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Abstract: Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is
a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose
most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor
cells leading to apoptosis and further impairment of neuronal development, causing microcephaly,
lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are
involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental
role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex
and interact with complementary mRNA target sequences to further post-transcriptional repression.
In this context, little is known about their participation in the pathogenesis of viral infections. In this
review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
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1. Introduction

Zika virus (ZIKV) is an arbovirus of the Flaviviridae family first isolated in 1947 from
sentinel Rhesus sp. monkeys and Aedes africanus mosquitoes at the Ziika forest in Uganda,
Africa [1]. ZIKV has a symmetrical structure, enveloped icosahedral nucleocapsid, and
a 10 Kb (+) single-stranded RNA genome that encodes three structural proteins: Capsid
(C), Pre-membrane (Pr-M), and Envelope (Env), and seven non-structural proteins: NS1,
NS2a-2b, NS3, NS4a-4b and NS5 [2,3].

Previously, the potential for a viral outbreak was neglected, as it caused rare and mild
infections in humans in Africa and Asia [4]. Later, outbreaks were identified elsewhere,
such as Yap Island in Micronesia [5], French Polynesia in 2014 [6], Tahiti in 2013 [7], and
New Caledonia in 2014 [8]. The main signs and symptoms known at the time included
fever (37.8-39.5 °C), headaches, arthralgia of the hands and feet, conjunctivitis, and skin
rash [5].

As of the first half of 2015, a generalized ZIKV epidemic occurred in South and Central
America, with the northeast of Brazil being the most affected region. It is known that ZIKV
causes Guillain-Barré Syndrome in adults [9] and congenital ZIKV syndrome (CZS) in
fetuses infected during pregnancy, leading to severe neurological complications, including
microcephaly, lissencephaly, ventriculomegaly, and cortical calcifications, associated or
not with arthrogryposis, intrauterine growth restriction (IUGR), uveitis and retinal degen-
eration [10-12]. Unfortunately, most of these neurological modifications are irreversible
and occurring in 6-12% of infected pregnant women [13,14]. Furthermore, neurological
complications were also demonstrated in babies born without microcephaly [15-17].

Genetic differences, mainly related to antiviral immune response and neurodevel-
opment may directly influence susceptibility to infection [18,19]. Many of these genes
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code for proteins involved in signaling pathways, as adaptor proteins and transcription
factors. Importantly, these molecules may be a target of post-transcriptional or post-
translational regulation when microRNAs (miRNAs) may have a fundamental role. The
regulatory capacity of miRINAs has been described over the years in several animals and
plants species [20]. Their participation has been studied in different diseases, such as
cancer [21-23], diabetes [24,25], multiple sclerosis [26-28], and viral infections, including
infections by neurotropic flaviviruses [29,30].

Although the Brazilian Ministry of Health declared the end of the Public Health Emer-
gency of National Importance (ESPIN) caused by ZIKV in 2017, neurological impairment
leads to serious consequences for children, making them dependent and hindering their
development and insertion into society. Therefore, understanding molecular mechanisms
of susceptibility provides important knowledge for the development of vaccines or ther-
apeutic interventions. In this review, we discuss how miRNAs may regulate important
mRNAs to influence the outcome of ZIKV infection.

2. ZIKV and Neurological Impairment

ZIKV has been proven to cause neurological impairment by several studies using
human samples and different experimental models. The first major evidence that ZIKV
causes microcephaly came in 2015 [31]. The post-mortem analysis of an infected fetus indi-
cated IUGR, numerous cortical and subcortical calcifications, moderate ventriculomegaly,
and 26 cm brain perimeter, indicating microcephaly (control < 32 cm £ SD), associated
with the presence of ZIKV RNA in the brain, suggesting a neurotropism. In addition, the
histological and cellular analysis showed astrogliosis in the subarachnoid space related
to viral particles present in neurons. Following studies corroborated these findings and
demonstrated the presence of ZIKV in the amniotic fluid [32], placenta [33], cerebrospinal
fluid (CSF) [34], and retinas [35] of babies with microcephaly.

Three studies were pioneers demonstrating susceptibility to infection and neurolog-
ical damage [36-38]. One study used pregnant females, which comprised of interferon
alpha/beta receptor subunit 1 (IFNAR1)~/~ or wild type (WT) mice treated with IFNAR1
receptor blocking antibodies (clone MAR1-5A3). The mice were infected subcutaneously
with 103 focus forming units (FFU) at embryonic day (E) E6.5 and E7.5 and pups were
analyzed at E13.5 and E15.5 showing fetal resorption, IUGR, pallor, presence of necrotic tis-
sue, and ZIKV in pups’ placenta and brain tissue analyses [36]. Another group performed
ZIKV infection via cerebroventricular route at E13.5 and analyzes at E16.5, which showed
that ZIKV infected ventricular and subventricular zone where most neuronal precursors
cells (NPCs) are found [37]. A third study was published by our group [38], demonstrating
that WT pups born from pregnant Swiss James Lambert (SJL) infected mice presented
IUGR characterized by reduced weight, size, length, height, and biparietal measurement.
Histological analysis showed a decrease in the cerebral cortex, with nuclear vacuolization,
chromatin marginalization in neurons from the cortex, thalamus, and hypothalamus, which
was not observed in the cerebellum and hippocampus.

Monkey models have further ratified the neurological damage caused by ZIKV. Rhesus
and adult cynomolgus monkeys were susceptible to infection, as viral RNA was found in
plasma, saliva, CSE, brain, female and male reproductive tracts, semen, and transiently in
vaginal secretions [39]. It has also been shown that non-pregnant and pregnant Rhesus
monkeys remain viremic for 21 and up to 57 days after infection [40]. Also, the virus was
persistent in the CNS and lymph nodes due to positive regulation of mammalian target of
rapamycin (nTOR), pro-inflammatory and anti-apoptotic signaling pathways, as well as
negative regulation of extracellular matrix signaling pathways [41].

Vertical transmission-related studies showed that intravenous or intra-amniotic in-
fection during the second trimester-pregnant monkeys leads to high levels of ZIKV in
placental and fetal tissues, especially in the brain, which exhibited calcifications and re-
duced numbers of NPCs [42]. Infected monkeys at the beginning of pregnancy exhibited
more complex neuropathies, such as cerebral microcalcifications, hemorrhage, necrosis,
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vasculitis, gliosis, and NPCs apoptosis, and also magnetic resonance analyses indicated
damage to the deep gray substance [43]. In addition, abnormal oxygen transport within the
placenta has been observed as a result of uterine vasculitis and placental villous damage
caused by ZIKV [44].

These results clearly showed that ZIKV crosses the placenta and has a tropism for the
fetal brain, leading to important tissue damage. It has been shown that ZIKV infects NPCs
and neurons, both in vitro and in vivo, inducing cell death by autophagy and apoptosis, as
evidenced by active caspase-3 expression analysis. In addition, the expression profile of 88
cell death-related genes showed that ZIKV positively regulates genes such as Bmf, Irgm1,
Bcl2, Htt, Casp6, and Abl1, and negatively Gadd45a, Tnfrsf11b, Fasl, Atg12, BcI2111, and Dffa
in the brain of SJL neonates born from ZIKV infected pregnant mice compared to uninfected
mothers [38]. Moreover, a reduction in the cortical layer was observed due to the death
of NPCs TUJ*, SOX-2* and TBR-1*, specific markers of NPCs that originate neurons and
glial cells, evidenced by in vitro studies using cerebral organoids or mini-brains [38,45,46].

Although NPCs and neurons are the most affected cells by ZIKV infection, astrocytes
deserve attention in their participation during its pathogenesis [47]. Even though little is
known about the role of infected glial cells in CZS development, it has been shown that
astrocytes can be infected by the virus and may play a fundamental role in the pathogenesis
of microcephaly [48].

Reactive astrocytes have been identified in fetuses at 32 weeks of gestation in the
brain regions affected by the virus [31]. The impaired functioning of astrocytes contributes
significantly during microcephaly development, as it affects cortex growth due to impair-
ment in neurogenesis and gangliogenesis [49,50]. Astrocytes infected by ZIKV present
dysregulation in protein translation, glucose metabolism, synaptic control as well as in cell
migration and differentiation [47,51,52]. Moreover, it has been shown that astrocytes are
more susceptible to infection by ZIKV than neurons since they tolerate greater viral loads,
suffer less apoptosis, and, consequently, allow a greater viral replication [53].

3. MicroRNAs

miRNAs are small non-coding and regulatory single-stranded RNA molecules that
perform post-transcriptional regulation of mRNAs sequences by binding to 3’or 5" untrans-
lated regions (UTR) that destabilize and block translation of encoding proteins [54]. It is
known that more than 60% of human genes that encode proteins have at least one con-
served miRNA binding site, and several non-conserved sites [55,56]. Therefore, miRNAs
expression must be well controlled, since their dysregulation is associated with pathologies,
including those associated with neurological development [57].

miRNAs are transcribed and processed (Figure 1) from long primary chains (pri-
miRNA) with more than a thousand nucleotides [54]. They are processed in the nucleus by
a type Il endoribonuclease (Drosha) and its cofactor DiGeorge Syndrome Critical Region
Gene (DGRCS8) generating the shorter precursor miRNA (pre-miRNA) with approximately
65 nucleotides long [58,59]. Following, the pre-miRNA is transferred to the cytosol by
exportin 5 protein [60-62]. In the cytosol, pre-miRNA is processed by RNase III (Dicer)
and RNA binding cofactor TAR RNA-Binding Protein (TRBP) in a short double-stranded
miRNA with 20-24 base pairs, known as miRNA duplex [63]. The Argonaute (AGO2) is
further recruited [64] forming the miRNNA-containing RNA-induced silencing complex
(miRISC) [65], where the mature miRNA (guide strand) [63,66] pairs with several comple-
mentary mRNA sequences to interfering in encoded proteins production [67].
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Figure 1. Overview of miRNA biogenesis. Biogenesis consists of the miRNA gene transcription and maturation that
involves the following steps: Pri-miRNA processing by DROSHA; Processing of pre-miRNA by DICER; Other modifications
to produce mature miRNA and RISC complex formation to further mature miRNAs regulate mRNA and consequently
interfere in protein production. Figure created by authors using BioRender.com.

The mechanisms of miRNAs action are divided into (1) target transcript destabi-
lization, (2) translation inhibition, and (3) transcriptional silencing. Destabilization is
represented by a) deadenylation followed by mRNA 5 CAP removal, once AGO2 is associ-
ated with GW182, which recruits CCR4-NOT complex and promotes the removal of poly-A
tail, leading to mRNA destabilization and further mRNA degradation by exoribonucle-
ases [68]. The translation inhibition is represented by (a) AGO competition for 5’CAP,
once miRNAs lead AGO2 to mRNA, which competes for the 5’CAP, preventing mRNA
and ribosomes association [69,70]; (b) blocking translation initiation, preventing poly-A
tail interaction with poly-A binding protein C1 (PABPC1) and 5'CAP interaction with
Eukaryotic Translation Initiation Factor 4E/4G (eID4E/elF4G) [71]; and (c) dissociation of
ribosomes, in which some miRNAs lead to early disassembly of ribosomes [72]. Finally,
miRNAs perform transcriptional silencing that involves RNA processing bodies (p-bodies)
that are cytoplasmic ribonucleoprotein aggregates [73]. miRNAs directly target mRNAs to
p-bodies, where they are temporarily and reversibly repressed or destabilized [74].

This provides evidence for the complex translational regulation performed by miR-
NAs, which are important in different scenarios as regulatory molecules for several biologi-
cal processes, making them biomarkers for detection and progression of diseases, as well
as a target for therapeutic intervention [75].

4. Neurodevelopment-Related miRNAs and ZIKV Infection

ZIKV leads to irreversible neurological damage and, in this context, the study of
molecules that interfere in the neurodevelopment becomes of great importance during
CZS development. miRNAs have also been studied during embryonic development.
Interestingly, Dicer deficient animals are not viable and suffer spontaneous abortion around
the seventh day of gestation. Currently, conditional mice are available, in which Dicer
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deletion is performed by Cre-lox recombination. Using this system, it was possible to
demonstrate that miRNAs are involved in neurodevelopment since dopaminergic neurons
without Dicer undergo progressive apoptosis [76]. In addition, Dicer deficient mice are not
able to generate viable embryonic stem cells (ESC) and maintain this population during
mouse development [76].

Conversely, studies are demonstrating the importance of miR-9 for brain develop-
ment [77], radial glia proliferation, and also neuronal and glial differentiation [78]. MiR-9
is highly conserved in all mammals, and, in rodents, it is specifically expressed in the brain,
mostly in NPCs during neuronal differentiation. MiR-9 KO mice have smaller brain hemi-
spheres and olfactory bulbs compared to WT animals, associated with decreased cerebral
cortex and ventriculomegaly, characteristics similar to microcephaly [79,80]. In addition, it
has been shown that cortex neuronal differentiation involves intermediate progenitor cells
specificity and their development is regulated by several miRNAs, including miR-9 [81,82].

There are several genes related to autosomal recessive microcephaly (MCPH-Microcephaly
Primary Hereditary). There are 12 MCPH loci (MCPH1-MCPH12) that have been mapped
and contain the following genes: Microcephalin, WDR62; CDK5RAP2; CASC5; ASPM; CENPJ;
STIL; CEP135; CEP152; ZNF335; PHC1, and CDKGé. It is believed that these genes lead to dis-
ease phenotype due to premature chromosomal condensation, damaged DNA, disturbed
microtubule dynamics, transcriptional control, and hidden centro-somatic mechanisms
that regulate the number of neurons produced by neuronal precursor cells [83,84].

Interestingly, host RNA-binding proteins interact with viral genome UTRs regulating
viral replication and translation [85]. An important regulator of NPC development, the
RNA-binding protein Musashi-1 (MSI1), interacts with the ZIKV genome and unexpectedly
improves viral replication [86]. It was also shown that during neurodevelopment, Musashi-
1 interacts with MCPH-1 3’ UTR to regulate its expression to normal brain functioning.
Interestingly, during ZIKV infection, Musashi-1 binds to the ZIKV 3'UTR genome to
enable viral replication, and consequently, leads to impaired neurodevelopment. Recently,
through computational analysis, it has been hypothesized that the ZIKV genome activates
six host miRNAs that result in modifications based on neuronal genetic pathways that
share significant mutual homologies with the 12 MCHP genes [83].

The importance of miRNAs during ZIKV infection has been described by several
groups. A Brazilian group, using human neurospheres, showed that ZIKV replication stops
the proliferation and differentiation of neuronal cells [87]. In addition, ZIKV upregulates a
target network related to viral replication and downregulates molecules associated with
the cell cycle and neuronal differentiation. Still in this work, it was demonstrated that
ZIKV infection modulates pathways involved in RNA processing (DDX6, PCBP2), miRNAs
biogenesis (DGCRS8, XPO1), regulation of translation initiation (elF3c), and proteins, such
as splicing factors (SFPQ, PRP8), ribosomal proteins (RPS6KA5, RPL28), proteins related to
innate immune response (TLR4) and neuronal development (NEUROD1, SATB2).

Interestingly, ZIKV capsid directly interacts with Dicer to improve infection. Using a
capsid mutant (H41R) it was demonstrated that ZIKV loses the ability to inhibit neurogen-
esis and corticogenesis. Therefore, the interaction between ZIKV H41R capsid and Dicer is
necessary for the pathogenesis and the characteristic lesions [88].

Moreover, the ZIKV envelope (E) modulates the expression of the host’s miRNAs
and, using bioinformatics tools, it was shown that the pathways involved were related
to cell cycle and development processes [89]. ZIKV E protein causes NSCs quiescence by
increasing the number of cells in the G0/G1 cell cycle phase. Also, the E protein induces
NSCs apoptosis, further impairing neuronal differentiation and migration.

Recently, post-mortem analysis of brain tissue from babies born with severe CZS
showed an upregulation of miR-145 and miR-148a, and in silico analysis indicated that
their target genes are involved in neurodevelopment pathways, such as glial differentiation,
neurogenesis, and cerebral cortex development [90].

In response to ZIKV infection, NPCs release extracellular vesicles containing miRNAs,
such as miR-4792, that modulate genes related to oxidative stress and neurodevelopmental
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processes [91]. Through RNA-sequencing, miR-sequencing, and AGO-iCLIP-sequencing, it
was shown that ZIKV increases miR-124 expression acting over TFRC mRNA to further
cell proliferation attenuation [92]. In primary murine neurons, the Puerto Rico ZIKV strain
(PRVABC59) modulates miR-29a, miR-124, miR-155, and miR-203 which have a role in
increasing antiviral immune response and brain damage [93]. In human astrocytes, ZIKV
infection increased miR-17-5p, miR-30e-3p, and miR-30e-5p expression, regulating genes
involved in cell cycle and immune response [94] (Table 1).

In addition, ZIKV genome sequencing also expresses 47 miRNAs that target pathways
involved in cell signaling regulation, neurological functions, and fetal development assist-
ing in the establishment of microcephaly caused by ZIKV [95]. However, ZIKV negatively
regulates essential miRNAs during CNS development, neuronal and glial differentiation,
and positively regulates miRNAs that degrade essential genes in the same processes for the
normal functioning of the organism. This confirms the harmful role of ZIKV in the CNS.
These findings highlight the importance of miRNAs during ZIKV infection, correlating it
with the pathogenesis of microcephaly caused by the virus.

Table 1. miRNAs and neurodevelopment.

miRNA Virus Cell Source
TmiR—9 [77-80] TNeurodevelopment Brain, mostly human NPC
TmiR—145; miR-148 [90] *Neurodevelopment Human brain tissue
?miR—4792 [91] *Neurodevelopment Human NPCs
. P 1 3
TmiR—29; miR-124; miR-155; miR-203 [92,93] TBram damage Timary murine Neurons

5. Antiviral Immune Response and miRNA

There are many studies emphasizing miRNAs importance during flavivirus infection.
In some cases, miRNAs are found upregulated by infection leading to immune response
inhibition [96] (Table 2). For example, the Japanese encephalitis virus (JEV), which in-
fects neurons and microglia cells causing neuronal damage and inflammation, modulates
miRNAs expression that downregulates genes involved in cellular immune response and
antiviral genes [96]. The JEV infection increases miR-146a expression, which downregulates
TRAF6, IRAK1, IRAK2, and STAT1 genes. In addition, miR-146a suppresses activation of
NF-kB and Jak-STAT pathway, resulting in negative regulation of ISGs (IFIT-1 and IFIT-2)
and facilitating viral replication [96]. Interestingly, it has been shown that NS3 from JEV
degrades miR-466d increasing viral replication [97]. Moreover, miRNAs assist viral replica-
tion directly, such as miR-21, which promotes DENYV replication in human liver carcinoma
cells [98].

Table 2. miRNAs that favors viral replication and decrease immune response.

miRNA Virus Immune Response Component

?miR—146 [96] ?]EV replication lTRAF6 ; IRAK1/2; STAT-1
NF-kB resulting a decreasing of IFIT1/2

*NS?) of JEV

miR-466d [97] ¢]EV replication

TmiR—Zl [98] ?DENV replication
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On the other hand, miRNA overexpression may be beneficial to the host during
flaviviruses infections, leading to decreased viral replication. For example, miR-155 up-
regulation in CHMES3 cells, a microglial cell line, results in a significant reduction of JEV
replication by decreasing NF-kB pathway genes and STAT-1, at the same time increases
microglial activation [99]. Other miRNAs favor antiviral immune responses, preventing
virus spreading, such as during JEV infection that upregulates miR-19b triggering Ring
Finger Protein 125 (RNF125) inhibition, a negative regulator of RIG-I signaling. Thus,
miR-19b increases inflammatory response, including type I IFNs production, and decreases
glial activation and neuronal damage [100] (Table 3).

Table 3. miRNAs that increase immune response.

miRNA Virus Immune Response Component

TmiR-155 [99] *]EV replication TNF-KB and STAT-1 pathway genes
Microglial activation

¢miR'19b [100] ¢]EV replication TRNF124 and consequently increase RIG-I signaling.
Type I IFN production

Interestingly, miRNAs are very promiscuous. The same miRNA modulates different
mRNAs from the same signaling pathway, while different miRNAs interfere in the same
mRNA. In this way, miRNAs assume ambiguous roles under different situations. Therefore,
some flaviviruses could use miRNAs to suppress the immune response and, consequently
favor its replication, while other flaviviruses lead to host miRNAs expression that will
favor the immune response against the virus.

In this context, it is known that ZIKV decreases the immune response, but so far, none
of the described mechanisms involved miRNAs [101-103]. Hence, it is plausible to think
that ZIKV modulates miRNAs that will modulate genes of the antiviral immune response.
This may either impact viral biology or the pathogenesis of the infection.

6. Concluding Remarks

In summary, we highlight miRNAs as potential regulators of biological processes in
face of viral infections, including ZIKV (Figure 2). Thus, they modulate essential pathways
for brain development, neurogenesis, apoptosis, autophagy, as well as inflammatory and
antiviral responses. Here, we showed many in silico studies describing modulated miRNAs
and their targets. However, there is still a lack of knowledge about specific miRNA targets
and their effects during ZIKV infection. Therefore, more in-depth research needs to be
carried out to further add to the knowledge of ZIKV infection and microcephaly caused by
vertical transmission, assisting in the development of future therapeutic interventions.
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Figure 2. MiRNAs post-transcription regulation. miRNAs control (A) brain development and different pathway involved
(B) in antiviral immune response, neurogenesis, cell death, and cell cycle in response to ZIKV and other flavivirus infections.
Figure created by authors using BioRender.com.
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