 10−22), hepatitis c virus
infection (p = 5.56 × 10−21), atherosclerosis (p = 3.08 × 10−19),
heart failure (p = 4.22 × 10−19), and Alzheimer’s disease
(p = 1.35× 10−17) (Supplementary Table 8).

Neanderthal LA Introgression Within
ACE2 Network SNPs
Due to the Neanderthal introgression observed in 3p21
locus as risk to COVID-19 (Zeberg and Pääbo, 2020), we
compared mean probability of Neanderthal LA between the
ACE2-network SNP set (mean = 0.032) and 1,000 randomly
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FIGURE 3 | Domain distribution of PheWAS of ACE2-network genes. The ACE2 gene network associations are grouped based on domains (y-axis) and gene
names (x-axis). The size of the data points reflects number of phenotypes and corresponding 43 genes surviving multiple testing correction.

selected SNP sets with comparable genomic features (range
of Neanderthal LA means = 0.027–0.036). The ACE2-network
SNPs did not show evidence of Neanderthal LA introgression
significantly different from those expected by chance (p = 0.663)
(Supplementary Figure 55).

Functional Annotation of Network SNPs
Using the COVID-19 GWAS
We tested ACE2-network SNPs with respect to six COVID-19-
related phenotypes (Freeze 3) released by the COVID-19 Host
Genetics Initiative (Covid-19 Host Genetics Initiative (HGI),
2020). To identify independent variants, the variants were
pruned for linkage disequilibrium (LD < 0.1 within 250 kb
genomic size) and clumped for p-value < 0.01. Variants surviving
multiple testing were annotated for eQTLs, and mQTLs. Three
genes—RORA, SLC12A6, and SLC6A19—showed associations
with multiple COVID-19 phenotypes (Supplementary Tables 9–
14 and Supplementary Figures 56–61). RORA SNPs were
associated with COVID-19 positive status (rs17303202, p = 2.35e-
5), laboratory-confirmed positive COVID-19 status (rs4774377,
p = 8.25e-5), hospitalized COVID-19 (rs17303202, p = 2.76e-
05), and COVID-19 with very severe respiratory symptoms
(rs341419, p = 8.13e-4). The SNPs (rs12912196) in RORA gene
are also associated with gene expression (eQTL) of RORA
gene (p = 3.9e-5) and mQTL (cg00930615, p = 7.84e-7) in
ANXA2. SLC12A6 associations were observed with respect to

COVID-19 (rs145719616, p = 1.19e-4), hospitalized COVID-
19 (rs192235418, p = 4.42e-4), COVID-19 with very severe
respiratory (rs2705343, p = 1.86e-3), and. SLC6A19 SNPs were
associated with severe COVID-19 phenotype definitions, i.e.,
COVID-19 with very severe respiratory confirmed (rs76067074,
p = 2.65e-3) and hospitalized COVID-19 (rs76067074, p = 2.52e-
4). Furthermore, the GWAS of hospitalized COVID-19 identified
3p21.31 locus, wherein the genome-wide significant variant—
rs13325613 (chr3:46298373bp; p = 1.17e-08) is a trans-QTL for
genes RORA (p = 7.7e-7) and RORC (p = 1.3e-31).

We further created a unique comprehensive network by
prioritizing genes from the ACE2-network using transcriptomic
profile specific to SARS-CoV-2, over-represented domains
for traits associated with ACE2-network genes, and the
gene-drug targets that were overrepresented for biological
functions (Figure 5).

DISCUSSION

ACE2 is expressed in several tissues and plays a key role in
host-entry of SARS-CoV-2 (Hoffmann et al., 2020). However,
the genomic profile of ACE2 is limited in explaining the
vast symptomology observed for COVID-19. Understanding
ACE2 associated molecular networks presents several functional
insights between genetic targets based on gene expression,
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FIGURE 4 | Enrichment of biological functions based on miRNA:SNP annotation. Using miRNAs annotation, over-represented biological processes are shown on
y-axis and –log10 p-value on x-axis.

topology, and protein and signaling relationships (Huang et al.,
2018). Due to the well-characterized role of ACE2 in SARS-
CoV-2 infection, we generated novel information regarding

the molecular and phenotypic characteristics of ACE gene
network in the context of their potential involvement in
COVID-19 susceptibility. Our PheWAS-based analysis showed
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FIGURE 5 | Network of ACE2 interacting genes. The overview of ACE2-network genes (blue) as drug targets (green), phenotype domains (red), and gene expression
category (purple) wherein the genes are significant from the CZBioHub (see text for details). The pink edges represent upregulation and blue edges represent
downregulation, and yellow edges connect genes to overrepresented phenotype domains.

that genetic variation within ACE2 gene network is associated
with immunity (white blood cell, neutrophil count, lymphocyte
count), respiratory (FVC, asthma, DVT), and metabolic traits
(BMI, cholesterol, body measurements). This is in line with
known epidemiology of COVID-19 and its comorbidities (Ejaz
et al., 2020; Gardinassi et al., 2020).

The expression of ACE2-network genes was enriched for
regulatory mechanisms related to small intestine, colon, kidney,
and liver. It is hypothesized that furin, a serine protease present
in lungs but also highly expressed in small intestine, and is
involved in the cleavage of S-spike for attachment of the ACE2
receptor (Mönkemüller et al., 2020). Patients with kidney disease
have higher risk for COVID-19 severe symptoms (Ajaimy and
Melamed, 2020). Additionally, the inflammation and cytokine
storm from COVID-19 is observed to damage kidney tissues
(Gao et al., 2020). Lastly, modest increase in liver enzymes
has been associated with COVID-19, and returning to baseline
during the recovery phase (Pawlotsky, 2020).

Understanding the genes that interact with ACE2 receptor
has potential to understand drug-targets and molecular processes
that might play a role in susceptibility and treatment response
of COVID-19. The drug-gene interaction analysis within ACE2
network identified dexamethasone, reported to lower mortality in
COVID-19 cases requiring mechanical ventilation (RECOVERY
Collaborative Group et al., 2020). Drugs—spironolactone and
hydrocortisone target the androgen system. Androgen signaling
modulates ACE2 expression and elevated androgen levels
have been associated with severe symptomology of COVID-
19 (Samuel et al., 2020). Spironolactone is a diuretic and
alleviates respiratory symptoms by reducing fluid from the
lungs (Cadegiani et al., 2020). The use of spironolactone is

currently being tested for acute respiratory distress syndrome
in COVID-19 patients (Dumanlı et al., 2020). Hydrocortisone
is currently under clinical trials for treating COVID-19 related
hypoxia symptoms (Petersen et al., 2020). Among the other
compounds identified, metformin, a known drug for treating
diabetes, can also affect respiratory outcomes (Yen et al., 2020).
A recent study reported protective effects of metformin in
women with diabetes and obesity who were admitted with
COVID-19 diagnosis (Bramante et al., 2020). Lastly, melatonin
has been hypothesized to improve general immunity and
lower oxidative stress generated from SARS-CoV-2 infection
(Shneider et al., 2020).

The miRNA target sites altered by ACE2-network SNPs
identified miR-302b and miR-181d as over-represented miRNA
clusters. The downregulated expression of miR-302b has been
observed to reduce survival rates in chronic obstructive
pulmonary disease (COPD) patients (Keller et al., 2019). A meta-
analysis showed that COPD diagnosis increased susceptibility to
COVID-19 (Lippi and Henry, 2020). The miRNA-181 cluster
has been associated with regulation of TNF-alpha (Zhu et al.,
2017), T-cell aging (Ye et al., 2018) and emphysema (Osei
et al., 2015). miRNA-17 and 106 belong to same miRNA family,
miRNA-17 is upregulated in bronchoalveolar stem cells to lower
SARS-CoV replication (Mallick et al., 2009). An in silico study
of miRNA targets for SARS-CoV-2 genomic sequence found
miRNA-17 as one of the targets with experimental evidence
of its upregulation in H7N9 Influenza virus infection (Khan
M.A.A.K. et al., 2020). The top over-represented diseases in
miRNA-ACE2-network-SNPs were diabetes, hepatitis C viral
infection, heart failure and Alzheimer’s disease. A greater number
of diabetic individuals with COVID-19 have been reported to
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require hospitalization than non-diabetic individuals (Apicella
et al., 2020). Furthermore, SARS-CoV-2 infection contributes
in the development of ketosis in diabetic individuals resulting
in longer length of hospitalization stay (Li et al., 2020).
Triglyceride and glucose index was associated with severity of
COVID-19 (Ren et al., 2020). While there are limited studies
about hepatitis C in COVID-19 patients (Richardson et al.,
2020), heart failure was reported by multiple studies as being
associated with COVID-19 severity (Hanley et al., 2020; Yancy
and Fonarow, 2020). Alzheimer’s disease is another condition
associated with COVID-19 susceptibility (Chang et al., 2020),
including APOE4 carrier status with increased risk of severe
COVID-19 (Kuo et al., 2020).

In contrast to specific enrichment of Neanderthal LA
in a COVID-19 risk locus on chromosome 3 (Zeberg and
Pääbo, 2020), there is no evidence of increased Neanderthal
LA in the ACE2 network investigated here. This suggests
that, although some loci conferring risk for COVID-19
severity, such as the one identified on chromosome 3, may
have originated from Neanderthal admixture events, this
mechanism did not shape the genetic architecture of the
ACE2 network responsible for entry of SARS-CoV-2 into host
cellular machinery.

Lastly, among ACE2-network-SNPs, potential COVID-19 risk
alleles were observed in RORA gene with respect to multiple
COVID-19 phenotypes. RORA protein product is involved in
immune response, cancer and metabolism (Cook et al., 2015).
RORA plays a role in the activation of T helper cells during
lung inflammation by regulating tumor necrosis factor and
interleukins (Nejati Moharrami et al., 2018; Haim-Vilmovsky
et al., 2019), and was upregulated in cardiomyocytes infected
with SARS-CoV-2 (Hachim et al., 2020). The hypothesis-free
approach of genome-wide association of hospitalized COVID-
19 vs. the population highlighted SLC6A20 with genome-wide
significance on chromosome 3 locus. The SLC12 (SLC12A6) class
is responsible for transport of inorganic ions such as sodium and
chloride while the SLC6 class (SLC6A19, identified via network
approach and SLC6A20, identified via genome-wide approach)
are responsible for transport of amino acids such as glutamate
and glycine which are important for neurotransmitter activity
(Lin et al., 2015). SLC6A19 (among other SLC-class genes) serves
similar function to SLC6A20, both are expressed in the intestinal
tissue and contingent upon ACE2 expression (Vuille-Dit-Bille
et al., 2020). Multiple studies report more than 10% of the
COVID-19 confirmed patients exhibit gastrointestinal symptoms
(Jin et al., 2020; Khan M. et al., 2020; Lian et al., 2020).

Although we provided a wide range of information
highlighting the molecular and phenotypic characteristics
of ACE2 gene network and their putative implications with
COVID-19 risk, the findings reported have to be considered
exploratory. We used appropriate computational methods and
statistical approaches to generate reliable evidence useful to
open new directions in COVID-19 research. We also highlighted
when the results reported did not survive stringent multiple
testing correction. This limitation is particularly relevant with
respect to the ACE2 network genetic associations. Due to the
limited statistical power of the genome-wide data available for

the Freeze 3 data from the COVID-19 Host Genetics Initiative,
none of the risk alleles identified as functionally relevant survive
genome-wide testing correction. Future work from the HGI
will potentially lead to more risk loci being identified. Further
analyses will be needed to validate our current findings.

CONCLUSION

ACE2 is one of the few molecular targets recognized to play
a key role in the COVID-19 pathogenesis. We conducted
a comprehensive analysis leveraging multiple resources (e.g.,
drug-gene interactions, tissue-specific transcriptomic profile,
and phenome-wide and genome-wide datasets) to expand our
understanding of the genomic characteristics of the host ACE2
gene network. Overall, our findings incorporate multi-tiered
epigenomic, transcriptomic, and genomics of the known ACE2-
network which highlight the potential mechanisms linking
ACE2 systems biology to COVID-19 susceptibility and its
possible comorbidities.

METHODS

Gene Network Collection
Information regarding ACE2 gene network was mined from
GeneMANIA (Franz et al., 2018), Stringdb (Szklarczyk et al.,
2017), Agile Protein Interactomes Database (APID) (Prieto and
De Las Rivas, 2006), GeneNetwork (Deelen et al., 2019), Biogrid
(Oughtred et al., 2019), and FunctionalNet (Lee et al., 2011)
for Homo sapiens organism, last searched on June 27, 2020.
Since all resources use different algorithms, using ACE2 as
query gene, immediate genes connections that were available
in each databank were retrieved with their default settings.
Removing overlapping genes across the six databases, resulted in
61 unique genes (60 genes plus ACE2) (Supplementary Figure 1
and Supplementary Table 1). Specifically, GeneMANIA uses
automatically selected weighting method for 20 max resultant
genes with 10 max resultant attributes. In Stringdb, the ACE2
gene query with medium confidence interaction score, and
including all active interaction source except text mining.
For APID, single query of ACE2 generated a network of 11
interacting genes. In GeneNetwork, we used ACE2 as query
genes and selected co-regulated genes with evidence of p < 2e-
12. In Biogrid, we used ACE2 in Homo Sapiens as query, and
used the network information. In FunctionalNet, the ACE2
was searched using its ENTREZ id (59272) and selected the
genelist that interact with ACE2. We focused on the genes
that interact immediately with ACE2 because including more
genes that interact through intermediate genes will result in
large volume data and difficult to interpret. Several genes were
identified by multiple sources listed in Supplementary Table 1,
and a total of 61 genes including ACE2 were investigated
for their characteristics. The genomic coordinates for the
genes were annotated using biomart (Durinck et al., 2009),
ensemble GRCh37/hg19. The analysis and visualization were
performed in R 3.6.

Frontiers in Genetics | www.frontiersin.org 8 August 2021 | Volume 12 | Article 698033

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-698033 August 23, 2021 Time: 14:57 # 9

Pathak et al. Characterization of ACE2-Gene Network

Tissue-Specific Transcriptomic
Regulation
The tissue specificity was tested for 60 ACE2-interacting genes
in FUMA (Watanabe et al., 2017). The input genes were tested
for pre-calculated tissue-specific differentially expressed genes
from the GTEx v8 (Aguet et al., 2019). We also considered the
t-statistic sign for up and down-regulated genes against protein
coding genes as background. Enrichments were performed using
hypergeometric tests and significant enrichments were defined
according to Bonferroni corrected p-value < 0.05.

Gene Expression of ACE2-Interacting
Genes in Upper Respiratory Tissue for
SARS-CoV-2 and Other Viruses
To understand which genes from the ACE2-interacting genes
are differentially expressed in SARS-CoV-2 and other viruses,
we extracted these genes from transcriptomic study of acute
respiratory illnesses for COVID-19 patients (N = 93), other
viral (N = 41) or non-viral (N = 100) in the upper respiratory
tract tissue (Mick et al., 2020). Their data was extracted
from https://github.com/czbiohub/covid19-transcriptomics-
pathogenesis-diagnostics-results. We used ENSEMBL identifiers
of 61 ACE2 interacting genes and were able to extract 35/61
genes. The study performed three gene expression comparisons,
SARS-CoV-2 vs. no-virus, SARS-CoV-2 vs. other-virus, other-
virus vs. no-virus, and genes with Benjamin-Hochberg
adjusted p-value < 0.05 were assigned as significant to the
respective comparison.

Phenome-Wide Analysis of ACE2 Gene
Network
A phenome-wide association study (PheWAS) was performed
for 51 of 61 genes that were present in GWASAtlas (Watanabe
et al., 2019) using all traits available per gene. Statistical
significance was determined by applying a Bonferroni multiple-
testing correction accounting for the number of GWAS traits
(4,765 traits) available in the GWASAtlas (p < 1.05 × 10−5).
Each trait was grouped into a domain (Supplementary Table 5)
which was tested for enrichment using one-sided Fisher’s exact
test for high proportion of significant traits vs. all others tested.
A significant domain enrichment was defined considering a
Bonferroni-corrected threshold accounting for the number of
domains tested (p-value < 0.0019; 0.05/26).

Gene-Drug Interactions and Biological
Functions
Information on drugs that interact with ACE2 network genes
were extracted from The Drug-Gene Interaction database
(DGIdb) (Griffith et al., 2013) followed by drug-set enrichment
for over represented biological functions using DSEA (Drug-Set
Enrichment Analysis) (Napolitano et al., 2016).

Characterization of SNPs
Single nucleotide polymorphism (SNPs) were extracted based on
the genomic coordinates of the genes (± 10 kb) for GrCh37;

dbSNP153 from the UCSC browser (Haeussler et al., 2019)
using bigbed utilities (Karolchik et al., 2004), and referred to
as “ACE2-network SNPs.” ACE2-network SNPs were annotated
for global allele frequency, Combined Annotation-Dependent
Depletion (CADD) score (Rentzsch et al., 2019), deep learning
based algorithm framework (DeepSEA) (Zhou and Troyanskaya,
2015), and target miRNAs using SNPnexus (Dayem Ullah et al.,
2018). DeepSEA is a deep learning-based algorithmic framework
for predicting the chromatin effects of sequence alterations with
single nucleotide sensitivity (Zhou and Troyanskaya, 2015). The
identified miRNAs were tested for over-represented miRNA
clusters, functions, and diseases using TAM 2.0 (Li et al., 2018).

Neanderthal Introgression
Motivated by evidence of a chromosome 3 COVID-19 risk
locus enriched of Neanderthal local ancestry (LA) (Zeberg and
Pääbo, 2020), we compared the distribution of probability of
Neanderthal LA in our COVID-19 ACE2-network SNP set and
1,000 randomly sampled SNP sets comprised on SNPs across
the genome with comparable genomic features. ACE2-network
SNPs were mapped using previously defined Neanderthal LA
data (Sankararaman et al., 2014; Durvasula and Sankararaman,
2019). A total of 6,822 LD-independent pairwise SNPs (r2 = 0.1
and p = 0.1 in 250 kb window size) were used as standard
input for SNPsnap (Pers et al., 2015). In SNPsnap, 1,249/6,822
independent ACE2 network SNPs could be matched based on
the following genomic features relative to the input SNP list:
minor allele frequency within 2%, gene density within 50%,
nearest gene within 50%, and number of linkage disequilibrium
groups within 50%. SNPsnap was instructed to exclude the ACE2-
network SNP list from the pool of eligible feature-matched SNPs.
Non-parametric Wilcoxon rank sum tests were used to compare
the Neanderthal LA of our ACE2 network SNP list to that of
all 1,000 random SNP sets and multiple testing correction was
applied to adjust for a false discovery rate of 5%.

Association Statistics of ACE2 Network
SNPs From the COVID-19 Host Genetics
Initiative (HGI)
The ACE2-network SNPs were extracted from association
statistics released by the COVID-19 HGI (COVID-19 Host
Genetics Initiative [HGI], 2020) for six phenotypes describing
COVID-19 susceptibility. These phenotypes were A2_V2 [very
severe respiratory confirmed COVID-19 cases (N = 536) vs.
population (N = 329391)], B1_V2 [hospitalized COVID-19 cases
(N = 928) vs. not hospitalized COVID-19 cases (N = 2028)],
B2_V2 [hospitalized COVID-19 cases (N = 3199) vs. population
(N = 897488)], C1_V2 [COVID-19 cases (N = 3523) vs. lab/self-
reported negative (N = 36634)], C2_V2 [COVID-19 cases
(N = 6696) vs. population (N = 1073072)], and D1_V2 [predicted
COVID-19 cases from self-reported symptoms (N = 1865) vs.
predicted or self-reported non-COVID-19 cases (N = 29174)].
The SNPs of the ACE2 network were extracted and pruned for
LD and p-value using plink 1.9. The multiple testing correction
was applied using Bonferroni p-value < 0.05. These significant
SNPs were annotated further for pathogenicity using Combined
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Annotation Dependent Depletion (CADD) score and their role as
quantitative trait loci (QTL) for gene expression using GTEx, and
methylation using QTLbase (Zheng et al., 2020). The trans-eQTL
relationship of GWAS-reported locus-3p21.31 were identified
from eQTLgen (Võsa et al., 2018).
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