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Purpose: To explore the role of computed tomography (CT)-based deep learning and
radiomics in preoperative evaluation of epidermal growth factor receptor 2 (HER2) status
in gastric cancer.

Materials and methods: The clinical data on gastric cancer patients were evaluated
retrospectively, and 357 patients were chosen for this study (training cohort: 249; test
cohort: 108). The preprocessed enhanced CT arterial phase images were selected for
lesion segmentation, radiomics and deep learning feature extraction. We integrated deep
learning features and radiomic features (Inte). Four methods were used for feature
selection. We constructed models with support vector machine (SVM) or random forest
(RF), respectively. The area under the receiver operating characteristics curve (AUC) was
used to assess the performance of these models. We also constructed a nomogram
including Inte-feature scores and clinical factors.

Results: The radiomics-SVM model showed good classification performance (AUC,
training cohort: 0.8069; test cohort: 0.7869). The AUC of the ResNet50-SVM model
and the Inte-SVM model in the test cohort were 0.8955 and 0.9055. The nomogram also
showed excellent discrimination achieving greater AUC (training cohort, 0.9207; test
cohort, 0.9224).

Conclusion:CT-based deep learning radiomics nomogram can accurately and effectively
assess the HER2 status in patients with gastric cancer before surgery and it is expected to
assist physicians in clinical decision-making and facilitates individualized treatment
planning.

Keywords: gastric cancer, HER2 status, deep learning, radiomics, nomogram, computed tomography
INTRODUCTION

Gastric cancer is one of the most common tumors worldwide, ranking fourth in cancer-related
deaths (1). Due to the atypical nature of early symptoms of gastric cancer, many patients are already
in advanced gastric cancer when they are diagnosed (2, 3). The main treatment for advanced gastric
cancer is surgical resection combined with adjuvant chemotherapy or chemoradiotherapy (4).
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However, despite treatment, the patients with advanced gastric
cancer remain poor prognosis (5, 6). HER2 is associated with the
poor prognosis in advanced gastric cancer (7). Studies have
confirmed that overexpression of HER2 is a significant driver
of gastric cancer tumorigenesis (7–9). Trastuzumab combined
with standard chemotherapy can significantly improve overall
survival in HER2-positive advanced disease (4, 8, 10, 11). The
higher the HER2 positivity degree, the greater the treatment
effect (8). Thus, the precise identification of HER2 status is
critical in the treatment of gastric cancer (12).

Approximately 30% of patients with gastric cancer are HER2-
positive (7, 13). In clinical work, immunohistochemistry (IHC)
or fluorescence in situ hybridization (FISH) are commonly used
methods to detect HER2 status, which are invasive and costly
(13, 14). Several studies have used positron emission tomography
(PET) imaging to try to predict HER2 status, but the results have
been inconsistent (15, 16). Therefore, a new noninvasive method
is needed to evaluate HER2 status.

Artificial Intelligence is an emerging technology that provides
new approaches to oncology research in recent years. Studies
have highlighted the importance of identifying imaging
biomarkers in oncology (17). CT is widely used in clinical
practice and is the routine imaging examination for
preoperative evaluation of gastric cancer patients (18).
Radiomics can extract features from medical images, showing
great potential in oncology practice (19, 20). The limitations of
small datasets can be overcome with transfer learning (21). It
extracts deep learning features via pre-trained convolutional
neural networks (CNNs) (22). Research has confirmed that,
under certain conditions, the predictive performance of AI
models is not inferior to that of human experts (23, 24).

Therefore, this study aimed to develop a CT-based deep
learning radiomics nomogram for patients with gastric cancer
to preoperatively evaluate the HER2 status. To our knowledge,
this has not been reported in any published study.
MATERIALS AND METHODS

Patients
We reviewed the clinical data of the patients with gastric cancer
from January 2017 to January 2022 and selected 357 (mean age,
64.18 ± 11.272 years; the range of the ages, 26 – 90 years) patients
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for this study, including 167 HER2-positive patients (46.78%)
and 190 HER2-negative patients (53.22%). Supplementary
material detailed the sample size assessment process (Figure
S1) and the patient inclusion and exclusion criteria. Clinical,
pathology, and laboratory data were derived from medical
records. The criteria for judging HER2 status were detailed in
supplementary material. Three radiologists reviewed the
patient’s enhanced CT arterial phase images and reassessed the
patient’s T stage and lymph node (LN) status. They all had more
than eight years of medical imaging experience. The evaluation
processes of the three doctors were independent of each other,
and they had no knowledge of the patient’s pathological
information. If the opinions of the three doctors were not
uniform, we would take the majority opinion as the patient’s
final T stage and LN status. Supplementary material detailed the
acquisition of CT images.

We obtained informed consent from patients or their relatives
and were approved by the Ethics Committee of the Second
Affiliated Hospital of Nanjing Medical University (NO. [2022]-
KY-009-01). All patient private information was deleted.

Regions of Interests
The features extracted from enhanced CT arterial phase images
have better predictive performance than portal venous phase (20,
25). Therefore, we resampled the enhanced CT arterial phase
images. Two radiologists used ITK-SNAP software to semi-
automatically segment the gastric cancer ROI of enhanced CT
arterial phase images. Both doctors had more than eight years of
medical imaging experience and only knew the location of the
pathologically confirmed tumor and had no knowledge of the
other information. An example of tumor segmentation was
shown in Figure 1. Supplementary materials described the
details of tumor segmentation.

Radiomics Features
We used the PyRadiomics package (version 3.0.1) to extract
radiomic features from ROIs (26). Most features complied with
the Image Biomarker Standardization Initiative (27, 28). We use
the pingouin package (version 0.3.11) to calculate the intraclass
correlation coefficient (ICC). The features were considered stable
with values over 0.8 (Figure S2) (29, 30). The process of feature
extraction and ICC calculation was described in detail in the
supplementary material.
B CA

FIGURE 1 | Tumor segmentation. (A) Enhanced CT arterial phase images show local gastric wall thickening and enhancement. (B) Manual segmentation. (C) 3D
reconstruction of tumor.
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Deep Learning Features
MobileNetV3, DenseNet201, EfficientNetB7, EfficientNetV2,
EfficientNetV2B3, InceptionResNetV2, InceptionV3, NASNet,
RegNetX320, RegNetY320, Resnet50, ResNet50V2, VGG16,
VGG19 and Xception were used to extract the deep learning
features. They were all pre-trained on the ImageNet database
only and all convolutional layers were frozen and not trained
again (31). The extracted deep learning features were modeled by
machine learning methods. Supplementary material described in
detail in the pre-training process and feature extraction process
of CNN. We visualized the output in a given convolutional layer
of CNN by Guided Gradient Weighted Class Activation
Mapping (Guided Grad-CAM), which can be explored for
important locations in the deep learning function (32).

Feature Selection and Model Construction
Borderline-SMOTE method was used to deal with the
imbalanced data in the training cohort. After normalizing the
feature values, we performed feature selection according to the
following steps. First, T-test was used for preliminary selecting of
features, and features with p<0.05 were selected out. Second, the
top 20% of the best features were selected out by univariate
analysis. Then we performed recursive feature elimination (RFE)
in random forest model and tested using five-fold cross-
validation, and these features were evaluated based on accuracy
(33). Finally, we performed a 10-fold cross-validation and
iterating 100,000 times for “Lambda” parameter tuning in the
training cohort to select the optimal “Lambda” parameter of the
least absolute shrinkage and selection operator (Lasso) method.
We used the Lasso method for feature selection and recorded the
feature scores for all patients. We also integrated deep learning
features and radiomic features. The specific method was detailed
in the supplementary material. The relationship between features
and HER2 status was tested with Mann-Whitney U test. SVM or
RF was used to construct classification models.

Nomogram Construction
All clinical, pathological, and laboratory data, including age, sex,
tumor location, tumor morphology, albumin, neutrophils,
lymphocytes, CEA level, CA724 level, CT-reported LN status,
CT-reported T stage and the feature scores were subjected to
univariate analysis. The variables with p-values less than 0.05
were assessed by multivariate logistic regression analysis. Then,
the nomogram was constructed on this basis.

Statistical Analysis
Differences between normally distributed variables were assessed
by the T-test. Differences in non-normally distributed variables
were compared by the Mann-Whitney U test. The differences
between categorical variables were assessed by the chi-square
test. The feature scores of both cohorts and their probability
density distributions were represented by the violin graphs. AUC
was used to evaluate the classification models. To validate the
stability and generalization of the selected models, a five-fold
cross-validation of the entire dataset was performed, and another
five-fold cross-validation was performed after shuffling the data.
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The calibration curve and Hosmer-Lemeshow test were used to
evaluate the nomogram. The receiver operator characteristics
(ROC) curves were used to evaluate the nomogram, which were
assessed by the Delong test. Decision analysis curve (DCA) was
drawn to show the value of the classification model and
nomogram in clinical application (34).
RESULTS

Clinical Characteristics
Figure 2 depicted the workflow of this study. Among these 357
patients, according to the ratio of 7:3, they were assigned into two
cohorts at random: training (n = 249) and test (n = 108). Table 1
summarized the clinical, pathological, and laboratory findings
for each cohort. The clinical characteristics of the two groups of
patients did not differ significantly.

Model Construction and Evaluation
For radiomics model construction in the training cohort, after a
series of feature selection (Figure 3), a total of 21 features were
selected out (Supplementary Material). The radiomics-SVM
model showed better classification performance in the training
cohort, reaching an AUC of 0.8069. Its AUC and accuracy were
0.7869 and 0.8148 in the test cohort (sensitivity, 0.7400;
specificity, 0.8793), respectively (Table S1).

15 CNNs were used to extract the deep learning feature. The
selected features were detailed in the supplementary material.
The ResNet50-SVM model had the optimal classification
performance (Table S1) and outperformed the radiomics
model (AUC, 0.8955 vs 0.7869). In the test cohort, its
accuracy, sensitivity and specificity were 0.8981, 0.8600, 0.9310,
respectively (Table S1). For further evaluation of the selected
features as well as the selected models, we performed two 5-fold
cross-validation on the model. The results show satisfactory
stability and accuracy of the radiomics-SVM model and the
ResNet50-SVM model (Table S2). Feature heatmap indicated
the important locations of ResNet50 when generating output
(Figure 4). Tumors and the surrounding regions were valuable
for deep learning feature extraction.

We also tried to integrate radiomics features with deep
learning features extracted by ResNet50 to explore whether this
method can improve the classification performance. A total of 8
deep learning features and 5 radiomics features were selected for
model building (Supplementary Material). In test cohort, the
Inte-SVM model showed higher classification performance
(AUC = 0.9055). Its accuracy also achieved 0.9074 (Table S1).
We performed two 5-fold cross-validations on the model to
evaluate the screened features as well as the Inte-SVM model.
The results showed that the Inte-SVM model has great stability
and accuracy, and is better than the radiomics-SVM model and
the ResNet50-SVM model (Table S2). The Inte-feature scores
was shown in Figure 5. In both cohorts, HER2-positive patients
had significantly higher scores than HER2-negative patients.
There was a correlation between the features with HER2 status
(Mann-Whitney U test, p < 0.001).
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FIGURE 2 | Analysis flowchart. (A) Extraction process of deep learning features and radiomics features. (B) Selecting of features. Calculation of feature scores.
Construction of classification models. (C) Model evaluation.
TABLE 1 | Patient characteristics in each cohort.

Clinical characteristics Train cohort (n = 249) Test cohort (n = 108) p

HER2(+) HER2(-) p HER2(+) HER2(-) p

Age (years), (mean ± SD) 65.25 ± 11.199 63.33 ± 11.243 0.908 65.94 ± 11.323 62.43 ± 11.305 0.776 0.475
Gender, NO (%) 0.924 0.119 0.228

Male 80 (68.4) 91 (68.9) 41 (82) 40 (69)
Female 37 (31.6) 41 (31.1) 9 (18) 18 (31)

Tumor location, NO (%) 0.528 0.708 0.971
Fundus 35 (29.9) 41 (31.1) 14 (28) 20 (34.5)
Body 28 (23.9) 24 (18.2) 12 (24) 11 (19)
Antrum 54 (46.2) 67 (50.8) 24 ()48 27 (46.6)

Tumor morphology, NO (%) 0.082 0.127 0.950
Ulceration 99 (84.6) 100 (75.8) 43 (86) 43 (74.1)
Flat 18 (15.4) 32 (24.2) 7 (14) 15 (25.9)

Laboratory tests, median (IQR)
Album 40.00 (36.85, 42.70) 40.80 (37.15, 43.80) 0.288 39.35 (35.90, 41.95) 42.50 (37.55, 44.85) 0.013* 0.470
Neutrophil 3.74 (2.92, 5.10) 3.90 (2.95, 4.81) 0.933 3.92 (2.92, 4.96) 3.59 (2.91, 4.73) 0.707 0.772
Lymphocyte 1.36 (1.08, 1.78) 1.43 (1.05, 1.85) 0.542 1.23 (0.95, 1.70) 1.47 (1.18, 1.82) 0.036* 0.808

CEA level, NO (%) 0.101 0.339 0.655
Normal 103 (88) 124 (93.9) 45 (90) 55 (94.8)
Abnormal 14 (12) 8 (6.1) 5 (10) 3 (5.2)

CA724 level, NO (%) 0.000* 0.016* 0.451
Normal 80 (68.4) 119 (90.2) 37 (74) 53 (91.4)
Abnormal 37 (31.6) 13 (9.8) 13 (26) 5 (8.6)

CT-reported LN status, No (%) 0.576 0.590 0.132
LN (+) 60 (51.3) 63 (47.7) 19 (38) 25 (43.1)
LN (-) 57 (48.7) 69 (52.3) 31 (62) 33 (56.9)

CT-reported T stage, No (%) 0.000* 0.001* 0.562
T1-2 41 (35) 96 (72.7) 21 (42) 42 (72.4)
T3-4 76 (65) 36 (27.3) 29 (58) 16 (27.6)

Feature scores median (IQR) 0.11 (-0.02, 0.36) -0.18 (-0.22, -0.07) 0.000* 1.48 (-0.01, 0.28) -0.21 (-0.24, -0.16) 0.000* 0.175

HER2(+), HER2 positivity; HER2(-), HER2 negativity; LN (+), lymph node metastasis positive; LN (-), lymph node metastasis negative; IQR, interquartile ranges; SD, standard deviation; *p
value < 0.05.
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Nomogram Construction and Evaluation
After univariate and multivariate logistic regression analysis, the
independent factors were the Inte-feature scores, CT-reported T
stage and CA724 level (Table 2). The nomogram (Figure 6)
constructed based on these three independent factors showed
excellent classification performance (Hosmer-Lemeshow test,
training cohort: p = 0.164; test cohort: p = 0.220). The AUC
(Figure 7) was higher in both cohort (training cohort: 0.9207;
test cohort: 0.9224). The calibration curves indicated that the
nomogram had excellent predictive performance (Figure 8).

The DCA of the Inte-SVMmodel and nomogram were shown
in the Figure 9. The analysis of the results showed that within a
certain threshold range, the use of nomogram and Inte-SVM
model had a greater net benefit than treat-all or treat-
none scheme.
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

In this study, we developed and verified a CT-based deep
learning radiomics nomogram for preoperative evaluation of
HER2 status in patients with gastric cancer, which included Inte-
feature scores, CT-reported T stage and CA724 level. Deep
learning features and radiomic features stratified gastric cancer
patients successfully according to their HER2 status. The
nomogram facilitated individualized preoperative evaluation of
HER2 status.

Accurate and effective HER2 testing plays a crucial role in the
treatment and prognosis of patients with gastric cancer (4, 12).
Gastroscopic biopsy is a common preoperative test to detect
HER2 status. However, it may lead to serious complications such
as infection, bleeding, and perforation (35). In recent years,
B CA

FIGURE 3 | Feature selection using RFE and LASSO. (A) RFE feature selection. Select out the features with the highest cross validation scores. (B) “Lambda”
parameter tuning. MSE: Mean square error. Using 10-fold cross-validation and iterating 100,000 times for “Lambda” parameter tuning of the LASSO method in the
training cohort to select the optimal “Lambda” parameter. (C) LASSO feature selection. Using the best lambda value for feature selection.
FIGURE 4 | Enhanced CT arterial phase images and feature heatmaps generated from ResNet50. The importance of the feature extracted by the ResNet50 is
represented by the color bar.
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studies have begun exploring the role of PET/CT and magnetic
resonance imaging (MRI) in evaluating HER2 status and have
achieved certain results (15, 36, 37). However, neither PET/CT
nor MRI is a routine preoperative test for patients with gastric
cancer. CT is a common method for preoperative evaluation of
patients (38). Enhanced CT is more commonly used in tumor
therapy (20, 39). Although several research showed that CT-
based radiomics can evaluate gene status of lung and colorectal
cancers (40, 41), no studies using deep learning and radiomics to
evaluate HER2 status in gastric cancer patients had been
published to our knowledge.

However, classification using deep learning is difficult to
integrate with radiomics. There were two aspects of this
problem that must be addressed. First, the most common
problem in training CNN models for medical image analysis is
the lack of large labeled datasets and training a CNN from
scratch on a limited dataset is prone to overfitting (42). Transfer
learning is an effective way of solving such problems (21). Deep
learning features are extracted through the pre-trained CNNs,
and the extracted features are then fed back to supervised
machine learning methods like SVM and RF, which greatly
reduces the need for large datasets and training time (43). Our
study showed that the deep learning features extracted using pre-
trained CNNs had good classification performance. At the same
Frontiers in Oncology | www.frontiersin.org 6
time, there is also no study stating which CNN is the most
suitable for building classification models. Therefore, we
extracted deep learning features by 15 kinds of CNNs. The
results confirmed that the ResNet50-SVM was the optimal
classification model. As for predicting HER2 status, this model
was much better than PET/CT (accuracy, 0.8981 vs 0.644) (15).
The AUC of ResNet50-SVM was also higher than that of the
MRI-based model (0.8955 vs 0.762) (36) and the conventional
enhanced CT (0.8955 vs 0.628) (44). Secondly, we used four
methods for feature selecting to avoid model overfitting due to
too many features. The analysis of the results confirmed that the
classification model constructed using the features selected by
the four selecting methods outperformed the model constructed
byWang et al. (45) using a single feature selecting method (AUC,
0.8955 vs 0.830).

Besides, transfer learning can transfer the learned parameters
of pre-trained CNN models on a large dataset to solve medical
image analysis problems. Among the studies in medical image
analysis, migration learning on ImageNet has been the most
studied (46). The idea behind transfer learning is that although
medical datasets are different from non-medical datasets, the
low-level features are universal to most of the image analysis
tasks (43). Transferred parameters may serve as a powerful set of
features. For the above reasons, we chose Guided Grad-CAM to
BA

FIGURE 5 | Violin graphs of feature scores of each cohort. (A) Training cohort. (B) Test cohort. The wider parts of violin graphs indicate that the patients in this
group are more likely to adopt the given value and the narrower parts represents the lower probability.
FIGURE 6 | Deep learning radiomics nomogram. Scores: Inte-feature scores.
T: CT-reported T stage.
TABLE 2 | The results of univariate analysis and multivariate logistic regression analysis.

Characteristics univariate analysis logistic regression analysis
p p

Age 0.179 –

Gender 0.924 –

Tumor location 0.756 –

Tumor morphology 0.082 –

Album 0.659 –

Neutrophil 0.598 –

Lymphocyte 0.682 –

CEA level 0.102 –

CA724 level 0.000* 0.039*
CT-reported LN status 0.577 –

CT-reported T stage 0.000* 0.004*
Feature scores 0.000* 0.000*
*p value < 0.05.
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explore important regions in CT images. The feature heatmap
showed that the tumor and its surrounding area were of great
value and further research should be carried out based on this
result in the future.

Then, the features extracted based on Resnet50 and the
radiomics features were integrated to build a new classification
model. After integrating the two, the classification performance
of the model was improved, which was similar to the studies by
Han et al. (47) and Yang et al. (48). Paul et al. (49) suggested that
the deep learning features could complement the radiomics
features, which are not limited to previously recognized image
features and human-understandable attributes. The same view
was also expressed by Lao et al. (50). As a result, they will unearth
information from medical images that is difficult for humans to
notice, increasing the reasonable hope of diagnostic value. But
for humans, the meaning of deep learning features is not easy to
understand. To this end, we tried to visualize the feature
extraction layers of the CNN and drew feature heatmaps to
show the important locations in the CNN features (Figure 4). In
addition to this, radiomic features were also integrated into the
Frontiers in Oncology | www.frontiersin.org 7
model building. Radiomic features are well-defined and pre-
selected features that contain predictive information and include
image properties that are known or reasonably expected by
humans (26). We believed integrating radiomics features and
deep learning features was reasonably expected to provide
greater value than analyses based solely on radiomics or only
deep learning features.

Studies by Huang et al. (51) demonstrated that the integration
of multiple markers into one model facilitated individualized
management of patients and was superior to the use of a single
marker. The study by Liu et al. (52) also came to the same
conclusion. The feature scores and clinical factors were subjected
to univariate and multivariate logistic regression analysis. The
independent factors were the Inte-feature scores, CT-reported T
stage and CA724 level. HER2 positivity was associated with
higher T stage. The study by Zhang et al. (53) also came to the
same conclusion. The aggressive behavior of gastric cancer was
associated to HER2 expression, according to the research by Kim
et al. (54). The higher the expression of HER2, the stronger the
aggressive behavior of gastric cancer and the higher the T stage.
Furthermore, the high expression of HER2 correlated with
CA724 level, which was consistent with the study by Chen
et al. (55).

Due to the low HER2 positive rate in patients with gastric
cancer and high price, the detection of HER2 status is not a
routine clinical examination (13, 56). Therefore, we combined
the Inte-feature scores and the clinical factors to build a
nomogram. Both clinicians and patients can use this easy-to-
use nomogram, which was in line with the trend of personalized
medicine (57). The nomogram had important guiding
significance for clinicians to preoperatively evaluate the HER2
status. To evaluate the clinical applicability of Inte-SVM model
and nomogram, this study adopted the DCA. Analysis showed
that within a certain threshold, compared with treat-all-patients
or treat-none scheme, using Inte-SVM model or nomogram to
predict HER2 status can provide net benefits.

This study had some notable limitations. First, the deep
learning features were obtained by using CNN for transfer
learning. Although the test cohort verification proved that the
classification model had good predictive performance, there were
FIGURE 7 | ROC curves of the nomogram in each cohort. p: P value of
Delong test.
BA

FIGURE 8 | Calibration curves of the nomogram in training (A) and test (B) cohort. Dashed lines indicate perfect predictions. The prediction performances of the
nomogram are represented by solid lines. The solid line and the dashed line are very close, which indicates that the nomogram has excellent predictive performance.
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differences between the source database and the target database.
One solution is to build a large database that includes a large
number of well-annotated medical imaging data. With the help of
this database for CNN training, better performance will be
obtained. Then, this was a limited sample size, single-center
retrospective study. Further research requires more data and
external validation. Besides, this study did not investigate the
segmentation performance of the CNN to extract the best layers
for feature extraction, nor did it fine-tune the pre-trained CNN
using our own CT dataset. Further research on this is required
next. Finally, in this study, only enhanced CT arterial phase images
were used to extract the deep learning and radiomics features.
Other staging of enhanced CT should be studied in the future.

In conclusion, a nomogram was constructed and verified
based on deep learning and radiomics feature scores and
clinical factors in the study and could assist clinicians to
individualize preoperative prediction of HER2 status in gastric
cancer patients.
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