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Indigenous leafy green vegetable crops provide a promising nutritious alternative for East 
African agriculture under a changing climate; they are better able to cope with biotic and 
abiotic stresses than cosmopolitan vegetable crops. To verify our hypothesis that the 
associated microbiome is involved, we studied archaeal and bacterial communities of 
four locally popular leafy green crops in Uganda (Bidens pilosa, Solanum scabrum, 
Abelmoschus esculentus, and Gynandropsis gynandra) and of four plant microhabitats 
(phyllosphere, root endosphere, rhizosphere, and soil) by complementary analyses of 
amplicon and isolate libraries. All plants shared an unusually large core microbiome, 
comprising 18 procaryotic families but primarily consisting of Bacillus, Sphingobium, 
Comamonadaceae, Pseudomonas, and one archaeon from the soil crenarchaeotic group. 
Microbiome composition did not differ significantly for plant species but differed for 
microhabitats. The diversity was, in general, higher for bacteria (27,697 ASVs/H = 6.91) 
than for archaea (2,995 ASVs/H = 4.91); both groups form a robust network of copiotrophic 
bacteria and oligotrophic archaea. Screening of selected isolates for stress and plant 
health protecting traits showed that strains of Bacillus and Sphingomonas spp. div. 
constituted a substantial portion (15–31%) of the prokaryotic plant-associated communities. 
Across plant species, microbiota were characterized by a high proportion of potential 
copiotrophic and plant-beneficial species, which was not specific by plant species. The 
use of identified plant-beneficial isolates could provide the basis for the development of 
consortia of isolates for both abiotic and biotic stress protection to improve plant and 
ecosystem health, ensuring food security in East Africa.

Keywords: plant microbiome, archaea, leafy green vegetables, PGPR, amplicon analysis

INTRODUCTION

The adoption of sustainable agriculture practices is necessary in order to feed growing populations, 
especially in Sub-Saharan Africa, where food insecurity and malnutrition indices are the most 
alarming globally (Sikora et al., 2019). Sustainable agricultural practices are additionally important 
for biodiversity and ecosystem services, the maintenance of which is a global challenge and 
which is attracting increasing attention (Mariotte et  al., 2018). Eastern African farming systems 
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comprise a tapestry of crops and livestock, which is dominated 
by smallholders and characterized by low productivity (Vanlauwe 
et  al., 2014). A key factor explaining this low productivity is 
the high pest and pathogen pressure, and consequent production 
losses due to bioconstraints (Venkateswarlu et  al., 2012; Dean 
et  al., 2012; CIAT; BFS/USAID, 2017). The application of 
synthetic, chemical pesticides is a common coping strategy by 
farmers, but often using inappropriate, adulterated, out of date 
products, or generic compounds against which resistance has 
long since built up (Coyne et al., 2019). Consequently, in these 
smallholder systems, excessive misuse of pesticides may prevail, 
especially on crops which are prone to diseases and pests, 
such as vegetables (James et  al., 2010). The detrimental effects 
of pesticide misuse are mostly reported in relation to human 
and animal health, but there are important considerations for 
ecosystem health too (Rosenstock et  al., 1991; al-Saleh, 1994; 
Lemaire et al., 2006). The challenge therefore, is how to reduce 
the use of, and reliance on, pesticides and simultaneously 
improve yields while maintaining, facilitating, or enhancing 
biodiversity in farming systems.

A range of options is available to reduce dependency on 
synthetic pesticides, while their suitability depends on prevailing 
circumstances (Bender et  al., 2016; Sikora et  al., 2019). With 
the domestication of crops, their commercial exploitation, and 
the focus on breeding for ever-higher yielding cultivars, there 
has been a concomitant loss of resistance to stress factors as 
well as a decrease in microbial diversity (Mariotte et  al., 2018; 
Cordovez et  al., 2019). In contrast, indigenous plants that are 
less commercially exploited and less highly bred, but locally 
produced or gathered from natural habitats even, tend to 
be  more robust and resilient (Venkateswarlu et  al., 2012). In 
addition to their nutritional value, such properties have led 
to an increased interest in indigenous leafy green vegetables 
in Africa, where there is a need to raise the daily nutritional 
intake (Cernansky, 2015). Preferred traits include high levels 
of protein, iron, and other valuable nutrients, as well as their 
ability to better withstand biotic and abiotic stresses, compared 
to popular non-native vegetables, e.g., kale and cabbage (Kumar 
et  al., 2010; Bartolome et  al., 2013; Onyango et  al., 2013; 
Cernansky, 2015; Ronoh et  al., 2019). Further, these plants 
have a short and adapted life cycle, resulting in a lower 
vulnerability to irregular rainfall due to climate change. 
Speculation remains, however, why these plants are so robust 
and whether this robustness can be  transferred between crops.

Plant fitness is a phenotypic expression and genotypically 
determined but can be  modified by external factors, such as 
their associated microbiota. Plants and their associated microbiota 
combined represent a functional unity, the plant holobiont 
(Vandenkoornhuyse et  al., 2015). Plant species are host to a 
high diversity and complexity of microbial communities, which 
vary depending on various external influences (Yeoh et  al., 
2017). These microbial communities can influence plant growth, 
productivity, adaptation, and health (Bulgarelli et  al., 2013; 
Berg et  al., 2016). Modes of action include nutrient supply, 
plant hormone production, and antagonism toward pathogens 
(Berg, 2009; Lugtenberg and Kamilova, 2009). Plant-microbe 
interactions have largely focused on bacteria and fungi, although 

archaea are widespread and stable components of plant 
microbiomes (Hardoim et  al., 2015; Moissl-Eichinger et  al., 
2018). They have the potential to directly interact with the 
host plant by supporting nutrient supply and growth promotion 
via auxin biosynthesis (Taffner et  al., 2018, 2019), while 
antagonistic properties are not yet known (Moissl-Eichinger 
and Huber, 2011). Our hypothesis is that the microbiome 
strongly contributes to the fitness and health of the indigenous 
leafy green vegetables and that the archaeal community is an 
important component. Identification of key species within these 
communities may be  crucial to develop suitable biologically 
based options toward increased robustness and health in crops, 
and consequently toward the sustainable improvement of 
smallholder crop production systems in rural areas of Africa.

This study was aimed at characterizing the microbial 
communities of four leafy green crops grown in rural, smallholder 
conditions in Uganda, including blackjack (Bidens pilosa L.), 
nightshade (Solanum scabrum Mill.), okra (Abelmoschus esculentus 
Moench), and spiderwisp [Gynandropsis gynandra (L.) Briq.] 
and to assess the role of the bacterial and archaeal community 
on plant health. To achieve this, we  combined next-generation 
sequencing and characterization of bacterial isolates as well 
as screening for antagonism toward five phytopathogenic fungi, 
including species of the top 10 economically important crop 
pathogens worldwide (Botrytis cinerea, Fusarium oxysporum, 
Fusarium verticillioides, Sclerotium rolfsii, and Verticillium dahliae; 
Dean et  al., 2012).

MATERIALS AND METHODS

Experimental Design and Sampling 
Procedure
The leafy green vegetables blackjack, okra, nightshade, and 
spiderwisp were sampled in Kasangati, Uganda (0° 26' 33''N, 
32° 36' 19''E) in April 2017. Four samples, each consisting 
of a single plant (blackjack, spiderwisp, and okra) or three 
individual plants (nightshade), were gently removed with the 
aid of a spade, placed in sealed air-tight plastic bags, stored 
in a cool box, and transferred to the laboratory; four bulked 
soil samples were also collected and stored in separate plastic 
bags. Soil parameters were analyzed by “AGROLAB Agrar 
und Umwelt GmbH” (Sarstedt, Germany). The soil texture 
was sandy loam with pH  =  5.9, organic matter content of 
3.7%, and nutrient contents of K = 413 mg kg−1, P = 86 mg kg−1, 
and Mg  =  214  mg kg−1. In order to homogenize the samples, 
3  g of the phyllosphere (plant leaves and stalks), 5–10  g root 
material with adhering soil, and 5  g of soil per replicate were 
physically mixed in a BagMixer (Interscience, St. Nom, France) 
with 15  ml of 0.85% NaCl. Samples of root-adhering soil are 
further called rhizosphere. To obtain root endosphere samples, 
root samples were further surface sterilized with a 4% sodium 
hypochloride solution (NaClO) for 3  min, washed four times 
with 0.85% NaCl, resuspended in 15  ml NaCl, and then 
physically crushed with a sterile mortar and pestle. Samples 
were centrifuged at 16,500  g for 20  min at 4°C, and DNA 
extracts were then stored at −70°C for further processing.
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Isolation and CFU Determination of 
Bacterial Strains
Bacterial strains were isolated according to the protocol of 
Bragina et  al. (2012). Briefly, 100  μl of the 15  ml 0.85% NaCl 
suspensions of each microhabitat-sample were plated onto NBII 
agar (Sifin, Berlin, Germany) plates in dilutions ranging from 
10−2 to 10−5, incubated for 5  days at 20°C, and number of 
colony forming units (CFUs) determined and equated to fresh 
weight of the samples. A total of 512 randomly selected CFUs 
were isolated and stored in 20% glycerol at −70°C for 
further characterization.

Screening of Antagonistic Bacteria and 
Antifungal VOCs Production
The 512 bacterial isolates were each streaked onto a Waksman 
Agar (WA)-plate and exposed to a fungal pathogen, following 
the protocols of Berg et  al. (2006). The fungal phytopathogens 
B. cinerea, F. oxysporum, F. verticillioides, S. rolfsii, and V. dahliae 
were obtained from the strain collection of the Institute of 
Environmental Biotechnology (Graz University of Technology, 
Austria). Screenings were performed in triplicate and evaluated 
according to their antagonistic activity against pathogens 
according to Wolfgang et  al. (2019). Isolates with strong 
antagonistic activity were further tested for volatile organic 
compound (VOC) production, using a two-clamp VOC assay 
(Cernava et  al., 2015).

BOX-PCR Fingerprinting and Sequencing 
of Antagonistic Bacteria
BOX-PCR was performed to resolve bacterial genetic diversity, 
according to the protocol of Rademaker and de Bruijn (1997). 
Shortly, colonies of 20 bacterial isolates with strong antagonism 
against all tested pathogens were solubilized, transferred into 
glass-bead filled tubes, ribolyzed, and centrifuged. PCR 
amplification was conducted using the BOXA1R primer 5'-CTA 
CGG CAA GGC GAC GCT GAC G-3'. After separation by 
gel electrophoresis, resulting band pattern was compared with 
“Gel Compar II” V.5.1 (Applied Maths, Kortrijk, Belgium). 
Different isolates were further sequenced based on the 16S 
rRNA gene fragment and taxonomically identified by manual 
BLAST search.1

Abiotic Stress Assays and 
Phosphate-Solubilization Tests
Bacterial isolates with antagonistic activity toward the tested 
phytopathogens were additionally screened for resistance to 
abiotic stress, including drought, salinity, and reactive oxygen, 
as well as their potential to solubilize phosphate, as described 
by Zachow et al. (2013). In reactive oxygen species stress assays, 
bacterial isolates were cultivated overnight in LB (Lennox) 
medium (Carl Roth, Karlsruhe, Germany). Overnight cultures 
(5  μl) were added to 96-well plates filled with 195  μl LB in 
10 different concentrations of tellurite (1, 3, 5, 7, 9, 10, 13, 

1 https://blast.ncbi.nlm.nih.gov/

15, 18, and 20  μg/ml), and hydrogen peroxide (from 100 to 
1,500  μmol in 200  μmol steps, 1,750–4,000  μmol in 250  μmol 
steps), respectively. Growth of each isolate was measured after 
24  h incubation at 30°C under agitation in four replicates 
using a plate reader (Infinite 200, Tecan Trading AG, Switzerland) 
at a wavelength of 600  nm (OD600). For evaluation of the 
tolerated osmolarity level, bacterial isolates were cultivated in 
LB media with various NaCl concentrations (from 0 to 15% 
in steps of 1%). Growth was measured in four replicates after 
24, 48, 72, and 144  h using the plate reader at 600  nm. In 
order to test for drought resistance, 20  μl of an overnight 
culture were dried under sterile conditions in a 96-well plate 
and were resuspended in 20  μl 0.9% NaCl after 1, 2, 5, 7, 
14, 60, and 80  days. Further, 10  μl of the resuspended cells 
was dropped onto LB-agar plates in a dilution series, incubated 
and number of CFUs determined.

Screening for Plant-Growth Promoting 
Activities
Growth-promoting activities of bacterial isolates were tested 
on tomato (Solanum lycopersicum L. cv. Moneymaker, Austrosaat 
AG, Austria) plants according to Zachow et al. (2013). Tomato 
seeds were primed with bacterial cultures derived from three 
NBII plates grown overnight at 30°C suspended in 20 ml sterile 
water and were incubated for 4  h under agitation. Number 
of CFU per ml and OD600 of the suspensions were determined 
before seed priming (Table  1). Two germination pouches per 
strain were prepared with 8–9 seeds each. After 15 days, plants 
were harvested, leaf and root fresh weight were recorded. Roots 
were further pestled, and suspensions were plated on NBII 
plates in a dilution series for CFU determination. Plant growth 
was analyzed using Mann–Whitney U test.

Isolation of Total-Community DNA and 
Illumina Sequencing
Community DNA pellets from each microhabitat of soil, 
rhizosphere, root-endosphere, and phyllosphere of the four leafy 
green crops were subjected to PCR-based barcoding. First, 
extraction of DNA pellets was conducted using “FastDNA Spin 
Kit for soil” (MP Biomedical, Eschwege, Germany). PCR-products 
were purified with GENECLEAN TurboTM Kit (MP Biomedicals, 
Eschwege, Germany), following the manufacturer’s instructions 
for genomic DNA. The bacterial PCR approach was carried 
out with the Illumina barcode universal bacterial primer set 
515f-806r (Caporaso et  al., 2011) and PNA Mix (Lundberg 
et  al., 2013) to remove host plastid and mitochondrial DNA. 
In order to amplify the archaeal 16S rRNA gene, a nested PCR 
was performed using the archaea-specific primers 344f and 915r 
in the first PCR. In a second PCR approach, the modified 
primer pair S-D-Arch-0349-a-S-17/S-D-Arch-0519-a-A-16  
(here 349f/519r; Klindworth et  al., 2013) with an additional 
10 bp primer-pad (TATGGTAATT/AGTCAGCCAG) and linker 
(GT/GG) was used, according to the protocols of the Earth 
Microbiome Project (Walters et al., 2016). In a third PCR, Golay 
barcodes were annealed (Hamady et al., 2008). All PCR reactions 
were conducted as previously described (Taffner et  al., 2019). 
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Bacterial and archaeal PCR reactions were conducted in triplicate, 
purified with the Wizard SV Gel and PCR clean-up system 
(Promega, Madison, WI, United  States), and pooled to 
equimolarity. Sequencing was carried out by Eurofins MWG 
Operon (Eurofins, Ebersberg, Germany) with an Illumina 
HiSeq  2500 system.

Bioinformatic Processing of 16S rRNA 
Gene Fragments
The generated 16S rRNA gene libraries were pre-processed 
using QIIME version 1.9.1 (Caporaso et al., 2010) and QIIME2 
(version 2018.2, Bolyen et al., 2019). First, read quality was 
checked with FastQC,2 reads were joined, and barcodes were 
extracted in QIIME1. Sequences were demultiplexed using the 
q2_demux plugin and denoised using q2_dada2 (Callahan et al., 
2016) Taxonomy was assigned using a naïve Bayes taxonomy 
classifier (Bokulich et  al., 2018) implemented in QIIME2. For 
taxonomic assignment, SILVA reference data base version 128 
was used for bacteria and Silva 16S Archaeal database (349af–
519ar 99, otusversion 128) for archaea with a 97 and 99% 
similarity cut-off, respectively (Quast et  al., 2013). Amplicon 
sequence variants (ASVs) assigned to mitochondria or 
chloroplasts were removed using taxonomy-based filtering. ASVs 
were aligned with q2_mafft (Katoh and Standley, 2013), and 
a phylogenetic tree was constructed with q2_fasttree2 (Price 
et  al., 2010). For estimating diversity metrics, sequence tables 
were rarefied to 1,210 ASVs (archaea) and 7,444 ASVs (bacteria). 
For evaluating alpha diversity, Kruskal-Wallis test (all groups 
and pairwise), alpha rarefaction, Shannon and Faith’s phylogenetic 
diversity index (Faith, 1992) were calculated. Beta diversity 
was analyzed by principal coordinate analysis (PCoA) plots 
and ANOSIM based on phylogenetic distance metrics of weighted 
UniFrac distances (Lozupone et  al., 2007) and visualized with 
the emperor plugin (Vázquez-Baeza et al., 2013). The ANOSIM 
test was performed with 999 permutations. To test for the 
influence of microhabitat and plant species, these variables 
were tested using the plugin Adonis (Anderson, 2001) for 
bacteria and archaea. To test for significant differences in 
abundances of identified antagonistic taxa, the bacterial dataset 
was analyzed using the LEfSe algorithm implemented in https://
www.microbiomeanalyst.ca (Chong et  al., 2020). The dataset 
was filtered using the default settings (minimum count for 
reads of 4, minimum prevalence in samples 20%, low variance 
filtered based on 10% interquantile range, LDA score  =  2.0), 
rarefied to minimum library size and scaled using total sum 
scaling. Taxa were compared on family level between each 
plant species (all microhabitats combined) and soil, as well as 
within a single plant species between microhabitats. Cytoscape 
3.3.0 software was used to visualize the bacterial distribution 
and network of the core genera (Shannon et  al., 2003). ASVs, 
that were found in >75% of the plant samples, were assigned 
as interspecific core ASVs of the plant species. ASVs were 
assigned to genus level, and data of all four plants were 
combined. Taxa represented in ≥50% of samples across the 

2 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/TA
B

LE
 1

 |
 A

bi
ot

ic
 s

tr
es

s 
co

nf
ro

nt
at

io
n 

as
sa

ys
.

S
tr

ai
n-

ID
S

p
ec

ie
s

O
ri

g
in

D
ro

ug
ht

H
2O

2 
(μ

m
o

l/
m

l)

N
aC

l (
24

 h
)

N
aC

l (
48

 h
)

N
aC

l (
72

 h
)

N
aC

l 
(6

 d
ay

s)
O

D
60

0 
(O

N
C

)
C

FU
/m

l 
p

ri
m

in
g

 
su

sp
en

si
o

n

Δ
R

FW
 (%

)
Δ

S
FW

 (%
)

Δ
G

R

S
oi

l-I
-1

1
B

ac
illu

s 
sp

.
S

oi
l

To
le

ra
nt

0
0

0
8%

6%
1.

8
10

13
67

46
+

S
oi

l-I
-1

4
B

ac
illu

s 
sp

.
S

oi
l

To
le

ra
nt

2,
00

0
5%

7%
7%

7%
1.

6
4.

2* 1
014

83
6

+
S

oi
l-I

-4
5

S
ph

in
go

m
on

as
 s

p.
S

oi
l

To
le

ra
nt

0
0

0
8%

11
%

2.
3

3.
2* 1

014
−

11
11

+
O

R
E

-3
0

S
ph

in
go

m
on

as
 s

p.
O

kr
a 

ro
ot

To
le

ra
nt

10
0

0
0

8%
10

%
2.

6
>

3* 1
014

0
−

24
+

O
R

E
-4

4
S

ph
in

go
m

on
as

 s
p.

O
kr

a 
ro

ot
To

le
ra

nt
0

0
0

8%
11

%
2.

8
>

3* 1
014

21
−

10
0

N
S

R
E

-3
7

B
ac

illu
s 

sp
.

N
ig

ht
sh

ad
e 

ro
ot

To
le

ra
nt

90
0

0
0

0
0

1.
7

5* 1
012

88
56

+

G
ro

w
th

 a
fte

r 
de

si
cc

at
io

n 
w

as
 m

ea
su

re
d 

by
 C

FU
/m

l: 
to

le
ra

nt
: C

FU
 a

bo
ve

 1
05  

af
te

r 
dr

ou
gh

t f
or

 8
8 

da
ys

. R
ea

ct
iv

e 
ox

yg
en

 s
pe

ci
es

 te
st

 p
er

fo
rm

ed
 w

ith
 h

yd
ro

ge
n 

pe
ro

xi
de

 (H
2O

2)
: h

ig
he

st
 c

on
ce

nt
ra

tio
n 

of
 H

2O
2,

 th
e 

is
ol

at
e 

co
ul

d 
st

ill 
to

le
ra

te
. N

aC
l(x

): 
m

ax
im

um
 c

on
ce

nt
ra

tio
n 

(w
/v

) o
f N

aC
l i

n 
gr

ow
th

 m
ed

iu
m

 r
es

ul
tin

g 
in

 in
cr

ea
se

d 
O

D
60

0 
re

la
tiv

e 
to

 th
e 

co
nt

ro
l a

fte
r 

tim
e 

x.
 In

cr
ea

se
 in

 r
oo

t f
re

sh
 w

ei
gh

t (
Δ

R
FW

), 
sh

oo
t f

re
sh

 w
ei

gh
t (

Δ
S

FW
), 

an
d 

ge
rm

in
at

io
n 

ra
te

 (Δ
G

R
; +

, 
in

cr
ea

se
; −

, d
ec

re
as

e;
 0

, n
o 

ef
fe

ct
) r

el
at

iv
e 

to
 th

e 
co

rr
es

po
nd

in
g 

co
nt

ro
l g

ro
up

.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://www.microbiomeanalyst.ca
https://www.microbiomeanalyst.ca


Taffner et al. Microbiome of African Leafy Greens

Frontiers in Microbiology | www.frontiersin.org 5 November 2020 | Volume 11 | Article 585690

dataset were assigned as intraspecific core genera. Abundant 
sequences with a low taxonomical resolution were additionally 
assigned by using the nucleotide BLAST search.3

Nucleotide Sequence Accession Numbers
The 16S rRNA gene fragment amplicon library was submitted 
to the European Nucleotide Archive (ENA) and can be  found 
under the accession number PRJEB39392.

RESULTS

General Community Structure of 
Prokaryotes Associated With Leafy Green 
Vegetables
Sequencing of the 16S rRNA gene fragments originating from 
the phyllosphere, root-endosphere, rhizosphere, and soil of the 
leafy greens blackjack, nightshade, okra, and spiderwisp resulted 
in a total of 10,688,730 high quality bacterial reads and 2,692,299 
archaeal reads. After taxonomy-based filtering of mitochondria 
and chloroplast sequences, the datasets comprised 9,795,981 bacterial 
reads and 2,663,458 archaeal reads, clustered in a total of 27,697 
and 2,995 distinct ASVs, respectively. Unassigned sequences 
remained in the dataset because we  expected a considerable and 
potentially important part of microbes to be still unknown to science.

3 https://blast.ncbi.nlm.nih.gov/Blast.cgi

The bacterial core microbiome revealed similarities and 
differences between the phytobiome composition in respect to 
the plant genotype and microhabitat (Figure  1). In the 
phyllosphere, Enterobacteriaceae (42.2%) and Streptococcaceae 
(14.4%) were dominant in the bacterial community, whereas 
in the root endosphere and rhizosphere Enterobacteriaceae (30.7 
and 21.6%, respectively) and Pseudomonadaceae (28.0 and 19.0%, 
respectively) were predominant. In general, Sphingomonadaceae 
(4.2%), Lactobacillaceae (3.3%), Bacillaceae (2.9%), Rhizobiaceae 
(2.7%), Comamonadaceae (2.5%), Flavobacteriaceae (2.0%), and 
Xanthomonadaceae (1.5%) were ubiquitous but less abundant. 
In the phyllosphere of blackjack and Okra, Streptococcaceae were 
dominant, representing around a quarter of the core microbiome. 
Blackjack and spiderwisp both harbored Lactobacillaceae with 
12.0–15.3% in the phyllosphere. Bacillaceae and Pseudomonadaceae 
were present in the core microbiome of each crop in each 
microhabitat (1.09–6.33%), with the exception in the spiderwisp 
phyllosphere, where no Bacillaceae were found. Throughout all 
microhabitats and crops, the fraction of families with an abundance 
lower than 1% (“others”) was relatively high (13.9–21.6%). These 
bacteria mainly belonged to the families Oxalobacteraceae (0.9%), 
Caulobacteraceae (0.9%), unidentified Acidobacteria (0.9%), 
Sphingobacteriaceae (0.8%), Paenibacillaceae (0.8%), Rhizobiales 
(0.7%), Chitinophagaceae (0.7%), Planctomycetaceae (0.6%), 
Enterococcaceae (0.6%), and Alcaligenaceae (0.5%).

The archaeal communities (Figure 2) were clearly dominated 
by the phylum Thaumarchaeota (89.0%). In general, a high 
proportion of unassigned reads of up to 20.7% was detected, 

FIGURE 1 | Bacterial core microbiome of leafy greens. The composition of the microbiome of blackjack, nightshade, okra and spiderwisp, and their microhabitats, 
displayed at the family level: phyllosphere (green stripe), root-endosphere (gray stripe), and rhizosphere (brown stripe). Families with abundances below 1% of total 
microbiome are captured within “others.”
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which were especially associated with blackjack and okra 
phyllospheres. In all four leafy green crops, Euryarchaeota were 
present but in low relative abundances (0.7–1.0%), except in 
spiderwisp, in which no Euryarchaeota were detected. At the 
class level, archaea of the soil crenarchaeotic group (SCG) 
were relatively abundant (56.2%), followed by unassigned 
Thaumarchaeota (22.9%). Archaea of the SCG were especially 
abundant in nightshade and spiderwisp. Methanogenic archaea 
of the class Methanomicrobia were mainly found in phyllosphere 
and the root-endosphere samples, except in spiderwisp.

Bacterial Diversity Associated With Leafy 
Green Vegetables
Diversity metrics based on phylogeny were calculated with  
QIIME2 to determine similarities and dissimilarities of the  
bacterial community of the leafy green crops. Shannon’s diversity 
in the plant-microhabitats decreased from rhizosphere to 
phyllosphere, with an exception for nightshade, which showed 
the least diversity in root endosphere. However, diversity in the 
rhizosphere of nightshade was the highest comparing all plants 
[H(nightshade)  =  7.81  ±  0.21]. Diversity within the bulk soil samples 
was higher [H(soil) = 9.41 ± 0.42], however, compared to the plant 
species [H(mean) = 6.91 ± 0.16; ranging from H = 5.31 to H = 6.24].

Between microhabitats, a cluster formation (Figure  3I) as 
well as a trend from rhizosphere to phyllosphere, was observed, 
whereas the rhizosphere bacterial community overlapped, to 
some extent, with the root endosphere. However, phyllosphere 
communities were more distinct, while the soil showed a clear 
cluster, which was significantly different to the other microhabitats 

with quantitative measures (ANOSIM: R = 0.504 and p ≤ 0.001). 
When assigning the same communities to their respective plant 
species (Figure  3II), no distinct clustering could be  detected 
(ANOSIM: R  =  0.048 and p  =  0.064). Only nightshade had a 
slightly different clustering pattern. When investigating 
relationships within and between plants (within-sample), the 
alpha diversity index was significantly different between 
microhabitats (Figure  3III; p  =  0.001), but not between the 
four plant species (Figure  3IV; p  =  0.080). The overall group 
of microhabitats differed in diversity, but with respect to pairwise 
investigations, this was due to differences in rhizospheres as 
well as root-endosphere to phyllosphere. Further, group statistics 
showed that bacterial alpha diversity of the tested leafy green 
crops was not plant species specific. However, PCoA and Kruskal-
Wallis test revealed that microbial diversity was microhabitat-
specific. The factor “habitat” explained more variance within 
the bacterial dataset than the factor “organism” in both Bray-
Curtis and weighted UniFrac distances (Supplementary Table 1).

Archaeal Diversity Associated to Leafy 
Green Vegetables
Archaeal alpha diversity indices had similar values in all plant 
species [H(all)  =  4.51–4.95], with the highest archaeal diversity 
in nightshade [H(nightshade)  =  4.95  ±  0.21]. Within plant-associated 
communities, the diversity of the microhabitats differed only 
slightly, between the root-endosphere [H(endosphere)  =  4.42  ±  0.37] 
and the rhizosphere [H(rhizosphere) = 4.92 ± 0.23; Figure 4III]. Alpha 
diversity of archaeal communities in bulk soil was higher than 
in plant-associated communities [H(soil) = 5.26 ± 0.27; Figure 4IV].

FIGURE 2 | Archaeal community in leafy greens. The composition of the archaeal community of blackjack, nightshade, okra and spiderwisp, and their 
microhabitats, displayed at the order level: phyllosphere (green stripe), root-endosphere (gray stripe), and rhizosphere (brown stripe).

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Taffner et al. Microbiome of African Leafy Greens

Frontiers in Microbiology | www.frontiersin.org 7 November 2020 | Volume 11 | Article 585690

The alpha and beta diversity indices of the archaeal community 
are presented in Figure  4. In a PCoA-plot (Figure  4I), soil 
and the rhizosphere communities were clustered, whereas 
diversities in the root endosphere and phyllosphere were more 
dispersed. Again, a pattern, from rhizosphere to phyllosphere, 
was evident, as indicated by the overlapping clusters, with the 
soil diversity occurring within the rhizosphere diversity. In 
general, microhabitats showed significant differences in diversity 
(ANOSIM: R = 0.226; p = 0.001), with soil showing the highest 
diversity (Figure  4III). Analyzing the beta diversity for plant-
type-specific differences, a cluster formation of nightshade and 
spiderwisp could be  seen (Figure  4II). These plant species 
specific differences were confirmed by ANOSIM-test (R = 0.131; 
p = 0.002) and were found to be due to nightshade and blackjack 
(q  <  0.05) based on pairwise comparison. However, spiderwisp 
and okra showed similarities (q > 0.377). Further, alpha diversity 
analysis with Kruskal-Wallis (all groups and pairwise) confirmed 
that archaeal diversity differed, depending on the microhabitat 
(p  =  0.001) as well as the plant species (p  =  0.01), which is  
due to the significantly different diversity of nightshade 
(Figures 4III,IV). However, pairwise comparison did not establish 
any differences between plant species (q  >  0.08). Soil archaeal 
diversity was significantly different to all plant-associated 

microhabitats (q  <  0.004), as well as the phyllosphere to root-
endosphere (q  =  0.038). However, the factors microhabitat and 
plant species explain <35% of the variance within the archaeal 
dataset (Supplementary Table  2), indicating other important 
factors determining archaeal community composition.

Analysis of the Core Microbiota of Leafy 
Green Vegetables
Microbial core communities across blackjack, nightshade, okra, 
and spiderwisp were cross-linked based on taxonomic analysis 
at the family level and were visualized as a network (Figure 5). 
In total, 91 features were identified on genus level, with just 
one belonging to Archaea. A large core microbiome of 18 
families, such as Bacillus, Sphingobium, Comamonadaceae gen., 
Pseudomonas, and Rhizobiaceae gen. (including the archaeal 
SCG), mainly assigned to Proteobacteria, were shared between 
all four crops. An additional 11 families, also mostly 
Proteobacteria, were common in blackjack, okra, and spiderwisp, 
thus communities associated with nightshade were more specific. 
Nightshade and okra shared specific taxa of the genus 
Carnobacterium, while blackjack and spiderwisp both shared 
Weissella and Acinetobacter. Each crop was associated with 
specific bacterial families that were unique in the core microbiome 

FIGURE 3 | Bacterial alpha and beta diversity of leafy green vegetables. Principal coordinate analysis (PCoA) plots of the 16S rRNA amplicon datasets of four 
crops (blackjack, nightshade, okra, and spiderwisp) constructed based on phylogenetic distance metrics (weighted UniFrac). The distance between the data points 
negatively correlates with the similarity of the communities. (I) Clusters of the communities based on microhabitat (phyllosphere, rhizosphere, root-endosphere, and 
soil), and (II) based on plant species (blackjack, nightshade, okra, spiderwisp, and soil). Comparison of bacterial alpha diversity based on Faith’s phylogenetic 
diversity of the microhabitats (III) and plant species (IV).
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of the respective plant species. The number of such distinctive 
communities were ranged from five (spiderwisp) to nine 
(blackjack and nightshade) and 11 (okra).

Screening and Identification of Bacterial 
Antagonists Against Biotic and Abiotic 
Stresses
Of the 512 randomly selected bacterial isolates taken from  
the four leafy green crops and bulk soil, 108 isolates showed a 
high antagonistic activity (clear halo between fungi and 
bacteria  ≥  5  mm) against at least one pathogen (B. cinerea, 
F. oxysporum, F. verticillioides, S. rolfsii, and V. dahliae), and 23 
isolates against four pathogens (Figure  6). Screening test results 
against V. dahliae needed a separate evaluation category as the 
culturing of the fungi required a different procedure and was, 
therefore, not included into the Venn diagram. A total of 44 
bacterial isolates were highly active against V. dahliae. Based on 
these results, a selection of 24 antagonists, mostly antagonistic 
against all tested pathogens, were chosen for further characterization; 
12 of the isolates originated from soil, nine were isolated from 
root endosphere, and three from the rhizosphere. Genetic 
characterization of the 24 antagonistic isolates undertaken using 
BOX-PCR and 16S sequencing identified 16 isolates as Bacillus sp. 

with suggested species B. siamensis, B. velenzensis, B. amyloliquefaciens, 
B. methylotrophicus, B. vallismortis, and B. subtilis. A further 
eight isolates were assigned to Sphingomonas sp. with hits for 
S. echinoides and S. glacialis. Combining the alignment results 
with similarity pattern of BOX PCR bands, isolates were clustered 
into five similarity groups (Supplementary Table  3).

The resistance to abiotic stresses of antagonistic bacterial 
strains was further characterized in order to evaluate their 
potential for application as future biocontrol agents (BCAs). 
Therefore, abiotic stress tests comprising reactive oxygen species 
stress tests were conducted (Table  1).

The desiccation assay showed that all tested bacterial isolates 
were highly resistant to drought with a CFU/ml of above 105 
after 88  days. The ability to resist reactive oxygen could not 
be  shown in the tellurite assay, but when using hydrogen 
peroxide as stressor three isolates could still be cultured. Isolate 
“Soil-I-14” showed H2O2-tolerance as well as salt tolerance to 
high levels of NaCl after 24  h. Other isolates needed a longer 
period to adapt to higher NaCl concentrations and showed 
tolerance only after an adaption phase of 72  h (Table  1).

Further characterization of the mechanism of antagonism 
using two clamp VOC assays (TCVAs) showed no antagonistic 
effects of the bacterial isolates against the pathogens, based 
on VOCs.

FIGURE 4 | Alpha and beta diversity analyses of archaeal communities associated to leafy green vegetables. PCoA plots based on weighted UniFrac distance 
metrics show the archaeal community of phyllosphere, rhizosphere, root-endosphere, and soil microhabitats (I) of the four leafy green crops blackjack, nightshade, 
okra, and spiderwisp (II); comparison of  alpha diversity based on Faith’s phylogenetic diversity of the microhabitats (III) and plant species (IV).
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Plant Growth Promotion of Bacterial 
Antagonists
Priming of tomato seeds with the six bacterial antagonistic 
strains resulted in a significantly increased fresh biomass of 
leaves (p  =  0.039) and whole seedlings (p  =  0.020) relative to 
the control when using Bacillus strains. Priming with 
Sphingomonas species showed no significant effect on both 
root and leaves growth (Table  1). The strongest plant growth-
promoting effect was observed when using a Bacillus strain 
derived from roots of nightshade (strain NSRE-37). None of 
the bacterial isolates showed signs of phosphate solubilization.

Localization of Antagonists Within the 
Microbial Network of Leafy Green 
Vegetable Crops
The distribution and abundance of bacterial families comprising 
taxa with high antagonistic activity toward fungal phytopathogens 
(Bacillaceae and Sphingomonadaceae) within the microbiome 
of the leafy green crops were compared in order to highlight 
possible links to the robustness of the plant host. Bacterial 
families that were isolated from Ugandan tomato and were 
shown to comprise nematicidal effects to plant-pathogenic 
nematodes in earlier studies (Wolfgang et al., 2019) were included. 

FIGURE 5 | Feature network based on taxonomic analysis at the genus level. Each node represents a family of the core microbiome and is colored according to its 
phylum. If families were only represented by one genus within the core microbiome, the corresponding genus is added in brackets. Cross-linked nodes express 
families shared between the plants blackjack, nightshade, okra, and spiderwisp. (I) Nightshade. (II) Okra. (III) Blackjack. (IV) Spiderwisp.

FIGURE 6 | Number of bacterial isolates with antagonistic effects against 
fungal pathogens. Fungal pathogens included Fusarium oxysporum, Fusarium 
verticillioides, Sclerotium rolfsii, and Botrytis cinerea. Only bacterial 
antagonists showing high antagonistic activity were assigned to their 
respective fungi. Graph was generated using VENNY 2.1.0 (https://bioinfogp.
cnb.csic.es/tools/venny/).
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Most families were significantly enriched in plants compared 
to soil (Supplementary Table  4), although plant-specific 
differences were observed (Figure  7); while Pseudomonadaceae 
was the most abundant antagonistic family across all plant 
species with the highest relative abundance in okra, 
Sphingomonadaceae were higher abundant in soil except for 
nightshade. Sphingomonadaceae account for 9.6% (range 0.6–21.9) 
relative abundance in nightshade. Additionally, abundances of 
Sphingomonadaceae significantly differ within nightshade, with 
a higher relative abundance in rhizosphere and phyllosphere 
than in root-endosphere (Supplementary Table  5). Bacterial 
communities of nightshade consisted of the highest share of 
antagonistic families (31.2%), followed by okra (25.5%), blackjack 
(16.3%), and spiderwisp (14.8%). Within soil, antagonistic families 
comprised only 4.5% of all recorded microorganisms.

DISCUSSION

Research on plant-associated microbiomes in tropical regions 
is still in its beginning. Many factors known to influence crop-
associated bacterial communities, e.g., soil quality, plants life 
cycle, or agronomic practices (Philippot et  al., 2013), were not 
addressed in this study. Nevertheless, this study is a first step 
for understanding microbial communities in crops that are 
usually understudied in tropical agricultural research, but have 
a high relevance to local people. When investigating four locally 
popular leafy green vegetables (blackjack, nightshade, okra, and 
spiderwisp) in Uganda, we  identified a microbiome that has 
both common and specific components between plant species. 
The general taxonomic composition was comparable with many 
other plant and crop species as well as the abundance of microbes 
(Bulgarelli et  al., 2013; Berg et  al., 2016). The rhizosphere was 
confirmed as the microbial hot spot for plants (Berg et al., 2006; 
Berg and Smalla, 2009) as well as the rhizosphere effect,  

which describes the selective enrichment visible in the 
composition of the microbiota (Foster et  al., 1983; Buée et  al., 
2009). Interesting specific components were also observed. For 
instance, the microbiota of indigenous leafy greens were 
characterized by: (I) an unusually large core microbiome with 
only minor differences between plant species; (II) a high diversity 
of bacteria and archaea forming a network of potentially 
copiotrophic bacteria and oligotrophic archaea; and (III) a high 
proportion (15–31%) of potential plant beneficial microbes. 
The latter were identified in our culture collection, and can 
be  potentially employed as biologically-based options for 
protection against stresses.

Leafy Green Vegetables Harbor Common 
Bacteria With Copiotrophic Lifestyle
The diversity and community structure of bacteria and archaea 
in four leafy greens was found to be  microhabitat-specific, 
rather than plant genotype-specific. The extent of the impact 
of numerous variables (e.g., plant genotype, plant organ, habitat, 
developmental stage, and soil quality) is a persistent question 
in microbial ecology across studies. However, in studies focused 
on natural vegetation in particular, the plant genotype seem 
to be  the most important factors to determine plant-associated 
bacterial communities, followed by soil traits (Berg and Smalla, 
2009; Bulgarelli et al., 2013). Recent studies revealed a decrease 
in diversity of crop-associated microbial communities through 
breeding practices (Cardinale et al., 2015; Mendes et al., 2019). 
The less pronounced impact of the plant genotype can 
be  explained by the life strategy of plants. Three (blackjack, 
nightshade, and spiderwisp) of the four leafy greens in the 
current study were naturally occurring, and in general are 
ubiquitous, mostly invasive, produce many seeds and are, 
therefore, categorized as r-strategists, which often have a 
copiotrophic lifestyle (Andrews and Harris, 1986). This life 

FIGURE 7 | Relative abundance of antagonistic families of bacteria associated with leafy green vegetables. The diameter of the bubble represents the abundance 
of each family within the microbiome of each leafy green crop and soil. Soil is used as a reference. Families, which were found to produce nematicidal VOCs in 
Ugandan tomatoes (Wolfgang et al., 2019) – namely Comamonadaceae and Pseudomonadaceae – are included. Asterisks indicate significant differences in relative 
abundance compared to soil based on LEfSe (*p ≤ 0.05; **p ≤ 0.001).
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strategy might also affect the composition of their associated 
microorganisms, which may have even co-evolved with them 
(Cordovez et  al., 2019). For example, invasive plants, such as 
cheatgrass (Bromus tectorum L.), knapweed (Centaurea stoebe L.), 
and leafy spurge (Euphorbia esula L.), enrich copiotrophic 
bacteria in their associated rhizosphere (Gibbons et  al., 2017). 
In our study, the microbiome associated with the leafy greens 
was neither specific nor depended on the plant genotype. 
We  found that the most abundant bacterial phyla followed 
the same copiotrophic life strategy as their host, such as 
Proteobacteria, Firmicutes, Bacteriodetes, and Actinobacteria (Ho 
et  al., 2017). In contrast, the archaeal phyla are considered to 
be  oligotrophic, especially Thaumarchaeota (Uksa et  al., 2015; 
Youssef et  al., 2015). This indicates high substrate specificity 
and supports the assumption of a niche-colonization by archaea, 
including their role as followers of bacteria. Interestingly, a 
rhizosphere effect was also observed for archaea, especially 
for nightshade. The enrichment may depend on quality and 
composition of the root exudates, as demonstrated for archaea 
in tomato plants (Simon et  al., 2005; Taffner et  al., 2020). 
Altogether, copiotrophic bacteria and oligotrophic archaea appear 
to form a potent trophic network on leafy greens, which would 
warrant further investigation.

High Microbial Diversity of Leafy Green 
Vegetables Compared to Cultivated Crops
The four leafy greens studied all showed high and relatively 
similar values for Shannon’s indices, with H-values ranging 
from 5.31 and 4.51 (okra) to 6.24 and 4.95 (nightshade), for 
bacteria and archaea, respectively. When comparing the Shannon’s 
indices in bacterial phyllosphere communities [ranging from 
H(okra)  =  4.4 to H(nightshade)  =  5.74], the diversity of the leafy 
greens in this study is considerably higher than in some 
commercially cultivated leafy greens, such as spinach [Spinacia 
oleracea L.; H(spinach)  =  3.15, Lopez-Velasco et  al., 2013]. This 
also applies for rhizosphere: maize (Zea mays, L.) rhizosphere 
displayed a distinctly lower alpha diversity [H(maize)  =  3.42; 
García-Salamanca et  al., 2013] than the diversity of the 
rhizosphere of the leafy greens [H(mean_rhizosphere) = 6.91]. Further, 
the archaeal diversity in rhizosphere of leafy greens tested was 
found to be  higher [H(mean_rhizosphere)  =  4.51–4.95] than in other 
cultivated crops, such as rice [Oryza sativa, L., H(rice) = 4.08–4.43], 
Barbados nut [Jatropha curcas, L., H(barbados_nut)  =  3.16] and 
tomato [H(tomato)  =  3.4; Lee et  al., 2015; Dubey et  al., 2016]. 
This large disparity in microbial diversity is attributed to the 
overbreeding of our main crops (Pérez-Jaramillo et  al., 2016), 
whereas natural leafy greens have received much less attention 
and remain less intensively bred, having only recently attracted 
interest in agriculture. Further, agricultural practices affect 
microbial diversity. Comparing organic farming with conventional 
intensive farming, significant differences in the microbiome of 
maize, melon (Citrullus lanatus Thunb.), pepper (Capsicum 
annuum L.), and tomato, as well as the soil, were prominent 
(Hartmann et  al., 2015; Xia et  al., 2015). Given the large 
difference in diversity indices between the uncultivated leafy 
greens from Uganda with intensively cultivated field crops, 
we  could assume that highly focused breeding programs, as 

well as intensive agricultural practices have led to a reduction 
and loss of diversity in the microbiome of these crops (Pérez-
Jaramillo et  al., 2016). Naturally occurring vegetables, such as 
leafy greens, have a high microbial diversity, which is directly 
correlated with healthier, more robust plants that are less 
vulnerable to pathogenic outbreaks (Berg et  al., 2016).

High Proportion of Plant-Beneficial 
Bacteria of the Microbiome in Leafy Green 
Vegetables
A broad range of the taxa recovered from the core microbiome 
of leafy greens are well-known plant growth promoters, such 
as members of Enterobacteriaceae and Pseudomonadaceae, which 
occur frequently on leafy greens (Hayat et  al., 2010). They 
are also known to be  antagonistic against phytopathogenic 
fungi, either through competition or production of antimicrobial 
metabolites (Haas and Défago, 2005). However, Enterobacteriaceae 
also include human enteric pathogens, some of which, through 
occupation of crops via roots enter human digestive systems 
and have been associated with stimulating immune responses 
or acting as a “natural vaccination” as opposed a pathogen 
(Brandl, 2006; Berg et  al., 2015). Further, Actinobacteria and 
Proteobacteria species were broadly distributed throughout the 
microbiome of the four leafy greens, both of which have 
previously been associated with host plant protection against 
fungal infections (Mendes et  al., 2011). Besides the dominant 
families mentioned, some of the less common members of 
the microbiome showed growth promoting properties. Bacillaceae 
species such as Bacillus subtilis, B. amyloliquefaciens and B. cereus, 
and Oxalobacteraceae species such as Herbaspirillum seropedicae 
are known for supporting plant growth (Hayat et  al., 2010), 
as well as members of the families Xanthomonadaceae, 
Paenibacillaceae, Sphingobacteriaceae, Chitinophagaceae, and 
Alcaligenaceae (Berg, 2009; Yang et  al., 2014). One interesting 
fact is the relatively high abundance of Sphingomonadaceae in 
nightshade rhizosphere and phyllosphere (Figures 1, 7), compared 
to the other leafy greens. A high relative abundance of 
Sphingomonadaceae was frequently measured in other Solanum-
associated communities, namely in rhizosphere (12%), root 
endosphere (5%), fruits (12–24%), and flowers (2–12%) of 
tomato (Allard et  al., 2016; dataset of Wolfgang et  al., 2019), 
rhizosphere of potatoes (Solanum tuberosum L., Pfeiffer et  al., 
2017), and rhizosphere of eggplant (Solanum melongena L., 
Li et  al., 2019). Sphingomonadaceae comprise members with 
remarkable biotechnological potential, for instance degraders 
of aromatic or metalorganic compounds (Asaf et  al., 2020). 
The high relative abundance of Sphingomonadaceae may 
be  attributable to the diverse secondary metabolites (e.g., 
alkaloids) found in Solanaceae. However, further studies have 
to confirm the connection between Sphingomonadaceae 
and Solanum.

The archaeal community was clearly dominated by 
Thaumarchaeota, which are common colonizers of leafy greens, 
such as arugula (Taffner et  al., 2019). This phylum consists 
mostly of ammonia oxidizing archaea (AOA), which are important 
for nitrogen cycling (Francis et  al., 2007), and therefore, for 
supporting nutrient supplies to the plant. Further, recent studies 
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show that archaea have the potential to directly support plant 
growth via auxin biosynthesis, a plant growth hormone (Taffner 
et  al., 2018). Besides Thaumarchaeota, methanogens of the 
phylum Euryarchaeota were observed. These are also common 
in plants, colonizing anoxic niches in the rhizosphere, such 
as on maize or arugula (Chelius and Triplett, 2001; Taffner 
et  al., 2019). However, there was a high relative abundance 
of taxonomically unassigned archaeal features, although an 
up-to-date established pipeline was used for the bioinformatic 
analysis. This limitation is well-known for archaea, especially 
in novel, less studied habitats such as Uganda, and is mainly 
due to poorly defined reference databases. We  can conclude 
therefore that the core microbiome of leafy greens contained 
several taxa with the potential to support plant growth and 
protection against pathogenic fungi, and thereby contribute to 
the robustness and health of plant hosts.

Promising Key Species for Future 
Biocontrol Agents
In the core microbiome of the leafy greens, we  identified 
Bacillus spp. and Sphingomonas spp. playing a pivotal role in 
suppressing the key pathogenic fungi B. cinerea, F. oxysporum, 
F. verticillioides, S. rolfsii, and V. dahliae. Bacillus spp. have 
previously been shown to produce antimicrobial compounds, 
such as mycosubtilin and lipopeptides produced by B. subtilis 
(Leclère et al., 2005), or the antagonistic compound bacillomycin 
by B. amyloliquefaciens (Mülner et  al., 2020). Sphingomonas 
are mainly known for their ability to degrade refractory 
contaminants, but have also been reported to be  antagonistic 
against bacteria and fungi (White et al., 1996; Innerebner et al., 
2011). These highly effective antagonists further showed resistance 
to abiotic stresses and plant-growth promotion capabilities in 
the current study. One isolate of Bacillus was able to tolerate 
high levels of hydrogen peroxide, which is a major abiotic 
stress factor for plants. Further, all isolates could grow under 
saline conditions up to 10%. Salinity reduces water-uptake 
efficiency and photosynthesis rate in plants, but microorganisms 
capable of dealing with such osmotic stress may confer resistance 
in plants to salt stress (Mayak et  al., 2004). Furthermore, 
episodic drying and re-wetting of soil causes fluctuations in 
the soil’s water potential and challenges microbes. We  showed 
that all our selected isolates were highly resistant to desiccation. 
Effective consortia of biological control agents, therefore, should 
include bacteria that support plant growth in addition to 
antagonistic species. In our study, priming of tomato seeds 
with Bacillus isolates resulted in significant plant-growth 
promotion of up to 70%, whereas Sphingomonas isolates did 
not show any effect. However, Sphingomonas are known to 
promote plant growth by producing gibberellic acids (GAs) 
and indole acetic acid (IAA), improving crop productivity, 
which have also been reported for Bacillus spp. (Khan et  al., 
2014). Although Bacillus strains have previously been reported 
as solubilizers of inorganic phosphate (Hayat et  al., 2010), 
we could not identify phosphate solubilizers among our isolates. 
This provides confirmation of the high specificity of plant 
beneficial traits at strain level (Berg, 2009). The antagonistic 
and plant-growth-promoting characteristics of the Bacillus and 

Sphingomonas isolates tested make them promising candidates 
for their application as biological control agents against fungal 
infections and for increasing robustness and plant health in 
Ugandan agriculture.

CONCLUSION

In our study, we found a unique, diverse, and robust microbiome 
occurring on natural leafy green vegetables in Uganda. Blackjack, 
okra, nightshade, and spiderwisp harbored microbes with strong 
antagonistic activities against pathogenic fungi, as well as 
promoting plant growth and demonstrating properties to enable 
host plants to withstand abiotic stresses. Six isolates in particular, 
assigned to the families Sphingomonadaceae and Bacillaceae, 
proved to be  promising key-candidates for future sustainable 
biocontrol agents, toward supporting crop production in 
smallholder production systems in Sub-Saharan Africa. The 
biocontrol approach provides a more environmentally sustainable 
opportunity to produce crops and reduce or even replace 
excessive pesticide use. Identification of microbial isolates that 
are indigenous and adapted to African smallholder production 
systems will enable the development of technologies to support 
smallholders and improve human and environmental health.
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